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Abstract

A general controller evaluation method is introduced, based on four performance

and robustness criteria including both low-, mid- and high-frequency properties. Ac-

cording to this method, optimal PI and PID controllers are designed. In industrial

applications derivative action is often omitted, due to noise sensitivity. In this paper

is shown that when a low-pass filter is included in the design of a PID controller, the

control activity as well as the noise sensitivity can be significantly reduced compared

to common design rules. These benefits are reached without deterioration of stability

margins or low frequency performance. Two sets of simple tuning rules for stable

non-oscillating plants are proposed. One set is suitable for automatic tuning. The

other one is based on a step response and leaves the operator with just one parameter

to tune. This rule makes it in fact easier to tune a PID controller than a PI controller

close to the optimum.

Furthermore, it is pointed out that a well tuned PID controller with a second order

filter often offers the same performance to the same price in form of control activity

as a modernH1 controller. For a delayed plant a Smith predictor can be introduced.

However, when a PI controller is used, it is shown to be more profitable to provide

the controller with derivative action than with a Smith predictor. On the other hand,

together with a PID controller the Smith predictor may improve performance to some

extent for plants with moderate delays.

1 Introduction

Within the control community a huge number of results have been presented, where new

or modified control design strategies have been compared with existing methods. Too

often such comparisons are not objective, since only some aspects of performance and

robustness issues are considered. Typically step responses and stability margins are com-

pared, neglecting the cost in terms of e.g. high frequency robustness and control activity.
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One design methodoften applied within the area of robust control is the LQG/LTR

approach [53]. The pass-band robustness (stability margins) is then improved, but at

the cost of deterioration of high frequency loop gain and roll-off. Another example is

the H1 loopshaping strategy [35], which typically is directed to good high frequency

properties, but sometimes misses the impaired mid frequency robustness it might bring

about. The coupling between the low frequency (LF), mid frequency (MF) and high

frequency (HF) ranges is obviously important. Improvement of performance in terms

of e.g. reduced integrated square error from process disturbances implies either reduced

pass-band robustness (stability margins), or reduced HF robustness due to increased lead

action in the controller. Thus, performance optimization cannot be considered without

looking at robustness in both the MF and the HF domain, which is also pointed out in e.g.

[48] and [49].

Based on these observations, a method for general and objective evaluation of con-

trollers for all kinds of plants has during the last years been introduced, see e.g. [31,

23, 22, 27, 26]. It is based on four criteria, related to vital performance and robustness

characters, including both LF, MF and HF goals. This method can be used to compare

controllers of different structures, but it can also serve as a guideline for appropriate con-

trol design procedures. That such a method for critical analysis of available tuning tech-

niques is needed is witnessed in e.g. [30]. Compared to [26] a more complete version of

the method is presented here. An additional HF criterion is introduced to handle roll-off.

Moreover, the MF criterion is extended to handle high gain controllers such as the Smith

predictor.

The PID controller is by far the most common controller in use [61, 34, 19]. It has

for decades been practically important and has even been called The ”Process Industries

Default” controller. In recent days it has also been object for increased interest from the

research community [9, 30]. Unfortunately the derivative part has in practice often been

shut off because of lack of a simple and reliable tuning method considering measurement

noise sensitivity [21].

This paper presents some results reached by applying the presented evaluation method

to PID controllers. One of the key results is that by including a filter in the design, de-

manded performance and stability margin can be achieved by much lower control activity

than with the filter added afterwards. That means that derivative action can be introduced

without harmful sensitivity to sensor noise. In [21] it is argued that the filter must be an

inherent part of a PID controller. Similar thoughts are also expressed in [31, 32, 39, 33].

The investigations in this paper show that significant improvements compared to most

standard methods e.g. [65, 4, 20, 40] can be obtained. These results are valid for all kinds

of plants, but this paper is focused on the large group of stable non-oscillating ones.
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A reformulation of the classical PID controller is introduced, motivated by the fact

that the optimal controller mostly has a pair of complex zeros, whose best location is

easy to find, see [22]. Rules for this part of the design are presented in two versions.

Both can be used manually and then allow the user to adjust two of the tuning parameters

and still get results close to the optimum. This means that the user has some freedom

to manage the important trade-off between performance, robustness and control activity.

For automatic tuning the rules for the zeros are supplemented by rules for the integral

and high frequency gains. These rules, though simplified compared to [26], have been

shown to result in almost optimal control. All demanded plant knowledge can be found

by a relay experiment [2, 3, 54, 62] and a step response. An extremely simple method for

manual tuning is based only on a simple step response.

Furthermore, it is shown that the PID controller can always offer significant perfor-

mance improvements, compared to the PI controller, to moderately higher control cost.

This is true for all kinds of plants, independent of whether their dynamics are due to lag

or time delay.

The PID controller may also be augmented by a higher order low-pass filter. Signifi-

cant improvements of noise sensitivity and HF robustness are then obtained with only very

marginal deterioration of low- or mid-frequency properties. Actually a PID controller

with a second order filter is often well competitive with a PID-weighted H1-controller

and superior to the more common PI-weighted one.

Finally, it is asserted by the evaluation method that it is more profitable to provide a PI

controller with derivative action than with a Smith predictor, also in cases when the plant

has a significant time delay. On the other hand it is demonstrated that a Smith predictor

may improve performance in a system with a PID controller when the plant has a delay

of moderate size.

