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ABSTRACT 

The time-averaged shear-wave velocity in the top 30 meters of subsurface material 

(VS30) is a widely used parameter when estimating the potential for amplification of seismic 

waves. Situations often arise where a design VS30 value needs to be chosen from multiple 

proxy-based VS30 models. This dissertation seeks to assist with the problem of model 

selection and to improve the overall prediction of VS30 through implementation of a 

Bayesian framework for model ranking. Furthermore, this dissertation investigates the 

effects of uncertainty on the model ranking results. 

In this work, probabilistic methods are developed and implemented to assess the 

performance of multiple proxy-based VS30 models. The methodology utilizes Maximum 

Likelihood Estimation (MLE) to evaluate how well a model (or set of models) can predict 

the sample data against which it is being evaluated. Bayesian Information Criterion (BIC) 

is used to quantify the relative performance of multiple candidate VS30 models. The 

proposed method can provide a performance ranking for situations when one model is 

superior as well as when multiple models show comparable levels of performance. With 

ranking results, a new VS30 database comprised of a superior set of VS30 predictions based 

on known information can be obtained, and this is illustrated through the development of 

a new synthetic VS30 database for California. The method is also applied to other regions 

of the country, specifically the Seattle and Puget Sound area and the Salt Lake City, Ogden, 

and Provo area to further demonstrate the new method and explore its applicability to areas 

with limited data. Enhanced site condition maps for those regions are also developed. 
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To strengthen confidence in predictions and designs, civil engineers have started to 

explicitly consider uncertainty in their calculations. The Bayesian method for model 

ranking presented herein is also presented in a modified form to allow users to include 

appropriate, available uncertainty information. The effects of uncertainty on the updated 

site conditions map for California are investigated, and recommendations for appropriate 

use of uncertainty information in model ranking applications are made. 

Finally, the new synthetic database is used to inform the hazard information needed 

when performing a CPT-based liquefaction hazard quantification calculation. Its 

application is explained alongside an illustrative example in the San Francisco Bay area. 
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CHAPTER 1  

INTRODUCTION 

1.1 PROBLEM STATEMENT 

Earthquakes are among nature’s most powerful, devastating natural phenomena. The 

specific phenomenon referred to as an earthquake can occur due to natural processes or 

powerful explosions, and is characterized by transmission of kinetic energy through the 

surface of the earth as seismic waves. There are multiple types of seismic waves, and each 

wave manifests in different ways, but the end result is some degree of potentially damaging 

ground motion. These damages can include structural damage from the actual ground 

motion, but also damages that can result from hazards triggered by the earthquake 

including liquefaction, fire, landslides, and flooding. 

Significant effort and resources have been dedicated to understanding and predicting 

earthquakes and earthquake-induced hazards. Ground motion prediction equations 

(GMPEs) (e.g., those found in Douglas 2011) have been developed for decades; they are 

an attempt to help engineers and stakeholders anticipate the risks associated with 

earthquake shaking. An important component to ground motion prediction is the potential 

for amplification of seismic energy, expressed via amplification factors. Borcherdt (1994) 

recommended a relationship for estimating site amplification based on VS30, the time-

averaged shear wave velocity to 30 meters depth. Boore et al. (1993, 1994) utilized VS30 in 

ground motion prediction equations, and was a catalyst for widespread adoption of VS30 in 

site condition assessments. Because of its popularity as a parameter for seismic site 
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response characterization, it is desirable to estimate the value at locations where VS30 

measurement data are not available. Although there are currently multiple models available 

for estimating VS30 there is no clear guidance for which model produces the best results at 

a location of interest. 

1.2 OBJECTIVES 

The objective of this research is to develop a tool to evaluate and quantify the impact 

of proxy-based VS30 models, including explicit consideration of uncertainty, using a 

Bayesian framework to facilitate better prediction of seismic site conditions. In addition to 

its use in GMPEs, seismic design codes (e.g. FEMA 2015) utilize VS30 to suggest site 

amplification factors. This research also presents a method for explicit consideration of 

uncertainties in both benchmark data and in candidate models when evaluating competing 

proxy-based VS30 models for their predictive capacity. 

