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Abstract

A general controller evaluation method is introduced, based on four performance
and robustness criteriaincluding both low-, mid- and high-frequency properties. Ac-
cording to this method, optimal Pl and PID controllers are designed. In industrial
applications derivative action is often omitted, due to noise sensitivity. In this paper
is shown that when alow-pass filter isincluded in the design of a PID controller, the
control activity aswell as the noise sensitivity can be significantly reduced compared
to common design rules. These benefits are reached without deterioration of stability
margins or low frequency performance. Two sets of simple tuning rules for stable
non-oscillating plants are proposed. One set is suitable for automatic tuning. The
other oneis based on a step response and |eaves the operator with just one parameter
to tune. Thisrule makesit in fact easier to tune a PID controller than a Pl controller
close to the optimum.

Furthermore, it ispointed out that awell tuned PID controller with a second order
filter often offers the same performance to the same price in form of control activity
asamodern H,, controller. For adelayed plant a Smith predictor can be introduced.
However, when a Pl controller is used, it is shown to be more profitable to provide
the controller with derivative action than with a Smith predictor. On the other hand,
together with aPID controller the Smith predictor may improve performance to some
extent for plants with moderate delays.

1 Introduction

Within the control community a huge number of results have been presented, where new
or modified control design strategies have been compared with existing methods. Too
often such comparisons are not objective, since only some aspects of performance and
robustness issues are considered. Typically step responses and stability margins are com-
pared, neglecting the cost in terms of e.g. high frequency robustness and control activity.
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One design methodoften applied within the area of robust control is the LQG/LTR
approach [53]. The pass-band robustness (stability margins) is then improved, but at
the cost of deterioration of high frequency loop gain and roll-off. Another example is
the ., loopshaping strategy [35], which typically is directed to good high frequency
properties, but sometimes misses the impaired mid frequency robustness it might bring
about. The coupling between the low frequency (LF), mid frequency (MF) and high
frequency (HF) ranges is obviously important. Improvement of performance in terms
of e.g. reduced integrated square error from process disturbances implies either reduced
pass-band robustness (stability margins), or reduced HF robustness due to increased lead
action in the controller. Thus, performance optimization cannot be considered without
looking at robustnessin both the MF and the HF domain, which is also pointed out in e.g.
[48] and [49].

Based on these observations, a method for general and objective evaluation of con-
trollers for al kinds of plants has during the last years been introduced, see e.g. [31,
23, 22, 27, 26]. It is based on four criteria, related to vital performance and robustness
characters, including both LF, MF and HF goals. This method can be used to compare
controllers of different structures, but it can also serve as a guideline for appropriate con-
trol design procedures. That such a method for critical analysis of available tuning tech-
niques is needed is witnessed in e.g. [30]. Compared to [26] a more complete version of
the method is presented here. An additional HF criterion is introduced to handle roll-off.
Moreover, the MF criterion is extended to handle high gain controllers such as the Smith
predictor.

The PID controller is by far the most common controller in use [61, 34, 19]. It has
for decades been practically important and has even been called The " Process Industries
Default” controller. In recent days it has also been object for increased interest from the
research community [9, 30]. Unfortunately the derivative part has in practice often been
shut off because of lack of asimple and reliable tuning method considering measurement
noise sensitivity [21].

This paper presents some resultsreached by applying the presented eval uation method
to PID controllers. One of the key results is that by including a filter in the design, de-
manded performance and stability margin can be achieved by much lower control activity
than with the filter added afterwards. That means that derivative action can be introduced
without harmful sensitivity to sensor noise. In [21] it is argued that the filter must be an
inherent part of aPID controller. Similar thoughts are also expressed in [31, 32, 39, 33].
The investigations in this paper show that significant improvements compared to most
standard methods e.g. [65, 4, 20, 40] can be obtained. These resultsare valid for all kinds
of plants, but this paper is focused on the large group of stable non-oscillating ones.
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A reformulation of the classical PID controller is introduced, motivated by the fact
that the optimal controller mostly has a pair of complex zeros, whose best location is
easy to find, see [22]. Rules for this part of the design are presented in two versions.
Both can be used manually and then allow the user to adjust two of the tuning parameters
and still get results close to the optimum. This means that the user has some freedom
to manage the important trade-off between performance, robustness and control activity.
For automatic tuning the rules for the zeros are supplemented by rules for the integral
and high frequency gains. These rules, though ssimplified compared to [26], have been
shown to result in almost optimal control. All demanded plant knowledge can be found
by arelay experiment [2, 3, 54, 62] and a step response. An extremely simple method for
manual tuning is based only on a simple step response.

Furthermore, it is shown that the PID controller can always offer significant perfor-
mance improvements, compared to the Pl controller, to moderately higher control cost.
Thisistrue for al kinds of plants, independent of whether their dynamics are due to lag
or time delay.

The PID controller may also be augmented by a higher order low-pass filter. Signifi-
cant improvementsof noise sensitivity and HF robustness are then obtained with only very
marginal deterioration of low- or mid-frequency properties. Actually a PID controller
with a second order filter is often well competitive with a PID-weighted H .-controller
and superior to the more common Pl-weighted one.

Finally, it is asserted by the evaluation method that it is more profitable to provide a Pl
controller with derivative action than with a Smith predictor, also in cases when the plant
has a significant time delay. On the other hand it is demonstrated that a Smith predictor
may improve performance in a system with a PID controller when the plant has a delay
of moderate size.