The paper is organized as follows. After this introduction, a description of the pro-

posed evaluation method and its criteria is given in Section 2. New formulations of the

PI and PID controllers with their parameters are presented in Section 3. In Section 4

the trade-off between LF and HF characteristics for PI- and PID-controlled systems is

elucidated. Improvements of some system properties, for different kinds of plants, due

to optimizing of the controller parameter are also presented. Simple tuning rules for PI

as well as for PID controllers are given in Section 5. Strictly proper PID controllers are

discussed in Section 6 together with PI- and PID-weighted H1-controllers. The benefits

of Smith predictors are investigated in Section 7.
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2 Evaluation criteria

As was pointed out in the introduction, improvement of a controller design in one respect

will very often bring deterioration in another one. Obviously, different system qualities

depend on each other. Both LF, MF and HF properties thus have to be investigated, when

performance and robustness issues are compared for different regulators. A method for

comparison of two controllers must, if it claims to be fair, guarantee that all aspects that

are not immediately compared are equally restricted during the comparison. The evalu-

ation method proposed here will fulfill this demand. Four suitable criteria are defined.

They are mainly related to the frequency domain, but do also have some time domain

interpretations.

Consider the SISO system in Figure 1, where a plant G(s) is controlled by a controller

K(s). It has three inputs, the reference signal r(t), the process disturbance v(t) and the

measurement noise w(t). Relevant outputs are the controlled output y(t), the control

signal u(t) and the control error e(t) = r(t) � y(t). Also introduce the loop transfer

function

L(s) = G(s)K(s)

and the following four sensitivity functions with corresponding closed loop transfer func-

tions, which have related output and input signals as indices.

Sensitivity function S(s) =
1

1 + L(s)
= Ger(s)

Complementary sensitivity function T (s) =
L(s)

1 + L(s)
= Gyr(s) = Gyw(s)

Disturbance sensitivity function Sv(s) =
G(s)

1 + L(s)
= Gyv(s)

Control sensitivity function Su(s) =
K(s)

1 + L(s)
= Gur(s) = Guw(s)

Generally seen, a controller can be strictly proper or just proper. When integral action

G(s)K(s)
               r     +

   -

      +      w

v

y         u    +  +

-

Figure 1: Closed loop SISO system with plantG(s) and controllerK(s).
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is included, it has the following asymptotic properties

K(s)!

8>><
>>:

ki
s

s! 0

k1
sm

s!1
(1)

whereki is theintegral gain, k1 is thehigh frequency gain andm is therolloff rate of the

controller.

Performance criterion The first of the proposed evaluation criteria, related to the

low frequency LF region, can be defined as

Jv = jj1
s
Gyvjj1 = k1

s
Sv(s)k1 (2)

This is a measure of the systems ability to handle low frequency load disturbances, a

frequency domain alternative to the more common criteria based on some function of

the error signal [5, 17]. As soon as the controller includes integral action it is afinite

quantity, which has the advantage of being almost independent of the plant model. In

fact, at low frequencies whereL(s) � 1, Sv(s) � K�1(s) � s=ki according to (1). For

servo problems, a more relevant criterion is obtained by replacingGyv with Ger in (2).

Stability margin Two classical measures are still common to characterize the mid

frequency MF robustness, thephase margin 'm and thegain margin Gm [59, 18, 11, 15,

41]. However, in recent years a restriction of the maximum sensitivity function

kSk1 = max
!
jS(j!)j �MS (3)

has been more and more accepted as an exclusive robustness measure, [5, 28, 55, 45]. The

reason is thatkSk1 is equal to the inverse of the minimal distance from the loop transfer

function to the critical point(�1; 0) in the Nyquist plot. In many situations it is also a

fully sufficient MF robustness measure, but there are exceptions.

With demands on further damping of the step response or increased phase margin but

preserved system response, it could be worthwhile to add a restriction on the maximum

complementary sensitivity function

kTk1 �MT (4)

especially for plants with integral action, see [49, 44, 51].

For high gain controllers, e.g. when a Smith predictor structure is involved, the loop

transfer functionL(j!) has to be further restricted above the frequency!180L
, where the
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Figure 2: TheMS-circle (MS =

1:7), theMT -circle (MT = 1:3) and

theML-circle (mGm
= 3) which to-

gether defineGMSL.

loop has a phase lag of180�. Otherwise the system may be very sensitive to reduced time

delays, see [25] and Section 7. A restriction

max
!

����L(j!)� 1

mGm

���� � 2

mGm

! � !180L
(5)

means that the loop at frequencies above!180L
has to remain inside a circle with radius

2=mGm
and centre in1=mGm

. This implies that the gain marginGm � mGm
.

These three restrictions onL(j!) are illustrated in Figure 2 by three circles in the

complex plane, theMS-circle representing the limit onjS(j!)j, theMT -circle represent-

ing the limit onjT (j!)j and theML-circle representing the limit onjL(j!)j at frequencies

above!180L
. The values of the constants in thisfigure are equal to the default values in

this paper. They areMS = 1:7, MT = 1:3 andmGm
= 3:0 In this figure is also shown

a typical Nyquist plot for a well-behaved system. It has two tangential points at the fre-

quencies where the constraints onS andT are just fulfilled, and enters theML- circle

at the point(�1=mGm
; 0). Compare the Nyquist plot constraint corresponding to a line

proposed in [60].

To get one measure which inludes all three restrictions theGeneralized Maximum

Sensitivity

GMSL = max

�
kSk1; �kTk1; 
max

!
(WL(j!) jL(j!)� 1=mGm

j)
�

(6)

is introduced. The weight functionWL(j!) = 0 for ! < !180L
andWL(j!) = 1 for

! � !180L
, � = MS=MT and
 = MSmGm

=2. When there is equality in at least one

of the restrictions ((3))–((5)) this means thatGMSL = MS. Hence theGMSL criterion

converts the restrictions (4), (5) to correspondingMS levels.