There are known limitations to the use of VS30 as an indicator of seismic site conditions 

(e.g., Mucciarelli and Gallipoli, 2006, Castellaro et al. 2008), and this dissertation should 

not be interpreted as an endorsement for site characterization using VS30. However, the 

fields of seismic engineering design and hazard mitigation consistently use VS30 for site 

classification purposes. Therefore, it is still desirable to improve the existing methods for 

estimating VS30 in the absence of measurement data. 

1.3 MOTIVATIONS 

Currently, various proxy-based methods are used for estimation of VS30, but there are 

no clear guidelines to help potential end-users to select the best method for their specific 

application. A key issue lies in the current state of the art for VS30 prediction. Two primary 
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forms of proxy data, topography and geology, are used to estimate VS30. However, there is 

no direct relationship between the two methods, and therefore evaluation of their relative 

strengths and weaknesses falls to the end user. To address this problem, this dissertation 

presents a Bayesian framework for model ranking that can be used by practitioners who 

are interested in a mathematical approach to guide model selection. In addition to being a 

powerful technique for definite model ranking, this method can be implemented using any 

spreadsheet software that has a built in solver. 

Another motivation for this research is the degree of uncertainty that is frequently 

associated with measurement and design when dealing with subsurface material. There is 

inherent variability in soils due to the natural processes that led to its formation, as well as 

error associated with measuring soil properties. In traditional civil engineering practice, a 

factor of safety was used to mitigate uncertainties in design values. It is more effective, 

though, to explicitly consider uncertainties directly, and doing so gives greater confidence 

in the obtained solutions. Furthermore, different measurement techniques and proxy-based 

modeling strategies will all introduce unique forms of uncertainty, and it is not effective to 

simply assign a single factor of safety (or equivalent) to account for those uncertainties 

when evaluating model performance. Instead the Bayesian framework for model ranking 

is adjusted to allow for thorough characterization of uncertainties that may manifest in the 

candidate model predictions or benchmark data against which the model performance is 

verified. 

An additional strength of the Bayesian framework is its ability to resolve situations in 

which multiple models perform well by combining their outputs. In this way, users are 



4 

 

given additional confidence that their results will account for all pertinent information 

while minimizing the potential bias that could be introduced with less sophisticated 

techniques (e.g. simple averaging). 

1.4 OVERVIEW OF THE RESEARCH METHODOLOGY 

A Bayesian framework for VS30 model ranking is developed and presented in this 

dissertation, and is presented in a form that can be used with uncertainty information or 

without it. In this way, engineers and other users are given multiple means of utilization of 

the proposed methods based on familiarity with the underlying probabilistic concepts as 

well as the availability of the requisite data for analysis. The methodology is based on 

utilizing the Maximum Likelihood Method to evaluate candidate model performance, and 

then utilizes the maximized likelihood of a model’s performance to compute its relative 

probability (with reference to the other candidate models) of being correct. 

IN CHAPTER 2: 

Fundamental background information is presented. This information is included in the 

dissertation to help the reader get up to speed on relevant information that is necessary to 

understand the rest of the work. This includes calculation of VS30 and its formulation as a 

parameter for estimating site response, the Maximum Likelihood Method, and liquefaction 

hazard quantification concepts. 

IN CHAPTER 3: 

The methodology for ranking VS30 models using a Bayesian framework to assist in 

development of a new, synthetic site condition database is presented. The chapter includes 
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the requisite information for derivation of the likelihood function as well as how the 

likelihood function can be utilized to perform a model ranking. Maximum likelihood 

estimation is used to find the optimal parameters of the likelihood function, and a procedure 

that can be implemented in spreadsheet based software is included. The method is 

demonstrated to provide improved ranking information when the model ranking is refined 

by geologic unit. Guidance is also provided for users interested in developing an 

independent site condition database, and the results of the study to create the state-of-the-

art synthetic site conditions database for California are presented. 

IN CHAPTER 4: 

The Bayesian VS30 model ranking procedure is applied to other regions in the United 

States. These additional regions provide a lens through which critical consideration can be 

applied to the method. The degree to which the new method can provide meaningful results 

to users is discussed. 

IN CHAPTER 5: 

The Bayesian method for ranking VS30 models is revisited, but with application of 

uncertainty considerations to the model ranking formulation. The effects of uncertainty on 

the method and the sensitivity of the results to uncertainty are also explored, and the 

uncertainties that exist in both the benchmark data and the model predictions are quantified. 