The paper is organized as follows. After this introduction, a description of the pro-
posed evaluation method and its criteria is given in Section 2. New formulations of the
Pl and PID controllers with their parameters are presented in Section 3. In Section 4
the trade-off between LF and HF characteristics for PI- and PID-controlled systems is
elucidated. Improvements of some system properties, for different kinds of plants, due
to optimizing of the controller parameter are also presented. Simple tuning rules for Pl
aswell asfor PID controllers are given in Section 5. Strictly proper PID controllers are
discussed in Section 6 together with PlI- and PID-weighted # .-controllers. The benefits
of Smith predictors are investigated in Section 7.
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2 Evaluation criteria

Aswas pointed out in the introduction, improvement of a controller design in one respect
will very often bring deterioration in another one. Obvioudly, different system qualities
depend on each other. Both LF, MF and HF properties thus have to be investigated, when
performance and robustness issues are compared for different regulators. A method for
comparison of two controllers must, if it claims to be fair, guarantee that all aspects that
are not immediately compared are equally restricted during the comparison. The evalu-
ation method proposed here will fulfill this demand. Four suitable criteria are defined.
They are mainly related to the frequency domain, but do also have some time domain
interpretations.

Consider the SISO systemin Figure 1, where aplant G(s) is controlled by acontroller
K (s). It has three inputs, the reference signal r(t), the process disturbance v (¢) and the
measurement noise w(t). Relevant outputs are the controlled output y(t), the control
signal «(t) and the control error e(t) = r(t) — y(t). Also introduce the loop transfer
function

and the following four sensitivity functions with corresponding closed loop transfer func-
tions, which have related output and input signals as indices.

Sensitivity function S(s) = : +1L(s) = G (9)
Complementary sensitivity function 7'(s) = : f(z)(s) Gyr(s) = Gyu(s)
Disturbance sensitivity function Sy(s) = : f(zzs) Gy (s)
Control sensitivity function Su(s) = . f(LS()s) Gur(s) = Guu(s)

i~ K(s) L*L; G(s) Tyd

B SE—

Figure 1: Closed loop SISO system with pl&#ts) and controllerk (s).



is included, it has the following asymptotic properties

ki s —=0

S

K(s) — 1)

ke s 00

sm

wherek; is theintegral gain, & is thehigh frequency gain andm is therolloff rate of the
controller.

Performance criterion Thefirst of the proposed evaluation criteria, related to the
low frequency LF region, can be fileed as

1 1
= — — || = 2
Jo = 12 Gyl = 11 250(5)lloo @)

This is a measure of the systems ability to handle low frequency load disturbances, a
frequency domain alternative to the more common criteria based on some function of
the error signal [5, 17]. As soon as the controller includes integral action ifiista
guantity, which has the advantage of being almost independent of the plant model. In
fact, at low frequencies whetkg(s) > 1, S,(s) ~ K~'(s) ~ s/k; according to (1). For
servo problems, a more relevant criterion is obtained by replagjpgvith G, in (2).

Stability margin - Two classical measures are still common to characterize the mid
frequency MF robustness, tipease margin ¢,,, and thegain margin G,,, [59, 18, 11, 15,
41]. However, in recent years a restriction of the maximum sensitivity function

15]loc = max|S(jw)| < Ms 3)

has been more and more accepted as an exclusive robustness measure, [5, 28, 55, 45]. The
reason is thall.S|| ., is equal to the inverse of the minimal distance from the loop transfer
function to the critical poinf—1,0) in the Nyquist plot. In many situations it is also a
fully sufficient MF robustness measure, but there are exceptions.

With demands on further damping of the step response or increased phase margin but
preserved system response, it could be worthwhile to add a restriction on the maximum
complementary sensitivity function

1T|oe < My (4)

especially for plants with integral action, see [49, 44, 51].
For high gain controllers, e.g. when a Smith predictor structure is involved, the loop
transfer function.(jw) has to be further restricted above the frequengy, , where the
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Figure 2. TheMgs-circle (Ms =
1.7), the Mp-circle (Mr = 1.3) and
the My -circle (mq, = 3) which to-
0 1 gether déneGMg;..

loop has a phase lag ®80°. Otherwise the system may be very sensitive to reduced time
delays, see [25] and Section 7. A restriction

1

L) = —

<
me

max
w

W > wigo, (5)

means that the loop at frequencies aboyg, has to remain inside a circle with radius
2/mg,, and centre i /mg, . This implies that the gain margi@,, > mg,, .

These three restrictions ab(jw) are illustrated in Figure 2 by three circles in the
complex plane, thé/s-circle representing the limit oyt (jw)|, the Mr-circle represent-
ing the limit on|T'(jw)| and the)M ; -circle representing the limit ofi(jw)| at frequencies
abovewg, . The values of the constants in tiigure are equal to the default values in
this paper. They aréd/s = 1.7, My = 1.3 andmg,, = 3.0 In thisfigure is also shown
a typical Nyquist plot for a well-behaved system. It has two tangential points at the fre-
guencies where the constraints 8rand 7" are just fufilled, and enters thé/,- circle
at the point(—1/mg,,,0). Compare the Nyquist plot constraint corresponding to a line
proposed in [60].

To get one measure which inludes all three restrictions Gemeralized Maximum
Sengitivity

Gt = max (1Sl allTlles ymax (Wa) (L) = 1/ma) ) @

is introduced. The weight functiol/;,(jw) = 0 for w < wigy, and Wy, (jw) = 1 for
w > wig,, @ = Mg/Mrp andy = Mgmg,, /2. When there is equality in at least one
of the restrictions ((3}((5)) this means thatMs;, = Ms. Hence thez Mg, criterion
converts the restrictions (4), (5) to correspondirg levels.

UndoubtedlyG Mg, is a somewhat complex criterion, but there are good reasons for
including each of its elements as was motivated above. However, the third criterion is not
necessary for plain Pl and PID controllers, since these controllers do not imply a high
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gain property which motivates the restriction (5). In such cases, including all evaluations
in this paper except those in Section&)/ sy, is simplified to

G Mg = max (|[Sloo; al|Tl) (7)

Control activity When a reasonable stability margin is established, design of a con-
trol system is typically a question of trade-off between performance and control activity.
It is therefore suitable to introduce a cost criterion related to the mid to high frequency
MHF region, around or slightly above the closed loop bandwidth, where the maximum of
the control sensitivity is mostly to be found, cf. Figure 4.