Undoubtedly,GMSL is a somewhat complex criterion, but there are good reasons for

including each of its elements as was motivated above. However, the third criterion is not

necessary for plain PI and PID controllers, since these controllers do not imply a high
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gain property which motivates the restriction (5). In such cases, including all evaluations

in this paper except those in Section 7,GMSL is simplified to

GMS = max (kSk1; �kTk1) (7)

Control activity When a reasonable stability margin is established, design of a con-

trol system is typically a question of trade-off between performance and control activity.

It is therefore suitable to introduce a cost criterion related to the mid to high frequency

MHF region, around or slightly above the closed loop bandwidth, where the maximum of

the control sensitivity is mostly to be found, cf. Figure 4.

Ju = kGurk1 = kGuwk1 = kSu(s)k1 (8)

High frequency robustness and noise sensitivity In the HF region two demands

are especially relevant, robustness against model uncertainties and reduction of sensitivity

to sensor noise. For plants with significant uncertainty due to e.g. varying time delay or

unmodeled high frequency resonances, the complementary sensitivity functionT (s) must

be kept small according to the Small Gain Theorem [13]. Furthermore, the measurement

noise is transferred to the output byGyw = T (s), which gives another reason to keepT (s)

small.

Now, T (s) = G(s)K(s)S(s) and consequentlyTG�1 = Su = Gur, why keeping

Su(s) low is keepingT (s) low as well. Then a relevant criterion for the HF domain can

be formulated as

JHF = ksmGurk1 = ksmGuwk1 = ksmSu(s)k1 (9)

For high frequencies, whereS(s) � 1, Su � K � k1s
�m according to (1). Hence this

criterion, just asJv, is almost independent of the nominal plant model. Whenm = 0,

which is valid for PI and PID controllers without extrafilters,JHF = Ju.

Evaluation procedure In all controller design, independent of method, the user

has to modify a set of tuning parameters�. An objective method to evaluate a control

system in some respect is then to keep three of the four introduced criteria constant and

equal, or at least bounded upwards , and then modify� to the minimum of the fourth

criterion. Then evaluation of LF performance is accomplished by solving the constrained

optimization problem

min
�

Jv(�) GMS(�) � C1 Ju(�) � C2 JHF (�) � C3 (10)
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where the constantsCi may be given different values. The default value ofC1 in this

paper is 1.7, while the values ofC2 andC3 may vary. The last restriction is relevant only

for strictly proper controllers.

By this optimization procedure completely different controllers may be compared un-

der equal conditions. In fact it is straightforward to include even sampled-data controllers

with different sampling periods in such a comparison [?]. An evaluation method like

this one is wanted in [56]. A similar idea, but with other criteria and with more vague

constraints, is presented in [42] and another one in [34].

The expressionoptimal controller is from now on used for a controller which is op-

timized according to (10) with all available controller parameters included in the tuning

vector�. For instance a PI controller has two free parameters. When both are used in

the optimization the optimal PI controller is achieved. In this paper Matlab Optimization

Toolbox is used for the computation.

3 The PID controller

As was noted above the proposed evaluation method can be used to compare all kinds

of controllers, but the constrained optimization procedure (10) may also be used as a

synthesis tool for a given class of controllers. A systematic investigation has been made

to find the most effective parameters for PID and related controllers and tofind simple

rules for computing optimal values in different situations. During the work it has become

more and more obvious that the optimal values are not always those that could be expected

according to common recommendations. It has also turned out that essentially the same

parameters are suitable for several different kinds of low order controllers, see [27].

Formulation and parameters

There are many ways to formulate the transfer function of a PID controller and to choose

its design parameters. The controller discussed in this paper is a one-degree-of-freedom

one, see Figure 1, and hence the intention is mainly to design it for good rejection of

load disturbances. This is motivated by the fact that most PID controllers work as reg-

ulators [50, 7]. When good servo properties are demanded, the controller can always be

augmented by afilter in the feedforward path.

The traditional PID controller with the three parametersproportional gain K, integral

time constant Ti andderivative time constant Td has the drawback that it is not proper.

To bound the high frequency gain, it is mostly augmented by a low-passfilter on the
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derivative part and may then be formulated as

KPID(s) = K(1 +
1

sTi
+

sTd
1 + sTf

) (11)

However, in [24, 22] it has been shown that a PID controller, optimized with thefilter

included and all parameters free, typically implies complex zeros in the controller. These

results have made it natural to reformulate the PID controller with afirst order low-pass

filter as

KPID(s) = ki
1 + 2��s+ (�s)2

s(1 + s�=�)
(12)

where the four tuning parameters aredamping � and natural frequency 1=� of the con-

troller zeros,integral gain ki andhigh frequency gain k1 = KPID(1) = ki��. The

variable� = k1=(�ki) is introduced here just for convenience. A more general formula-

tion of the PID controller than the traditional one is also recommended in [21].

Correspondingly, the PI controller may be formulated as

KPI(s) = ki
1 + �s

s
(13)

Translation from the parameters in (12) to the traditional parameters in (11) is straightfor-

ward. Note also that with� = 1 (low high frequency gain) and� = 1 (double zero) the

PID controller becomes a PI controller.

Plant knowledge

To obtain useful tuning rules for PI and PID controllers, the demands on plant knowledge

must presumably be very moderate.