Options for users who have incomplete uncertainty information are also presented. 

IN CHAPTER 6: 

A liquefaction hazard quantification is performed in Alameda, CA. The new VS30 site 

condition database developed in Chapter 3 is used to inform the hazard data sets that are 
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obtained from the USGS hazard tools, and probabilistic estimations of liquefaction hazard 

are obtained. 
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CHAPTER 2  

OVERVIEW OF BACKGROUND CONCEPTS 

2.1 VS30 

The time averaged velocity in the top 30 meters of subsurface material is commonly 

used in earthquake engineering as a means of characterizing the site conditions, such as 

potential for amplification (e.g., FEMA 2015). The general form of the equation to 

calculate the time-averaged shear wave velocity to a specified depth, z, is presented as 

Equation (2.1): 

 

1 ,

Sz n
i

i S i

z
V

z

V




  (2.1) 

where, VSz is the time averaged shear wave velocity to depth z, zi is the thickness of layer 

i, VSi is the shear wave velocity of layer i, and n is the number of layers that exist between 

the surface and depth z. It is important to note how this equation differs from a simple 

weighted average, in which the proportion of the depth of the ith layer is multiplied by VS,i. 

Using the time averaged approach is based on the travel time of shear waves as they travel 

through the 30 meters of soil below the ground surface explicitly. This formulation better 

preserves the behavior of slow layers, which tend to be the most likely to demonstrate 

amplification during an earthquake. 

However, despite its correlation to seismic amplification, there are known limitations 

to using VS30 as a means to quantify site response as well. A clear limitation is that it only 

quantifies soil behavior to a depth of 30 meters. Conditions further from the ground surface 
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also affect the site response, and those effects are implicitly lost if only characterizing the 

site response using VS30. Additionally, VS30 is unable to account for frequency dependence 

and lacks the ability to distinguish between the response of velocity gradients and sharp 

contrasts for which VS30 may be similar (Wald et al. 2011). 

Furthermore, it is unclear whether VS30 is truly a reasonable parameter to inform 

seismic site response. Recent studies (e.g. Aboye et al. 2015) have demonstrated that there 

in considerable uncertainty introduced into GMPEs due to the use of simple site classes 

(which are based on VS30) as the decision criteria for amplification factor choice.  

2.2 DEVELOPMENT OF VS30 AS A PARAMETER FOR ESTIMATING SEISMIC 

SITE CONDITIONS 

In 1991 (Martin, 1994) and 1992 (Martin and Dobry, 1994), a pair of workshop was 

hosted to evaluate the current state of the art in ground motion prediction. One of the 

primary results of the workshops was a new site condition classification system that was 

based primarily on VS30 (i.e. VS to 100 feet), but with additional constraints that consider 

local geology. The workshop participants considered this solution to be a good balance 

between over simplification and complexity, and their site class categories were 

recommended for inclusion into the 1994 NEHRP seismic design provisions. 

Because VS30 is now consistently included in NEHRP seismic design provisions 

(although the provisions have been updated slightly since 1994) and GMPEs, researchers 

continue to study its effects and limitations (e.g. Lee et al. 1995, Castellaro et al. 2008, Lee 

and Trifunac 2010). It can be assumed that, unless a new standard parameter for 
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characterizing site condition is accepted by the seismological community, VS30 will 

continue to be used (Boore et al. 2011, Gregor et al. 2014). 

Due to its continued use in GMPEs and site condition classification, in addition to the 

scrutiny placed on VS30 as a viable parameter, researchers have worked to develop new 

techniques to measure VS30 as well as predict it using proxy data when measurement data 

are not available (e.g. Wald and Allen, 2007, Wills et al. 2015, Thompson et al. 2014). 

Proxy-based methods, methods based on estimating VS30 using related information, have 

become popular for their ability to utilize vast amounts of readily available data. The two 

most common proxies, geology and topography, are discussed below. 