Ju = ||Gur||oo = ||Guw||oo = ||SU(S)||OO (8)

High frequency robustness and noise sensitivity In the HF region two demands

are especially relevant, robustness against model uncertainties and reduction of sensitivity
to sensor noise. For plants with sifinant uncertainty due to e.g. varying time delay or
unmodeled high frequency resonances, the complementary sensitivity fuRi¢tipmust
be kept small according to the Small Gain Theorem [13]. Furthermore, the measurement
noise is transferred to the output 8y, = 7'(s), which gives another reason to KEEfx)
small.

Now, T'(s) = G(s)K(s)S(s) and consequentlyG—! = S, = G,,, why keeping
S.(s) low is keepingT'(s) low as well. Then a relevant criterion for the HF domain can
be formulated as

Jir = ||5" Gurlloo = 15" Guwlloo = [|5™Su(5)]|00 9)

For high frequencies, wheig(s) ~ 1, S, ~ K = k.s ™ according to (1). Hence this
criterion, just as/,, is almost independent of the nominal plant model. Wheni- 0,
which is valid for Pl and PID controllers without extii#ters, Jgr = J,.

Evaluation procedure In all controller design, independent of method, the user
has to modify a set of tuning parameters An objective method to evaluate a control
system in some respect is then to keep three of the four introduced criteria constant and
equal, or at least bounded upwards , and then madify the minimum of the fourth
criterion. Then evaluation of LF performance is accomplished by solving the constrained
optimization problem

minJ,(p) GMs(p) <Crv Ju(p) < Cy Jur(p) < Cs (10)
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where the constants; may be given different values. The default value(gfin this
paper is 1.7, while the values 6f, andC3; may vary. The last restriction is relevant only
for strictly proper controllers.

By this optimization procedure completely different controllers may be compared un-
der equal conditions. In fact it is straightforward to include even sampled-data controllers
with different sampling periods in such a comparis@h [An evaluation method like
this one is wanted in [56]. A similar idea, but with other criteria and with more vague
constraints, is presented in [42] and another one in [34].

The expressioptimal controller is from now on used for a controller which is op-
timized according to (10) with all available controller parameters included in the tuning
vector p. For instance a PI controller has two free parameters. When both are used in
the optimization the optimal PI controller is achieved. In this paper Matlab Optimization
Toolbox is used for the computation.

3 ThePID controller

As was noted above the proposed evaluation method can be used to compare all kinds
of controllers, but the constrained optimization procedure (10) may also be used as a
synthesis tool for a given class of controllers. A systematic investigation has been made
to find the most effective parameters for PID and related controllers afiddsimple

rules for computing optimal values in different situations. During the work it has become
more and more obvious that the optimal values are not always those that could be expected
according to common recommendations. It has also turned out that essentially the same
parameters are suitable for several different kinds of low order controllers, see [27].

Formulation and parameters

There are many ways to formulate the transfer function of a PID controller and to choose
its design parameters. The controller discussed in this paper is a one-degree-of-freedom
one, see Figure 1, and hence the intention is mainly to design it for good rejection of
load disturbances. This is motivated by the fact that most PID controllers work as reg-
ulators [50, 7]. When good servo properties are demanded, the controller can always be
augmented by &lter in the feedforward path.

The traditional PID controller with the three parametangportional gain K, integral
time constant 7; andderivative time constant 7,; has the drawback that it is not proper.
To bound the high frequency gain, it is mostly augmented by a low-filsis on the
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derivative part and may then be formulated as

1 STd
+
ST’i 1+ STf

Kprp(s) = K(1+ ) (11)

However, in [24, 22] it has been shown that a PID controller, optimized witfiltee
included and all parameters free, typically implies complex zeros in the controller. These
results have made it natural to reformulate the PID controller withrsaorder low-pass
filter as

1+ 2(7s + (15)?
s(1+s7/3)

where the four tuning parameters aamping ¢ and natural frequency 1/7 of the con-

Kpip(s) = ks (12)

troller zeros,integral gain &; andhigh frequency gain k., = Kp;p(oo) = k;73. The
variable = k.. /(7k;) is introduced here just for convenience. A more general formula-
tion of the PID controller than the traditional one is also recommended in [21].
Correspondingly, the PI controller may be formulated as
1+7s
Kpi(s) = ki (13)

S

Translation from the parameters in (12) to the traditional parameters in (11) is straightfor-
ward. Note also that witl¥ = 1 (low high frequency gain) and = 1 (double zero) the
PID controller becomes a PI controller.

Plant knowledge

To obtain useful tuning rules for Pl and PID controllers, the demands on plant knowledge
must presumably be very moderate.
The parametet was introduced bﬁstr'c)m and coworkers in [16] as a measure of the
difficulty to control a process. For stable plants it ifiinked as
_ G Gwisos)|
e O]

wherew;s,, is the frequency at which the plant has a phase lat80f. This normally

(14)

givesx numbers in the interval, 1]. The higher the value is, the more complex and hard
to control the plant is. Note that is the inverse of the gain margin that a P controller
would give withK (s) = 1/|G(0)|.

However, there are plants for which neithenor w5, are déined, since the plant
phase never reachesl80°. To meet such a situationmay be modied to

G (jwisog)]

K150 = |G(0)| (15)



wherew, 5, is the frequency at which the plant has a phase latpof. Together with

w0, and|G(0)], this number has been used in this paper to characterize plant dynamics
and to formulate a set of simple tuning rules. These characteristics can be found by a
relay experiment including hysteresis [2] and a step response. Together they fllso ful
the demand on three items of information about the plant that are necessary for tuning of
a PID controller according to [57, 9].

The models used for the investigations in this paper are the same as in [26]. They are
essentially those recommended in groupS In [6], suggested as standard benchmark
models for testing of PID controllers. Among them are all kinds of stable non-oscillating
plants, such as minimum and non-minimum phase plants, plants of high and low orders,
plants with multiple and spread poles etc.