The parameter� was introduced bẙAström and coworkers in [16] as a measure of the

difficulty to control a process. For stable plants it is defined as

� =
jG(j!180G

)j
jG(0)j (14)

where!180G
is the frequency at which the plant has a phase lag of180�. This normally

gives� numbers in the interval[0; 1]. The higher the value is, the more complex and hard

to control the plant is. Note that� is the inverse of the gain margin that a P controller

would give withK(s) = 1=jG(0)j.
However, there are plants for which neither� nor !180G

are defined, since the plant

phase never reaches�180�. To meet such a situation� may be modified to

�150 =
jG(j!150G

)j
jG(0)j (15)
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where!150G
is the frequency at which the plant has a phase lag of150�. Together with

!150G
andjG(0)j, this number has been used in this paper to characterize plant dynamics

and to formulate a set of simple tuning rules. These characteristics can be found by a

relay experiment including hysteresis [2] and a step response. Together they also fulfill

the demand on three items of information about the plant that are necessary for tuning of

a PID controller according to [57, 9].

The models used for the investigations in this paper are the same as in [26]. They are

essentially those recommended in groups 1–5 in [6], suggested as standard benchmark

models for testing of PID controllers. Among them are all kinds of stable non-oscillating

plants, such as minimum and non-minimum phase plants, plants of high and low orders,

plants with multiple and spread poles etc.

4 Some results for optimal PI and PID controllers

In many design methods for PID controllers presented in the literature, the ratios between

the time constants in (11) have been more or lessfixed and not really utilized in the design

procedure. Introduce

a =
Ti
Td

b =
Td
Tf

(16)

Ever since Ziegler and Nichols presented their tuning rules in [65] the standard value

a = 4 has often been used without further motivation, see for example [2, 38, 58, 14].

This value corresponds to a double zero in (11) whenTf = 0. Regardingb there are

no well-founded recommendations at all to be found, since thefilter has mostly not been

looked upon as a part of the design. It has just been added afterwards and there are hints

in e.g. [4, 50, 47, 46] about a value ofb in the vicinity of 10, motivated by a demand not

to let thefilter influence the closed loop properties too much, especially not concerning

the mid-frequency robustness (stability margins).

Filter design

Whena andb arefixed to 4 and 10 respectively, only two parameters are left for the opti-

mization. Compared to this case Figure 3 shows that great improvements in the properties

of a PID controlled system can be achieved for a second order plant with time delay, when

the four parameters are all optimized. The left part shows the trade-off between process

disturbance compensationJv and control activityJu, while the right part shows the corre-

spondence between normalized bandwidth!b=!180G
and control activityJu. In all cases

GMS = 1:7. The samefigure shows thatfixing a to 4 brings rather marginal deterioration
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Figure 3: (a)Jv and (b)!b=!180G
as functions ofJu for the plantG(s) = e�0:3s=(1+

s)2 controlled by different PI(D) controllers. In all casesGMS = 1:7, while Jv is

minimized for eachJu value, corresponding to differentC2 in (10).

compared to the optimal case. This is confirmed by results from optimization of the serial

PID controller (a PI-block in series with a PD-block). For this controller a double zero

is shown to give the best trade-off betweenJv andJu, see [22]. A double zero corre-

sponds toa = 4 whenb is infinite (nofilter) and just above whenb is finite. For stable

non-oscillating plants, the optimal value ofa in a PID-controller (11) is about 2.5 [22].

Optimal versus fixed low-pass filter The dramatic reduction ofJv, as well as the

corresponding enlargement of the bandwidth withoutJu-shift, comes from includingb in

the tuning vector�, that is from including thefilter in the design. The optimal values of

b has shown mostly to be rather 3 to 5 than 10, somewhat increasing withJu and�. It

is obvious from Figure 3 that the low frequency propertiesJv of a control system can be

significantly improved without loss of high frequency robustness or stability marginGMS

and without increased control costJu, just by adjustment of thefilter constant. Note also

that derivative action, i.e. PID control instead of PI control, can decreaseJv significantly

at moderateJu values.

The trade-off between Jv and Ju and the normalized bandwidth For an optimal

PI controller there is mostly a minimum in theJv=Ju-graph. This has been shown by

investigations, see [8], [22] and Figure 3 (a), but can also, at least for simple cases, be

shown theoretically.

For the optimal PID case there is normally no such minimum. However, it has been

noted that the graph tends to be more horizontal whenJu grows. Then it can be argued

that it is no use to increaseJu above a certain level, because the reward in decreasedJv is

too small. This tendency towards non-decreasingJv is more obvious and the”economic
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level” Juec is lower the more complex the plant is (higher� value), see [26]. This”eco-

nomic limit” is obviously not very sharp, but for the plant in Figure 3 it has been estimated

to approximately 10.

It should be emphasized that an optimal PID controller, working at its”economic

level”, can always offer better system properties than an optimal PI controller, and still

Juec is very reasonable.Moreover, it is seen from Figure 3 (a) that when a PID controller

with a = 4 and b = 10 offers the same performance Jv as the optimal PI controller, the

demanded control activity Ju is almost 5 times higher. This is one reason why derivative

action is not used in most industrial applications. Note that b is even fixed to 10 in many

commercial PID controllers.

The comparison between the controllers can alternatively be done for!b. From Figure

3 it is remarkable how well the bandwidth follows the inverse of theJv=Ju-graph. The

exception is the PI case, where no tendency to maximum can be seen in the bandwidth. It

is also worth noting that for those values ofJu where the PI controller works at its best,

the PID-graphs typically come close to the PI-graphs. This is what could be expected

from Section 3, since then� ! 1 and� = 1, � = 1 corresponds to a PI controller.

The relation between Ju and k1 According to (8), the control activity criterionJu

is equal to the maximum of the control sensitivity functionSu(!). For high frequencies

jS(!)j � 1 and hencejSu(!)j � jK(!)j � k1=!
m, cf. (9).