Park and Elrick (1998) developed a VS30 map for southern California that grouped 

similar geologic units based on age, grain size, and depth. Their work was actually 

preceded by Fumal and Tinsley (1985), who used the Joyner et al. (1981) suggestion of 

characterizing site response with the velocity to a depth of one quarter wavelength of the 

period of interest, and combined that with the Tinsley and Fumal (1985) mapping of 

Quaternary sedimentary units. However, Park and Elrick (1998) concluded that using VS30 

was more effective due to its lower level of complexity, thereby expanding the amount of 

usable data. Wills et al. (2000) expanded the work of Park and Elrick (1998) and applied 

their general method to the state of California, but with the end product being a statewide 

map of NEHRP site class recommendations instead of VS30 values. Wills and Clahan 

(2006) then refined the work of Wills et al. (2000) by dividing the state into simplified 

geologic units and providing VS30 predictions for each simplified geologic unit group. Wills 

and Gutierrez (2011) studied the effects of different groupings of geologic units and 
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introduced the concept of subdividing young alluvium based on slope. Wills et al. (2015) 

developed a new VS30 site conditions map of California based on the work of Wills and 

Gutierrez (2011) that featured fewer simplified geologic units than the Wills and Clahan 

(2006) map, but which demonstrated enhanced performance. 

Wald and Allen (2007) developed a methodology that can be referred to as a 

topography-based VS30 estimation. They used data from the shuttle radar topography 

mission (SRTM) (Farr et al. 2007) to investigate correlations between topography and VS30. 

They found that a correlation does exist between slope and VS30, with higher slopes 

correlating to higher values of VS30. The researchers postulated that higher quality material 

will be more likely to be able to hold a steeper slope than weaker material, and that VS30 

will be spatially distributed accordingly. The final product of the Wald and Allen (2007) 

research was a method for globally estimating VS30 based on topographic gradient at 30 

arcsecond resolution. Allen and Wald (2009) investigated whether a higher resolution data 

set would provide improved estimates, but found that there was little improvement and 

sometimes poorer performance at higher resolutions (i.e., 9 arcseconds). 

Recently, a hybrid model (Thompson et al., 2014) has been developed to combine the 

strengths of geology-based methods with those of topography-based methods. The basis of 

this hybrid method is a geology-based estimation of VS30, and that data are then refined 

with topography-based information to generate an updated VS30 prediction. This new 

method has promise as a strong union of multiple sources of proxy data for enhancing VS30 

estimates. 
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2.3 MAXIMUM LIKELIHOOD METHOD 

The Maximum Likelihood Method (MLM) is a technique that can be used to estimate 

the parameters for a set of data. If  represents the unknown statistical parameters of the 

data, D, then the MLM can be used to maximize l(|D), a function that describes the 

parameters  given the data D. The function l(|D) is the likelihood function, and a 

maximization of the likelihood function will result in an estimation of the true value of  

(Givens and Hoeting, 2005). 

The MLM is applicable under most regular conditions and for most normally used 

distributions. Under the assumption that normal conditions are being met, the estimate 

derived from the MLM will demonstrate consistency, invariance, and normality (Barnett 

1999; Gentle 2002). Consistency refers to the maximum likelihood estimator approaching 

the true value as the number of observations in D increase. Invariance is the property that 

if the maximum likelihood estimate (*) is found, then a function =g() has the maximum 

likelihood estimate *=g(*). And normalcy denotes that as the number of observations in 

D increase, the maximum likelihood estimate * tends towards a normal distribution with 

a mean of  and covariance matrix H-1 with Hij = E(-2L(|D)/I j). H can be estimated 

with the negative Hessian matrix of the log-likelihood function evaluated at *. (Givens 

and Hoeting, 2005). 

Although there are times when the MLM will not provide good results (e.g., Cam, 

1990; Cheng and Traylor, 1995), those conditions are rare and involve situations that are 

unlikely to be encountered in normal engineering practice. The main challenges in 



12 

 

successful utilization of the MLM tend to be the development of the likelihood function 

itself or in maximizing it. To illustrate the MLM and its ability to develop an estimation of 

a statistical distribution’s parameters, MLM is applied to the normal distribution to derive 

the mean and standard deviation. 