4 Someresultsfor optimal Pl and PID controllers

In many design methods for PID controllers presented in the literature, the ratios between
the time constants in (11) have been more orfieesl and not really utilized in the design
procedure. Introduce

T;

=7

"=,

a (16)

Ever since Ziegler and Nichols presented their tuning rules in [65] the standard value
a = 4 has often been used without further motivation, see for example [2, 38, 58, 14].
This value corresponds to a double zero in (11) wiign= 0. Regardingb there are

no well-founded recommendations at all to be found, sincédiliee has mostly not been
looked upon as a part of the design. It has just been added afterwards and there are hints
in e.g. [4, 50, 47, 46] about a value bofn the vicinity of 10, motivated by a demand not

to let thefilter influence the closed loop properties too much, especially not concerning
the mid-frequency robustness (stability margins).

Filter design

Whena andb arefixed to 4 and 10 respectively, only two parameters are left for the opti-
mization. Compared to this case Figure 3 shows that great improvements in the properties
of a PID controlled system can be achieved for a second order plant with time delay, when
the four parameters are all optimized. The left part shows the trade-off between process
disturbance compensatiop and control activity/,,, while the right part shows the corre-
spondence between normalized bandwidjfw;s,, and control activity/,. In all cases

GMs = 1.7. The samdigure shows thdtxing a to 4 brings rather marginal deterioration
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Figure 3: (a)J, and (b)w;/w1so,, as functions of],, for the plantG(s) = e=%3/(1+
s)? controlled by different PI(D) controllers. In all casés\/s = 1.7, while J, is
minimized for each/,, value, corresponding to differeat, in (10).

compared to the optimal case. This is fiamed by results from optimization of the serial
PID controller (a Pl-block in series with a PD-block). For this controller a double zero
is shown to give the best trade-off betweénand .J,, see [22]. A double zero corre-
sponds taz = 4 whenb is infinite (nofilter) and just above whehis finite. For stable
non-oscillating plants, the optimal value®fn a PID-controller (11) is about 2.5 [22].

Optimal versus fixed low-pass filter The dramatic reduction of,, as well as the
corresponding enlargement of the bandwidth withgushift, comes from including in
the tuning vectop, that is from including thdilter in the design. The optimal values of
b has shown mostly to be rather 3 to 5 than 10, somewhat increasing/yvend«. It
is obvious from Figure 3 that the low frequency propertie®f a control system can be
significantly improved without loss of high frequency robustness or stability méidin;
and without increased control cogt, just by adjustment of thilter constant. Note also
that derivative action, i.e. PID control instead of PI control, can decréasmgnificantly
at moderateJ/,, values.

The trade-off between J, and .J, and the normalized bandwidth For an optimal
Pl controller there is mostly a minimum in thg /.J,-graph. This has been shown by
investigations, see [8], [22] and Figure 3 (a), but can also, at least for simple cases, be
shown theoretically.

For the optimal PID case there is normally no such minimum. However, it has been
noted that the graph tends to be more horizontal whegrows. Then it can be argued
that it is no use to increaskg, above a certain level, because the reward in decrejsied
too small. This tendency towards non-decreasings more obvious and theeconomic
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level’ .J,.. is lower the more complex the plant is (highewalue), see [26]. Thiseco-
nomic limit” is obviously not very sharp, but for the plant in Figure 3 it has been estimated
to approximately 10.

It should be emphasized that an optimal PID controller, working atetonomic
level’, can always offer better system properties than an optimal PI controller, and still
Ju., 1S very reasonabléMoreover, it is seen from Figure 3 (a) that when a PID controller
with e = 4 and b = 10 offers the same performance .J,, as the optimal PI controller, the
demanded control activity .J,, isalmost 5 times higher. This is one reason why derivative
action is not used in most industrial applications. Note that 4 is even fixed to 10 in many
commercial PID controllers.

The comparison between the controllers can alternatively be dong.férom Figure
3 it is remarkable how well the bandwidth follows the inverse of fh¢.J,-graph. The
exception is the Pl case, where no tendency to maximum can be seen in the bandwidth. It
is also worth noting that for those values.Qf where the PI controller works at its best,
the PID-graphs typically come close to the PIl-graphs. This is what could be expected
from Section 3, since thett — 1 andg = 1, { = 1 corresponds to a Pl controller.

Therelation between .J, and k., According to (8), the control activity criterios,
is equal to the maximum of the control sensitivity functi®p(w). For high frequencies
|S(w)| ~ 1 and hencéS, (w)| ~ |K (w)| & ks /w™, cf. (9).

For the PID controller (11) or (12) witlh = 0, maximum ofS, (w) typically occurs
whenw — oo due to the derivative action, and thép= k..

In the PI controller case for which also = 0, there is no derivative action and then
the maximum ofS, (w) occurs for lower frequencies, most oftenly just above the closed
loop bandwidth. However, also for the Pl controller there is a close relation betfyeen
andk, so that higher values of, corresponds to higher values/of, at least for plants

20 ‘

10 ISu PID m=0 -0 .

IS loip m=1 Figure 4: Plant G = ¢ °3/(1 +
|Su|PI j s)? optimally controlled by a PI
u controller (dashdotted), a PID con-
A \ koop.i troller with m = 0 (solid) and aPID
1 K . \J """ controller with m = 1 (dashed).
05 °°P"Dl' m"l“; HF . The figure illustrates the relations

10 10 10 10 100 » 10 between k.., J, and Jyp.
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Figure 5. J,/k-graphs for Gy, +
PID, Giog + Pl, Gyeray + PID and
0.1 0.15 02 K Geray + PI.

with not too high « values, see [22].

When the PID controller is augmented by an extra low-pass filter so that m > 0,
it has a roll-off and S, (w) has a maximum at finite frequencies also for this controller.
Then k., can be found approximately at the intersection with the frequency axis. Figure
4 illustrates the relations between .J,,, Jgr and k.