For the PID controller (11) or (12) withm = 0, maximum ofSu(!) typically occurs

when! !1 due to the derivative action, and thenJu = k1.

In the PI controller case for which alsom = 0, there is no derivative action and then

the maximum ofSu(!) occurs for lower frequencies, most oftenly just above the closed

loop bandwidth. However, also for the PI controller there is a close relation betweenJu

andk1, so that higher values ofJu corresponds to higher values ofk1, at least for plants
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Figure 4: Plant G = e�0:3s=(1 +

s)2 optimally controlled by a PI

controller (dashdotted), a PID con-
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between k1, Ju and JHF .
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with not too high � values, see [22].

When the PID controller is augmented by an extra low-pass filter so that m > 0,

it has a roll-off and Su(!) has a maximum at finite frequencies also for this controller.

Then k1 can be found approximately at the intersection with the frequency axis. Figure

4 illustrates the relations between Ju, JHF and k1.

Similarities between lag and time delayed plants

It is sometimes argued that the derivative part of the PID controller is more profitable for

a lag plant than for a plant with time delay [7, 50]. This statement is only valid to some

extent as may be concluded from Figure 5 and 6. Two plants are compared

Glag(s) =
1

(1 + s)(1 + �s)(1 + �2s)(1 + �3s)
� = 0:3; 0:4:::1:0 (17)

and

Gdelay(s) =
e�sLd

(1 + s)(1 + 0:2s)
(18)

where Ld is varied to give the same � values for the two types of plants.

Figure 5 shows that, independent of �, Jv will, for both types of plants, decrease to

approximately half of its value for the optimal PI-controller, when derivative action is

introduced. In the lag case JvPID=JvPI varies from 0.39 for small � values to 0.46 when

� = 0:25. In the delay case the same variation goes from 0.45 to 0.58. In all cases

moderate control activities have been used. For the PID controllers Ju = 10, which is

close to Juec for these plants, and for PI the optimal Ju value (2–4) is chosen.

In Figure 6 the Jv=Ju relations and the process disturbance step responses are shown

for two pairs of plants with equal � values controlled with and without derivative action.

The Jv=Ju relations show that the two kinds of plants behave equal for reasonable control
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Figure 6: Left: Jv=Ju relations for Glag and Gdelay with (a) � = 0:147 (� =

0:5; Ld = 0:211) and (c) � = 0:249 (� = 1:0; Ld = 0:405). Right: Process

disturbance step responses for corresponding plants (b) Glag + PID (Ju = 10) and

Glag + PI, (d) Gdelay + PID (Ju = 10) and Gdelay + PI.

activities. The step responses show in all cases significantly smaller integrated errors for

the PID controllers (Ju = 10) than for the PI controllers (optimal Ju).

Since the � values of the two compared plants are equal in pairs and have the same

LF gain (=1), they are supposed to be equally difficult to control. It is obvious that the

plants with delay in these examples show better trade-off between Jv and Ju and more

favorable step responses (for the same Ju) than the corresponding lag plants, despite the

same demand on GMS . However, the profit offered by the derivative action is almost the

same for the two kinds of plant dynamics.

The reason why derivative action is argued to be more profitable for plants with lag

than for time delayed plants is possibly that very large control activity Ju reduces Jv

significantly for plants with lag. This is unfortunately not the case for time delayed plants,

due to their non-minimum phase behaviour. However, a reasonably large control activity

means that the differences between PI and PID control are comparable for plants with the

same � value, independently of whether the plant dynamics are characterized by lag or
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Some optimal system properties

There are some system properties that can be immediately observed when PID control is

applied and the filter is designed, so that the closed loop system is optimized.

Bandwidth and crossover frequency It may be argued that the closed loop band-

widths !b presented so far are often rather small. The same assertion is valid for the open

loop crossover frequencies !c. This is a consequence of the optimization of Jv � 1=ki, the

relatively strong demands on MF robustness (stability margin) and the moderate control

activity. According to Figure 7 the crossover frequency decreases slightly with increasing

�, !c � (0:6 � 0:35�)!180G
, while the resulting closed loop bandwidth is independent

of this value, !b � 1:1!180G
(!180G

= plant phase crossover frequency). This means that

wb � 2� 3 times !c, which is considerably larger than the rule !c � !b � 2!c, found in

the literature [13].

0.1 0.4 0.7

−60

−30

0

κ

∆ φ
PID

Figure 8: Controller phase shift

(�'PID) at !c as a function of �

for optimal PID controllers with

GMS = 1:7 and Ju = 8:0.
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Controller phase shift Sometimes it has been asserted that when a phase margin of

45� (approximately corresponding toMT = 1:3) is demanded, a well-tuned PID controller

conserves the phase shift of a minimum phase plant at a frequency where it is around

�135� [1, 7]. This means that the controller at the open loop gain crossover frequency

!c will have no significant phase lag. According to [1] it is even likely to have a positive

phase at this frequency.

Figure 8 shows the phase shift �' found for optimal PID controllers at this frequency

for different values of �. It implies that �' at !c, introduced by an optimal PID controller,

increases negatively with �, roughly as �' = 5� 100�. This result is valid for all kinds

of plants investigated in this paper including minimum phase plants with higher � values.

The optimization means a minimization of Jv, which approximately corresponds to a

maximization of the integral gain ki. It is well known that large integral action brings

good disturbance compensation but also large negative phase shifts.

The PID controller zeros The PID controller zeros are in (12) characterized by two

parameters, � the damping ratio and � the inverse of the natural frequency.