In a general sense, the likelihood function can be expressed as (e.g. Juang et al. 2015): 

  
1

( | ) |
n

i
i

l f 


D d   (2.2) 

where f(di|) is the probability density function of the distribution in question. For a normal 

distribution (e.g. Haldar and Mahadevan 2000), the likelihood function is as follows: 
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1
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  
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where  and 2 are the parameters of the normal distribution to be estimated. It may be of 

interest to the reader that the BIC method, presented in Chapter 3, can be used along with 

the maximum likelihood estimators (as derived here for the normal distribution) as a means 

to evaluate various distributions and which one best fits a set of data. This would allow 

users to select between, for example, a normal and a lognormal distribution to describe a 

set of data. 

It is commonly known that the two parameters used to describe a normal distribution 

are the mean and standard deviation, and the formulae used for their computation are 

similarly well known. However, this example can be treated as a proof of the skills 

necessary to perform a maximum likelihood estimation. Expanding the product in Equation 

(2.3): 
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From Calculus, it is known that a function reaches a maximum (or minimum) at the 

location where the derivative of the function has a value of zero. Therefore, the derivative 

of the likelihood function can be set to zero to maximize its value. Often, it is desirable to 

use the natural logarithm of the likelihood for maximization due to the simplification of 

the mathematics that it offers. This is an acceptable choice because the natural logarithm 

is a monotonically increasing function, and a maximization of the log of the likelihood 

function (referred to as the log-likelihood function) is therefore a maximization of the 

likelihood function. Doing so in this example yields Equation (2.5): 
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As mentioned previously, it is desirable to take the derivative to find the maxima. 

Because there are two variables in this equation, a partial derivative must be taken. The 

partial derivative with respect to  is as follows: 
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  (2.6) 

Setting Equation (2.6) equal to zero, reducing, and multiplying by 2 yields: 

 0ix n    (2.7) 

Rearranging: 
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n
    (2.8) 

which is known to be the mean of a normal distribution. 

The same procedure can be repeated for the second parameter, 2. The partial derivative 

of Equation (2.5) is: 
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  (2.9) 

  22 0in x       (2.10) 

  22 1
ix

n
     (2.11) 

As Equation (2.8) is the equation for the mean, Equation (2.11) is the equation for 

calculating the variance of a standard deviation. With proper understanding, the MLM is 

an effective tool for calculating the unknown parameters of an assumed distribution for a 

set of data. 

2.4 OVERVIEW OF LIQUEFACTION QUANTIFICATION METHODS 

Earthquake-induced liquefaction is a phenomenon that has received considerable 

attention from researchers. The hazards associated with liquefaction include settlement, 

lateral spreading, and sand boils. When liquefaction occurs, it can cause damage to 

structures and infrastructure, potentially leading to loss of life or functionality. Many 

efforts have been undertaken to predict the occurrence of and damage associated with 

liquefaction triggering. 
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The term liquefaction refers to a specific soil phenomenon that can manifest when 

saturated granular soils experience a sudden loading. When liquefaction occurs, the sudden 

increase in stresses cause the pore water pressure to rise. The granular soil particles become 

temporarily suspended by the pore water, losing contact with one-another in the process. 

This suspension of the soil particles causes a loss of strength and stiffness, and the soil can 

begin to behave like a liquid (e.g., Fiegel and Kutter 1994, National Academies of Sciences, 

Engineering, and Medicine, 2016). 

In 1964, two devastating earthquakes in Niigata, Japan and Alaska prompted 

development of methods for assessment of liquefaction potential, including Whitman 

(1971) and Seed and Idriss (1971), the latter of which has been termed the “simplified 

procedure.”  

The simplified procedure specified that, essentially, liquefaction triggering could be 

roughly assessed by a ratio of a soil’s seismic resistance, the cyclic resistance ratio (CRR), 

to the seismic loading applied to the soil, the cyclic stress ratio (CSR). The ratio, expressed 

in Equation (2.12), is the factor of safety against liquefaction. 

 
CRR

FS
CSR

   (2.12) 

The CSR, adjusted for magnitude 7.5 events, is defined in Equation (2) (Youd et al., 

2001): 
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where PGA is the horizontal peak ground acceleration at the study site in term of g, g is the 

acceleration due to gravity, v is the total vertical stress, ’vo is the is the initial vertical 

effective stress, rd is a stress reduction coefficient, MSF is the magnitude scaling factor, 

and K is a correlation factor to adjust for overburden pressure. 