Similarities between lag and time delayed plants

It is sometimes argued that the derivative part of the PID controller is more profitable for
alag plant than for a plant with time delay [7, 50]. This statement is only valid to some
extent as may be concluded from Figure 5 and 6. Two plants are compared

1
(14 s)(1+as)(1+a?s)(1+ ads)

Glag(s) = a=0.3,04..1.0 (17)

and
6—sLd

(14 5)(1 4 0.25)

Gdelay(s) — (18)

where L, isvaried to give the same « valuesfor the two types of plants.

Figure 5 shows that, independent of x, .J, will, for both types of plants, decrease to
approximately half of its value for the optimal PI-controller, when derivative action is
introduced. Inthelag case J,,,,, /J,,, varies from 0.39 for small x values to 0.46 when
k = 0.25. In the delay case the same variation goes from 0.45 to 0.58. In all cases
moderate control activities have been used. For the PID controllers .J, = 10, which is
closeto J,,, for these plants, and for Pl the optimal .J,, value (2—4) is chosen.

In Figure 6 the .J, /.J,, relations and the process disturbance step responses are shown
for two pairs of plants with equal ~ values controlled with and without derivative action.
The J, / J, relations show that the two kinds of plants behave equal for reasonable control
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Figure 6: Left: J,/.J, relations for G,y and Gerey With (8) £ = 0.147 (o =
0.5,Lg = 0.211) and () k = 0.249 (o = 1.0,L; = 0.405). Right: Process
disturbance step responses for corresponding plants (b) G,,, + PID (J, = 10) and
Glag + P, (d) Ggetay + PID (J, = 10) and G gerqy + PI.

activities. The step responses show in al cases significantly smaller integrated errors for
the PID controllers (J, = 10) than for the Pl controllers (optimal .J,,).

Since the « values of the two compared plants are equal in pairs and have the same
LF gain (=1), they are supposed to be equally difficult to control. It is obvious that the
plants with delay in these examples show better trade-off between .J, and J, and more
favorable step responses (for the same .J,,)) than the corresponding lag plants, despite the
same demand on GG Ms. However, the profit offered by the derivative action is almost the
same for the two kinds of plant dynamics.

The reason why derivative action is argued to be more profitable for plants with lag
than for time delayed plants is possibly that very large control activity .J,, reduces .J,
significantly for plantswith lag. Thisisunfortunately not the case for time delayed plants,
due to their non-minimum phase behaviour. However, a reasonably large control activity
means that the differences between Pl and PID control are comparable for plants with the
same « value, independently of whether the plant dynamics are characterized by lag or
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Some optimal system properties

There are some system properties that can be immediately observed when PID control is
applied and the filter is designed, so that the closed loop system is optimized.

Bandwidth and crossover frequency It may be argued that the closed loop band-
widths w,, presented so far are often rather small. The same assertion isvalid for the open
loop crossover frequenciesw,. Thisisaconsequence of theoptimizationof J, ~ 1/k;, the
relatively strong demands on MF robustness (stability margin) and the moderate control
activity. According to Figure 7 the crossover frequency decreases sightly with increasing
Kk, we ~ (0.6 — 0.35K)wis0,,, While the resulting closed loop bandwidth is independent
of thisvalue, w;, ~ 1.1wig, (wiso,, = plant phase crossover frequency). This means that
wy &~ 2 — 3 timesw,, which is considerably larger than therule w, < wy, < 2w,, found in
the literature [13].

0
A Poip
_30,
Figure 8: Controller phase shift
60l (Apprp) a w. asafunction of
| | for optimal PID controllers with
0.1 0.4 07 Kk GMg=1.7and J, = 8.0.
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Controller phase shift Sometimesit has been asserted that when a phase margin of
45° (approximately corresponding to M, = 1.3) isdemanded, awell-tuned PID controller
conserves the phase shift of a minimum phase plant at a frequency where it is around
—135° [1, 7]. This means that the controller at the open loop gain crossover frequency
w. Will have no significant phase lag. According to [1] it is even likely to have a positive
phase at this frequency.

Figure 8 shows the phase shift Ay found for optimal PID controllers at thisfrequency
for different valuesof . Itimpliesthat Ay at w., introduced by an optimal PID controller,
increases negatively with «, roughly as Ay = 5 — 100x. Thisresult isvalid for al kinds
of plantsinvestigated in this paper including minimum phase plants with higher x values.
The optimization means a minimization of .J,,, which approximately corresponds to a
maximization of the integral gain k;. It is well known that large integral action brings
good disturbance compensation but also large negative phase shifts.

ThePID controller zeros The PID controller zerosarein (12) characterized by two
parameters, ¢ the damping ratio and 7 the inverse of the natural frequency.

For the optimal ¢ no significant dependence has been found neither on x nor on J,
for the stable non-oscillating plants investigated in this and other papers. This implies
that a = T;/T; ~ (2¢)* is aso constant. As can be seen from Figure 9(a), ¢ = 0.75,
corresponding to a = 2.25 (significantly less than 4), is aways a good approximation.
Fixing ¢ to this value and optimizing the remaining parameters will always give results
that are almost impossible to separate from the optimal ones.

Also the optimal natural frequency 1/7 is amost independent of .J,,, but for this pa-
rameter, normalized by w50, there is a linear dependence on «15,, that can not be ne-
glected, see Figure 9 (b).

Another way to normalize 7 is to use a character from the step response of the plant.
The ratio of 7 to the equivalent time constant 753, the time it takes for the response to
reach 63% of itsfinal value, shows a very marginal dependence on «. Figure 9 (c) shows
7/Te3 ~ 0.35 ~ 1/3.

These results offer a good starting point for a presentation of simple tuning rules for
the PID controller, which is given in the next section.