For the optimal � no significant dependence has been found neither on � nor on Ju

for the stable non-oscillating plants investigated in this and other papers. This implies

that a = Ti=Td � (2�)2 is also constant. As can be seen from Figure 9(a), � = 0:75,

corresponding to a � 2:25 (significantly less than 4), is always a good approximation.

Fixing � to this value and optimizing the remaining parameters will always give results

that are almost impossible to separate from the optimal ones.

Also the optimal natural frequency 1=� is almost independent of Ju, but for this pa-

rameter, normalized by !150G
, there is a linear dependence on �150G that can not be ne-

glected, see Figure 9 (b).

Another way to normalize � is to use a character from the step response of the plant.

The ratio of � to the equivalent time constant T63, the time it takes for the response to

reach 63% of its final value, shows a very marginal dependence on �. Figure 9 (c) shows

�=T63 � 0:35 � 1=3.

These results offer a good starting point for a presentation of simple tuning rules for

the PID controller, which is given in the next section.

5 Tuning rules for PI and PID controllers

Based on experience collected from comprehensive investigations on optimization of PI

and PID controllers for many kinds of stable non-oscillating plants, some recommenda-

tions on tuning of these controllers can now be formulated. The plant knowledge needed
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Figure 9: Normalized zero parameters of the PID controller as functions of �150,

optimal outcomes (+) and linear approximations.

is expressed by �150, the corresponding frequency !150G
and sometimes the equivalent

time constant T63. According to e.g. [2, 62], this knowledge can be found by an experi-

ment with a relay including hysteresis, giving !150G
and jG(j!150)j, together with a step

response, giving jG(0)j and T63.

A set of rules based on � may be found in [26] for stable non-oscillating plants with

� � 0:1, completed by another set for the same kind of plants with � < 0:1 or no �

defined. Here just one set of rules is given, which will work for all stable non-oscillating

plants independent of �. The only exception is first order plants with time delays. For

these plants a special recommendation is given in [26]. In the same paper there is also a

set of tuning rules for plants with integral action.

PI controllers

For the PI-controller (13) there are only two parameters to be tuned. The aim in the

design of this controller is to reach the minimum in the Jv=Ju graph, see Figure 3(a). The

controller zero may then be positioned by one of the following rules:

1

�
= !150G

(0:06 + 1:6�150 � 0:6�2
150

) (19)
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or

� = T63(0:70� 0:45�150) (20)

The first rule will for most stable non-oscillating plants give a difference from the optimal

value of less than 5%, the second one slightly more.

The remaining parameter, the integral gain ki, can either be used for tuning the system

to the demanded stability margin e.g. GMS = 1:7 or to the desired damping of a step

response. It may also be computed from the formula

ki =
!150G

jG(0)j � (0:2 +
0:075

�150 + 0:05
) (21)

This formula gives a difference less than 5% from the optimal values of ki and Jv for most

plants, a little more for some plants with very small � values. GMS falls in the interval

[1:60; 1:85].

PID controllers

The zeros of the PID controller (12) may be computed with good accuracy by the simple

formulas

� = 0:75 (22)

1

�
= !150G

(0:44 + 0:86�150) (23)

or when � � 0:1

� = 0:35T63 � T63=3 (24)

The remaining parameters may still be freely used by the operator to take care of special

demands on proper control activity (Ju � k1) and desired rejection of process distur-

bances (ki � 1=Jv).

However, the following formula for k1 will give a Ju value close to the economic

level Juec

k1 =
1

jG(0)j �max(3 +
2

�150
; 25) (25)

Finally ki can be adjusted to demanded stability or computed by the formula

ki =
!150G

jG(0)j � (
0:45

�150 + 0:07
� 0:1) (26)
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The parameter � in (12) is introduced just for convenience. It is short for k1=(�ki). Note

that � � b
p
a, see [22].

When automatic tuning is preferred, with use of (22), (23) or (24), (25) and (26), the

resulting Jv value will mostly differ from the optimal one (at the same Ju value) with

less than 5%, slightly more for plants with very small � values (� < 0:1) or no � numbers

defined. The stability marginGMS will fall in the interval [1:65; 1:85], in most cases close

to 1.7.

Figure 10 shows some results from tuning by the presented rules. It is obvious that

the rules for the zeros in the PID case can be used over a large interval of Ju values. It

is interesting that the two rules for � give almost identical results in both the PI and the

PID case. Observe also that tuning all accessible parameters by the proposed rules offers

results that come very close to the optimal ones.

Extremely simple tuning rule From a step response giving T63 the zeros of a PID

controller can be fixed by (22) and (24). To find a suitable high frequency gain, try � =

5-8. The only remaining parameter ki can then be tuned to demanded stability (damping).

The economic level Juec typically corresponds to � = 5-8. If more high frequency

gain can be accepted � can be slightly increased. That leaves the user with the freedom

to handle the trade-off between control activity (k1) and performance (ki).

Using this rule, it can not be argued any more that a PID controller is more difficult to

design than a PI controller. In fact PID tuning based on a step response (T63) is simpler,

since there is no minimum to reach as in the PI case. For each choice of control activity

selected by � an optimal ki can be found. In the PI case, there are two parameters to

adjust simultaneously to get to the optimum, cf. Figure 3(a).
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The results of this simple tuning procedure for plants with � � 0:1, including e.g.

plants with highly non-minimum phase behaviour, has shown to be remarkably close to

the optimal ones.

6 Strictly proper PID controllers and PID weighted H1

controllers

Sometimes a PID controller with a first order low-pass filter (a second order compensator)

can not fulfill the given property demands. Typically there is a need for more roll-off

than can be offered by the plant to compensate for significant model uncertainties or

measurement noise [10]. In such cases the PID controller can be augmented by a low-

pass filter of higher order. Another way to meet demands on roll-off is to introduce one

or more weighting functions in the plant model and then optimize the controller with an

H1 strategy.