Significant effort has been dedicated to assessing the CRR of soils, and since the 

seminal Seed and Idriss (1971) work, procedures based on multiple testing methods have 

been developed. The simplified procedure was developed based on standard penetration 

test (SPT) data, and revisions were made to improve its estimation of CRR (e.g. Seed 1979; 

Seed and Idriss, 1982; Seed et al., 1985; Youd et al., 2001; Idriss and Boulanger, 2010). 

Other in-situ testing methods include cone penetration test (CPT) (e.g., Robertson and 

Campanella, 1985; Robertson and Wride, 1998), shear wave velocity test (Andrus and 

Stokoe, 2000), and others. The three formulations for CRR based on each of the three 

previously mentioned methods are reproduced below. For the sake of brevity, the variables 

within each equation are explained, but calculations for each are not included. This section 

is primarily included to inform the reader of the various methods that exist for formulation 

of CRR. It is intended to be useful primarily as a comparative indicator of the general 

approaches that can be considered for use when CRR is to be evaluated at a site. 

The SPT-based CRR calculation is based on a clean-sand equivalent, corrected blow 

count (Idriss and Boulanger, 2010). 

 
       2 3 4

1 1 1 160, 60, 60, 60,
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cs cs cs cs
N N N N
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      
                      

  (2.14) 

where (N1)60,cs is the energy corrected blow count clean sand equivalent. 
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The CPT-based CRR calculations are based on the calculated normalized tip resistance 

(Robertson and Wride, 1998) 
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where (qc1N)cs is the normalized clean sand tip resistance, with normalization to 1 atm. The 

normalization procedure is presented in Robertson and Wride (1998). 

The shear wave velocity-based CRR can be calculated as follows (Andrus and Stokoe, 

2000): 
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  (2.16) 

where VS1 is shear wave velocity corrected for overburden-stress, V*S1 is the limiting upper 

value of VS1 for liquefaction triggering, and a and b are curve fitting parameters. An 

alternative shear wave velocity-based method, including probabilistic assessment using VS 

can be found in Kayen et al. (2013). 

Although the methods mentioned up to this point have been deterministic in nature, Ku 

et al. (2012) used a maximum likelihood based approach to develop a probabilistic method 

for assessment of liquefaction potential based on the Robertson and Wride (1998) method 

and its updates (Robertson 2009a, 2009b). Juang et al. (2013) applied the Robertson 

(2009a, 2009b) method and Ku et al. (2012) methods to develop a simplified procedure for 

estimating liquefaction induced settlement and settlement exceedance curves based on CPT 
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testing. Probabilistic methods are an attractive alternative to conventional deterministic 

methods due to their capacity to allow engineers to more readily express uncertainty as a 

probability of liquefaction. 
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CHAPTER 3  

PROBABILISTIC METHODS FOR EVALUATING VS30 

MODELS - FOCUSING ON THE CALIFORNIA DATABASE* 

3.1 INTRODUCTION 

Accurate estimation of earthquake damage potential, from site-specific analysis to 

regional predictions, is a field that has been studied for years and continues to draw interest 

from researchers. Practically, a model that can accurately estimate earthquake-induced 

hazard potential at a regional scale can lead to cost savings and better planning for 

professionals involved in hazard planning and mitigation fields. 

One commonly used parameter when estimating the potential for amplification of 

seismic waves is the time-averaged shear wave velocity in the top 30 meters of subsurface 

material, or VS30. The National Earthquake Hazards Reduction Program (NEHRP) 

publishes codes that are used in seismic hazard design, and VS30 values are used to classify 

soils for design purposes. That soil classification is then used to predict the amount of 

amplification that can be expected for a selected site. When performing site-specific 

analysis, measurements at a site can provide sufficient information for hazard mitigation. 