5 Tuningrulesfor Pl and PID controllers

Based on experience collected from comprehensive investigations on optimization of Pl
and PID controllers for many kinds of stable non-oscillating plants, some recommenda-
tions on tuning of these controllers can now be formulated. The plant knowledge needed
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Figure 9: Normalized zero parameters of the PID controller as functions of x5,
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is expressed by k150, the corresponding frequency w5, and sometimes the equivalent
time constant Tg3. According to e.g. [2, 62], this knowledge can be found by an experi-
ment with arelay including hysteresis, giving w15, and |G (jwiso)|, together with a step
response, giving |G(0)| and Tgs.

A set of rules based on x may be found in [26] for stable non-oscillating plants with
k > 0.1, completed by another set for the same kind of plants with k < 0.1 or no x
defined. Here just one set of rulesis given, which will work for all stable non-oscillating
plants independent of «. The only exception is first order plants with time delays. For
these plants a special recommendation is given in [26]. In the same paper thereisaso a
set of tuning rules for plants with integral action.

Pl controllers

For the Pl-controller (13) there are only two parameters to be tuned. The am in the
design of this controller isto reach the minimuminthe .J, /.J,, graph, see Figure 3(a). The
controller zero may then be positioned by one of the following rules:

1
- = w150, (0.06 + 1.6k 150 — 0-6“%50) (19)

17



or
7 = Ty3(0.70 — 0.45k150) (20)

Thefirst rule will for most stable non-oscillating plants give a difference from the optimal
value of less than 5%, the second one slightly more.

The remaining parameter, the integral gain &;, can either be used for tuning the system
to the demanded stability margin eg. GMg = 1.7 or to the desired damping of a step
response. It may also be computed from the formula

0.075
K150 + 0.05

hy = %06 (0.2 4

= 1G0)] ) o

Thisformulagivesadifference less than 5% from the optimal values of &, and .J,, for most
plants, alittle more for some plants with very small x values. GM g fallsin the interval
[1.60, 1.85].

PID controllers

The zeros of the PID controller (12) may be computed with good accuracy by the ssimple

formulas
¢=0.75 (22)
1
— = wisng (0.4 + 0.86k150) (23)
orwhenx > 0.1
7= 0.35T43 ~ Tp3/3 (24)

The remaining parameters may still be freely used by the operator to take care of special
demands on proper control activity (J, ~ k) and desired rejection of process distur-
bances (k; ~ 1/.J,).

However, the following formula for k., will give a J,, value close to the economic
level J,..

1 2
boo = ——— *max(3 + ——, 25 25

Finally k; can be adjusted to demanded stability or computed by the formula

ki _ Wis0g 0.45

- —0.1 26
o) * G007 OV (26)
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Figure 10: The J,/J, relations for G =
e %% /(1 + s)? controlled in different
ways, that is with optimal PID controller

] 3 - | | (solid), PID with @ = 4, b = 10 (dot-
Y ted), PID with locked zeros (23) (dashed)
2 | or (24) (dashdotted). So far ; is optimal.
optimal P . Furthermore PID istuned by the complete
1 “ set (22), (23)/(24), (25) and (26)(+/0).
The PI controllers are optimal (*) and
0 ‘ ‘ ‘ tuned by (19)/(20) and (21) (x/v) (both

0 5 10 15 J

u coincide with *).

The parameter (3 in (12) isintroduced just for convenience. It is short for k., /(7k;). Note
that 3 ~ b\/a, see[22].

When automatic tuning is preferred, with use of (22), (23) or (24), (25) and (26), the
resulting .J, value will mostly differ from the optimal one (at the same .J,, value) with
less than 5%, slightly more for plants with very small x values (x < 0.1) or no x numbers
defined. The stability margin G M s will fall intheinterval [1.65, 1.85], in most cases close
to1.7.

Figure 10 shows some results from tuning by the presented rules. It is obvious that
the rules for the zeros in the PID case can be used over a large interval of J, values. It
isinteresting that the two rules for 7 give amost identical results in both the Pl and the
PID case. Observe also that tuning all accessible parameters by the proposed rules offers
results that come very close to the optimal ones.

Extremely simple tuning rule From a step response giving 753 the zeros of a PID
controller can be fixed by (22) and (24). To find a suitable high frequency gain, try 5 =
5-8. The only remaining parameter k; can then be tuned to demanded stability (damping).

The economic level J, . typically correspondsto 5 = 5-8. If more high frequency
gain can be accepted 5 can be dlightly increased. That |eaves the user with the freedom
to handle the trade-off between control activity (k.,) and performance (k;).

Using thisrule, it can not be argued any more that a PID controller is more difficult to
design than a Pl controller. In fact PID tuning based on a step response (153) is simpler,
since there is no minimum to reach as in the Pl case. For each choice of control activity
selected by 5 an optimal k; can be found. In the Pl case, there are two parameters to
adjust simultaneously to get to the optimum, cf. Figure 3(a).
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The results of this simple tuning procedure for plants with > 0.1, including e.g.
plants with highly non-minimum phase behaviour, has shown to be remarkably close to
the optimal ones.

6 Strictly proper PID controllersand PID weighted H .
controllers

SometimesaPID controller with afirst order low-passfilter (a second order compensator)
can not fulfill the given property demands. Typicaly there is a need for more roll-off
than can be offered by the plant to compensate for significant model uncertainties or
measurement noise [10]. In such cases the PID controller can be augmented by a low-
pass filter of higher order. Another way to meet demands on roll-off is to introduce one
or more weighting functions in the plant model and then optimize the controller with an
Hoo Strategy.

PID controller with a second order filter

When the ordinary first order filter in the PID controller (12) is exchanged by a second
order filter, the controller can be formulated as (the index ro means roll-off)

1+ 2(1s+ (15)?
(1+2¢r5s +(59)%)

Kpip,,(s) = ki . (27)
Thisformulation opens up for complex poles, with the damping ratio ¢ ; and the undamped
frequency /7, aswell as for complex zeros.