PID controller with a second order filter

When the ordinary first order filter in the PID controller (12) is exchanged by a second

order filter, the controller can be formulated as (the index ro means roll-off)

KPIDro
(s) = ki

1 + 2��s+ (�s)2

s(1 + 2�f
�
�
s+ ( �

�
s)2)

(27)

This formulation opens up for complex poles, with the damping ratio �f and the undamped

frequency �=� , as well as for complex zeros.

In Figure 11 results for a representative plant model G(s) = (1 � 0:5s)=(1 + s)3

are given. Except for the study of the Jv=Ju relation in Figure 11(a), Ju has been kept

constant at Ju = 7:0, which is close to Juec for this plant. A PID controller with a first

order filter has been optimized under these conditions and is shown for comparison. The

damping ratio �f of the second order filter has been varied in a wide range. The more

it is decreased, the more effective the roll-off is, corresponding to lower control activity

and better attenuation of measurement noise. For example it can be gathered from Figure

11(c) that the gain from the measurement noise to the control signal at ! = 100 rad/s is

reduced by a factor about 100, and the high frequency criterion JHF goes from from 787

to 19, when �f decreases from 2.0 to 0.1, with JHF = 65 for �f = 0:5.

However, it should be noted that there are less favorable effects coming up when the

reduction of �f is driven too far. In the complementary sensitivity function T a resonance

is growing. According to the Small Gain Theorem [13, 64], such peaks should be avoided
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Figure 11: (a) Jv=Ju relations, (b) controller gains, (c) control sensitivity functions

and (d) complementary sensitivity functions for G(s) = (1 � 0:5s)=(1 + s)3 con-

trolled by optimal PID controllers augmented by a first (dashed) or a second order

filter with different damping ratios �f . In (b)–(d) Ju = 7:0 and GMS = 1:7.

for robustness reasons. Also the relation between Jv and Ju is growing poorer for �f = 0:1

and 0:3.

From Figure 11 the conclusion can be drawn that a PID controller may well be aug-

mented by a second order low-pass filter with complex poles. Without significant deteri-

oration of low frequency performance and with retained stabitity margin (GMS = 1:7),

the damping ratio can be reduced to �f = 0:5 or even to �f = 0:3. The tuning rules for

PIDro may then be the same as those given for PID in Section 5 with the addition

�f = 0:5 (28)

This means that also for this strictly proper controller, at least three of the five tuning

parameters can be computed by very simple rules, while the two basic parameters ki and

k1 (or �) are left for the user.
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PID weighted H1 controller

To find a suitableH1 controller, the loop shaping procedure described by MacFarlane and

Glover in [35], is applied. The main idea is to augment the plant with a weight function

W , and modify this function until a desired open loop shape is obtained for the augmented

plant G = WG. The controller K thus found is then combined with the corresponding

weight function to give the final controller KH1 = WK. It is quite common to use a PI

filter (13) as the weight function. However, when somewhat higher control activity can

be accepted, a PID filter (12) is an interesting alternative.

Figure 12 shows the Jv=Ju relations for G = e�0:3s=(1 + s)2 and three controllers, all

of them optimized with constrained Ju and GMS = 1:7. The PI weightedH1 controller

H1PI , tuned by ki and k1 = ki� , shows the same characteristic minimum as the PI

controller, cf. Figure 3(a). Here the optimal Ju value is around 5. The result for the

PID weightedH1 controllerH1PID, is surprisingly similar to that of the optimal strictly

proper PID controller PIDro, except for very low values of Ju. Here theH1 controllers

are optimized with all weighting filter parameters free, while PIDro is optimized with

fixed � = 0:8 and �f = 0:5. However, the two sets of controllers have the same GMS

and JHF values. In fact, the value of JHF obtained for PIDro has been introduced as a

constraint in the optimization of the weighting filter in theH1 design.

Note that the H1 loop shaping procedure is only a tool to obtain the aim, i.e. to

minimize Jv and to obtain a fair comparison between different controllers. Included in

the description by MacFarlane and Glover is a scaling factor �. The theoretically optimal

robustness corresponds to � = 1, but for practical reasons � slightly larger than one,

for instance 1:05, is often chosen. When the H1 optimizations were carried through, it

was found that GMS did not hit the limit 1:7, when the restriction on JHF was added

(to achieve a fair comparison to PIDro). Although, by allowing somewhat larger �, this

could be taken care of. In fact, small variations in � resulted in dramatically different
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optimal solutions with respect to low frequency performance. This implies that � is an

important and sensitive tuning parameter forH1 controller design.

The controller gains of H1PID, H1PI and PIDro are compared in Figure 13. For

all of them GMS = 1:7, for H1PID and PIDro Ju = 10 and JHF = 122, whereas for

H1PI , the optimal value Ju = 5 has been chosen. As can be seen, the graphs for PIDro

andH1PID almost coincide whileH1PI has a quite different behaviour.

Finally, Figure 14 shows some simulations. The reference and process disturbance

step responses and the control signals after a reference step are shown for five cases, with

the same plant G = e�0:3s=(1 + s)2 and different controllers. Just as could be expected,

both the disturbance and reference step responses are very similar for the two PID con-

trollers, PIDro and PIDopt. However, it is interesting to see how well also the responses

from H1PID agree with those two. On the contrary, the H1PI has a somewhat slower

reference response with less overshoot, and a little greater maximum error regarding dis-

turbance rejection. The PI controller is the loser in both respects. The control activity,

on the other hand, is greatest for PIDopt, equal for PIDro and H1PID and somewhat

smaller for H1PI . For PI it is very small but also very sluggish. Taken together, the

PIDro and H1PID controllers are superior, but the competition between those two must

be judged as undecided. Note, however, the higher dimension of the H1PID controller.