In Figure 11 results for a representative plant model G(s) = (1 — 0.5s)/(1 + s)?
are given. Except for the study of the J,/J, relation in Figure 11(a), J, has been kept
constant a J, = 7.0, whichiscloseto J,, for thisplant. A PID controller with afirst
order filter has been optimized under these conditions and is shown for comparison. The
damping ratio ¢y of the second order filter has been varied in a wide range. The more
it is decreased, the more effective the roll-off is, corresponding to lower control activity
and better attenuation of measurement noise. For example it can be gathered from Figure
11(c) that the gain from the measurement noise to the control signal at w = 100 rad/sis
reduced by afactor about 100, and the high frequency criterion Jy » goes from from 787
to 19, when (; decreases from 2.0to 0.1, with Jy» = 65 for (f = 0.5.

However, it should be noted that there are less favorable effects coming up when the
reduction of (; isdriven too far. In the complementary sensitivity function 7" aresonance
isgrowing. According to the Small Gain Theorem [13, 64], such peaks should be avoided
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Figure 11: (a) J,/J, relations, (b) controller gains, (c) control sensitivity functions
and (d) complementary sensitivity functions for G(s) = (1 — 0.5s)/(1 + s)* con-
trolled by optimal PID controllers augmented by a first (dashed) or a second order
filter with different damping ratios (;. In (b)—d) J, = 7.0 and GMg = 1.7,

for robustnessreasons. Also therelation between .J, and .J,, isgrowing poorer for (; = 0.1
and 0.3.

From Figure 11 the conclusion can be drawn that a PID controller may well be aug-
mented by a second order low-pass filter with complex poles. Without significant deteri-
oration of low frequency performance and with retained stabitity margin (GMs = 1.7),
the damping ratio can be reduced to ¢; = 0.5 or evento (; = 0.3. The tuning rules for
PID,, may then be the same as those given for PID in Section 5 with the addition

¢r=0.5 (28)

This means that also for this strictly proper controller, at least three of the five tuning
parameters can be computed by very simple rules, while the two basic parameters &; and
k. (or (3) are left for the user.
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Figure 12: .J, as a function of
J, for G = e793/(1 + 5)? and
an optima PID,, controller with
¢y = 0.5 (dashdotted) or aterna-
tively a H,, controllers with a Pl
| | weight Hoop; (13) (dashed) or a
0 5 103, B PIDweight Hooprp (12) (solid).

0.5¢

PID weighted #,, controller

Tofind asuitable # ., controller, theloop shaping procedure described by MacFarlane and
Glover in [35], is applied. The main idea is to augment the plant with a weight function
W, and modify thisfunction until a desired open loop shapeis obtained for the augmented
plant G = W@. The controller K thus found is then combined with the corresponding
weight function to give the final controller K, = WK. It is quite common to use a Pl
filter (13) as the weight function. However, when somewhat higher control activity can
be accepted, a PID filter (12) is an interesting alternative.

Figure 12 showsthe J, /J, relationsfor G = 793¢ /(1 + s)? and three controllers, all
of them optimized with constrained .7, and GMs = 1.7. The Pl weighted H, controller
Hoopr, tuned by k; and k,, = k;7, shows the same characteristic minimum as the Pl
controller, cf. Figure 3(a). Here the optimal J, value is around 5. The result for the
PID weighted H., controller H . prp, issurprisingly similar to that of the optimal strictly
proper PID controller PID,.,, except for very low values of .J,. Here the ., controllers
are optimized with all weighting filter parameters free, while PI1D,.,, is optimized with
fixed ¢ = 0.8 and (y = 0.5. However, the two sets of controllers have the same G Mg
and Jgr vaues. In fact, the value of Jyr obtained for PID,, has been introduced as a
constraint in the optimization of the weighting filter in the # ., design.

Note that the # ., loop shaping procedure is only a tool to obtain the aim, i.e. to
minimize .J, and to obtain a fair comparison between different controllers. Included in
the description by MacFarlane and Glover is ascaling factor a.. The theoretically optimal
robustness corresponds to o = 1, but for practical reasons o dightly larger than one,
for instance 1.05, is often chosen. When the # ., optimizations were carried through, it
was found that G Mg did not hit the limit 1.7, when the restriction on Jzr was added
(to achieve afair comparisonto PI1D,,). Although, by allowing somewhat larger «, this
could be taken care of. In fact, small variations in « resulted in dramatically different
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Figure 13: Gainsof PID,,, J, =
10 (dashdotted), Hooprp, Ju = 10
(solid) and H oo p1, J,, = 5 (dashed),
&) for G =e 2% /(1+s)?.

0.2
10

10

optimal solutions with respect to low frequency performance. Thisimplies that o is an
important and sensitive tuning parameter for H ., controller design.

The controller gains of Hooprp, Hoeopr and PID,, are compared in Figure 13. For
al of them GMg = 1.7, for Heeprp and PID,, J, = 10 and Jgr = 122, whereas for
‘Hoopr1, the optimal value .J,, = 5 has been chosen. As can be seen, the graphsfor PID,,
and H..prp amost coincide while H .. p; has a quite different behaviour.

Finally, Figure 14 shows some simulations. The reference and process disturbance
step responses and the control signals after areference step are shown for five cases, with
the same plant G = ¢7%% /(1 + s)? and different controllers. Just as could be expected,
both the disturbance and reference step responses are very similar for thetwo PID con-
trollers, P1D,, and P1D,,,. However, it isinteresting to see how well also the responses
from H .. prp agree with those two. On the contrary, the H..p; has a somewhat slower
reference response with less overshoot, and a little greater maximum error regarding dis-
turbance rejection. The Pl controller is the loser in both respects. The control activity,
on the other hand, is greatest for P1D,,,, equa for PID,, and H.,p;p and somewhat
smaller for H..p;. For Pl it is very small but also very sluggish. Taken together, the
PID,, and H..prp controllers are superior, but the competition between those two must
be judged as undecided. Note, however, the higher dimension of the H ..prp controller.
With no restrictionson Jx r, Hooprp can do marginally better with respect to J, (= 2%),
but with much larger J 1.

7 PID controllerswith Smith predictors

When a plant has a significant time delay it might be a bit tricky to control, and a number
of methods have been tried. Very often atraditional or modified Smith predictor has been
recommended, see [52, 43, 37, 63, 36]. Here another contribution will be given.
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time
Figure 14. Reference step responses (left), process disturbance step responses
(middle) and control signals after a reference step (right) from five systems with
the following controllers: H..p;p (solid), Hop; (dashdotted), PID,, (dashed),
PID,,(dotted) and PI(solid). .J, = 10 except for H..p; With J, = 5 and Pl with
J, = 2.

Limitation of the loop gain

The third demand involved in the definition (6) of G Mgy, isalimitation of the loop gain
for frequencies from wysy, (Where the loop has a phase lag of 180°) and upwards. For
most controllers this criterion can well be weakened to a demand on minimum gain mar-
gin G, or even be excluded (7), but when a Smith predictor is combined with a Pl or
especialy a PID controller there is a tendency towards unhealthy high loop gain in this
frequency range. Figure 15 and 16 show Nyquist plots for the loop gains when a Pl and
a PID controller is or is not augmented by a Smith predictor and the loop gain is limited
in different ways. For the PI case in Figure 15 the high frequency limitation on || isin-
significant, since the gain never reaches the M/ -circle; the bound on G,,, is strong enough.
However, the tendency to growing gain in the range above wgy, for the controller with
predictor, compared to the one without, is clear. Figure 16 showsthe PID case. Note that
the plot for bounded | L| followsthe 1 -circle, while the one corresponding to the weaker
bound on G, goes far beyond.

Define the Maximum Delay margin Mp, asthetime delay corresponding to the phase
margin ., (Mp,, = pm/w., Where w, is the open loop crossover frequency). Then a
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Figure 15: Nyquist plots for G =

o e 1% /(1 + s)* and an optimal Pl
controller with (dashed) and with-
03 05 out (solid) Smith predictor.

minimum Delay margin m p,, can be defined in the same way corresponding to a second
crossover frequency above wigg, . Such an mp,, often occurs when a Smith predictor is
included in aPID controller and theloop isbounded only by G ,,, and not by the M -circle.
For G = e~ /(1 + 5)? the delay margins become

Lq[sec] | Mp,,
4 5.45 | -1.49
10 997 | -2.01

mp

m

Obviously this design is very sensitive to negative uncertainties in the time delay [51,
29]. However, applying the proposed M, bound impliesthat the loop is restricted to stay
inside the unit circle for w > wygp,, Which means that a reduced time delay can never
bring the system to instability.

Pl and PID controllerswith Smith predictors

Figure 17 illustrates how .J,, varies with .J,, for some optimal controllers with and without
Smith predictors (SP) included. It shows that the benefit of providing a Pl controller

1}
. Figure 16: Nyquist plots for G =
Or ' © 1 e /(1 + s) with an optimal PID
controller without (solid) and with
1 g ] Smith predictor with limited G,
.. (dashed) or limited |L| (dotted),
-1 1 2 3 J,=6.
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Figure 17: J, asafunction of J, for G = e ¢ /(1 + s)3 and optimal PID without

and with Smith predictor (SP) and bounded | L | or just limited G,,, and, furthermore,
for PI without and with Smith predictor. (a) L, = 4.0 and (b) L, = 10.0.

with a Smith predictor is marginal, both when the delay is of medium size (L, = 4) and
when itislarge (L; = 10). For aPID controller, on the other hand, the introduction of a
predictor implies some improvements for a plant with medium delay as in Figure 17(a).
However, when the delay islarge asin Figure 17(b), these improvements are eaten up by
the bound on || introduced by G Mg;,. With the demand on bounded loop gain above
wigo, Weakened to a demand on the gain margin, the improvement can be driven alittle
further but to the prize of poor high frequency robustness, see Figure 16. Further details
including step responses are given in [22, 25].

To concludeit can be stated that a PID controller with or without a Smith predictor can
offer significantly better properties than a Pl controller with Smith predictor for al kinds
of plants, also for plants with significant delays. There is more to be won by including
derivative action in a Pl controller than by introducing a Smith predictor structure. The
improvementsin .J, for the examplesin Figure 17 are given in the following table.

Lq[sec] | PI — PI+ Smith | PI — PID | PID — PID + Smith
1 1.4% 36% 15%
4 2.3% 30% 16%
10 6.4% 2% 0%

8 Conclusions

In this paper a general method for evaluation of controllers has been presented. The eval-
uation strategy involves four criteria expressing significant performance and robustness
system properties.

Based on this method simple tuning rules have been introduced for stable plants with
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real poles. Corresponding rules for plants with integral action can be found in [26].

It has also been shown that the advantages in terms of improved performance offered
by a PID controller, compared to the ssmpler PI controller, are just as good for a plant
with time delay as for a plant with lag when the same dynamic complexity (in terms of s
number) is considered. However, it is essential for the properties of the resulting system
that the low-passfilter in the PID controller isdesigned as an inherent part of the controller
and not added afterwards. It is aso crucial that all accessible parameters are used in the
optimization of the controller, possibly except for the damping of the controller zeros,
which without loss of optimality may be fixed to 0.75 for stable non-oscillating plants.

When a low-passfilter of the second order with complex polesisincluded in the con-
troller, this can offer increased robustness against model uncertainties and better rejection
of measurement noise, compared to a controller with afirst order filter. These advantages
are reached without deterioration of the low frequency properties or the stability margin.
Actualy it has been shown that such a strictly proper PID controller can offer system
properties that are well comparable with those of an # ., loop shaping controller.

For plants with significant but not too great time delay a Smith compensator can be an
attractive alternative to the plain PID controller, presupposed that the compl ete controller
is optimized. However, when the primary controller is of Pl type more profit can be won
by providing it with a derivative part than by augmenting it with a Smith predictor.
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