With no restrictions on JHF ,H1PID can do marginally better with respect to Jv (� 2%),

but with much larger JHF .

7 PID controllers with Smith predictors

When a plant has a significant time delay it might be a bit tricky to control, and a number

of methods have been tried. Very often a traditional or modified Smith predictor has been

recommended, see [52, 43, 37, 63, 36]. Here another contribution will be given.
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Limitation of the loop gain

The third demand involved in the definition (6) of GMSL is a limitation of the loop gain

for frequencies from !180L
(where the loop has a phase lag of 180�) and upwards. For

most controllers this criterion can well be weakened to a demand on minimum gain mar-

gin Gm or even be excluded (7), but when a Smith predictor is combined with a PI or

especially a PID controller there is a tendency towards unhealthy high loop gain in this

frequency range. Figure 15 and 16 show Nyquist plots for the loop gains when a PI and

a PID controller is or is not augmented by a Smith predictor and the loop gain is limited

in different ways. For the PI case in Figure 15 the high frequency limitation on jLj is in-

significant, since the gain never reaches theML-circle; the bound onGm is strong enough.

However, the tendency to growing gain in the range above !180L
for the controller with

predictor, compared to the one without, is clear. Figure 16 shows the PID case. Note that

the plot for bounded jLj follows the ML-circle, while the one corresponding to the weaker

bound on Gm goes far beyond.

Define the Maximum Delay margin MDm
as the time delay corresponding to the phase

margin 'm (MDm
= 'm=!c, where !c is the open loop crossover frequency). Then a
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e�10s=(1 + s)3 and an optimal PI

controller with (dashed) and with-

out (solid) Smith predictor.

minimum Delay margin mDm
can be defined in the same way corresponding to a second

crossover frequency above !180L
. Such an mDm

often occurs when a Smith predictor is

included in a PID controller and the loop is bounded only byGm and not by theML-circle.

For G = e�sLd=(1 + s)3 the delay margins become

Ld [sec] MDm
mDm

4 5.45 -1.49

10 9.97 -2.01

Obviously this design is very sensitive to negative uncertainties in the time delay [51,

29]. However, applying the proposed ML bound implies that the loop is restricted to stay

inside the unit circle for ! > !180L
, which means that a reduced time delay can never

bring the system to instability.

PI and PID controllers with Smith predictors

Figure 17 illustrates how Jv varies with Ju for some optimal controllers with and without

Smith predictors (SP) included. It shows that the benefit of providing a PI controller

−1 0 1 2 3

−1

0

1

Figure 16: Nyquist plots for G =

e�4s=(1 + s)3 with an optimal PID

controller without (solid) and with

Smith predictor with limited Gm

(dashed) or limited jLj (dotted),

Ju = 6.
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and with Smith predictor (SP) and bounded jLj or just limitedGm and, furthermore,

for PI without and with Smith predictor. (a) Ld = 4:0 and (b) Ld = 10:0.

with a Smith predictor is marginal, both when the delay is of medium size (Ld = 4) and

when it is large (Ld = 10). For a PID controller, on the other hand, the introduction of a

predictor implies some improvements for a plant with medium delay as in Figure 17(a).

However, when the delay is large as in Figure 17(b), these improvements are eaten up by

the bound on jLj introduced by GMSL. With the demand on bounded loop gain above

!180L
weakened to a demand on the gain margin, the improvement can be driven a little

further but to the prize of poor high frequency robustness, see Figure 16. Further details

including step responses are given in [22, 25].

To conclude it can be stated that a PID controller with or without a Smith predictor can

offer significantly better properties than a PI controller with Smith predictor for all kinds

of plants, also for plants with significant delays. There is more to be won by including

derivative action in a PI controller than by introducing a Smith predictor structure. The

improvements in Jv for the examples in Figure 17 are given in the following table.

Ld [sec] PI ! PI + Smith PI ! PID PID! PID + Smith

1 1.4% 36% 15%

4 2.3% 30% 16%

10 6.4% 27% 0%

8 Conclusions

In this paper a general method for evaluation of controllers has been presented. The eval-

uation strategy involves four criteria expressing significant performance and robustness

system properties.

Based on this method simple tuning rules have been introduced for stable plants with
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real poles. Corresponding rules for plants with integral action can be found in [26].

It has also been shown that the advantages in terms of improved performance offered

by a PID controller, compared to the simpler PI controller, are just as good for a plant

with time delay as for a plant with lag when the same dynamic complexity (in terms of �

number) is considered. However, it is essential for the properties of the resulting system

that the low-pass filter in the PID controller is designed as an inherent part of the controller

and not added afterwards. It is also crucial that all accessible parameters are used in the

optimization of the controller, possibly except for the damping of the controller zeros,

which without loss of optimality may be fixed to 0.75 for stable non-oscillating plants.

When a low-pass filter of the second order with complex poles is included in the con-

troller, this can offer increased robustness against model uncertainties and better rejection

of measurement noise, compared to a controller with a first order filter. These advantages

are reached without deterioration of the low frequency properties or the stability margin.

Actually it has been shown that such a strictly proper PID controller can offer system

properties that are well comparable with those of anH1 loop shaping controller.

For plants with significant but not too great time delay a Smith compensator can be an

attractive alternative to the plain PID controller, presupposed that the complete controller

is optimized. However, when the primary controller is of PI type more profit can be won

by providing it with a derivative part than by augmenting it with a Smith predictor.

—————
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