However, when hazard potential estimation becomes necessary at scales larger than site-

specific analysis, such as at the city or state-wide scales, measurement of subsurface 

conditions becomes cost prohibitive, and interested parties must turn to proxies that use 

A similar form of this chapter is under review for publication in Earthquake Spectra: 
Brownlow, A. W., Chen, Q.; Khoshnevisan, S., Shahjouei, A., Javanbarg, J., Zhang, J., and Juang, C. H., 

2017. Probabilistic methods for evaluating VS30 models - focusing on the California database, 
Earthquake Spectra, Under Review. 
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what little information is already available, e.g., surficial geology (Wills and Silva 1998; 

Wills and Clahan 2006; Scasserra et al. 2009; Wills et al. 2015), topography and slope 

(Wald and Allen 2007; Allen and Wald 2009), terrain features (Yong et al. 2012), and 

geology-topography hybrid data (Scasserra et al. 2009; Wills and Gutierrez 2011; Parker 

et al. 2017), to provide estimates of the parameters used to estimate seismic hazard 

potential. In addition, various interpolation or kriging-based methods have been developed 

and applied in recent mapping studies of various quantities of interest for earthquake 

hazards, e.g., (Lee and Tsai 2008; Thompson et al. 2007; Thompson et al. 2014; Chen et 

al. 2016a; Chen et al. 2016b; Liu et al. 2017a&b), and correlations between shear-wave 

velocity and other comment geotechnical in situ tests (e.g., cone penetration test) have been 

proposed, e.g., (Andrus et al. 2007, Stuedlein 2010). Large-scale estimations of VS30 can 

aid decision-makers in their selection of a proper proxy for the region of interest.  

In any situation where a design VS30 value is to be chosen based on one of multiple 

available VS30 models, there is no clear method to assist in the validation and comparison 

of the available methods. Any such decision would be based on the decision maker’s 

judgment instead of a definable procedure, or, barring sufficient information to make a 

decision, some combination of the available models, also dependent on judgment, could be 

used. However, statistical methods do exist to assist decision makers in model selection 

(e.g. Buckland et al. 1997; Schwarz 1978; Zhang et al. 2014; Juang et al. 2015).  

A Bayesian method for model evaluation and ranking is developed and implemented 

in this study. This methodology utilizes Maximum Likelihood Estimation (MLE), a 

technique that can be used to compute statistical parameters of interest for a set of data 
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(Juang et al. 2015). Alternatively, as it is used herein, MLE can be used to evaluate how 

well a model (or set of models) will fit a set of data when the data’s distribution is known 

or can be assumed. This is used to calculate a value known as the likelihood, which refers 

to how well the model is able to predict the sample data against which it is being evaluated. 

The likelihood can then be used to compute the Bayesian Information Criterion (BIC) 

(Schwarz 1978), which is a value that allows for comparison of candidate models’ 

likelihoods. The reader is referred to Juang et al. (2015) and Juang et al. (2017) for 

examples of geotechnical applications of the principle of maximum likelihood.  

Utilizing MLE and BIC, this paper proposes a methodology for assessing the relative 

probability that a proxy-based VS30 model, among multiple candidate VS30 models, will 

provide the correct value for VS30 when evaluated against benchmark data. The proposed 

method can be used with any number of available models, and, as will be demonstrated, 

provides the model ranking for situations when one model is deemed superior as well as 

when multiple models show comparable levels of performance. The methodology is then 

applied to assess candidate VS30 models and to develop an optimal recommended VS30 

database for the state of California. This database can be considered a synthetic database, 

as it will be comprised of VS30 predictions from other models and combinations of VS30 

predictions when multiple models show competitive performance. This method does not 

seek to develop its own VS30 predictions but to capitalize on the best predictions available. 

3.2 METHODOLOGY 

When performing a regional analysis of the potential for amplification of seismic 

waves, there tend to be multiple models available to obtain an estimation of VS30. In these 
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situations, a need arises to evaluate the relative performance of each model in order to 

obtain the best estimation of site condition. The method proposed in this work is intended 

to easily allow users to rank available models by evaluating their ability to accurately 

predict VS30 values at benchmark locations, and if necessary, to combine non-dominate 

models to obtain an optimal VS30 model. The principle of maximum likelihood is used to 

evaluate the ability of each model to predict the benchmark data. The methodology builds 

on the principle of maximum likelihood and utilizes the concept of Bayesian Information 

Criterion. A general outline of the procedure is described in Figure 3.1. 

 

 

Figure 3.1: Flowchart of the steps involved when performing a BIC-based model ranking 

Identify 
candidate VS30 

models 

Construct 
benchmark 
database 

Define study 
area 

Obtain model outputs at 
benchmark data 

locations 

Compare benchmark data to model 
outputs using MLM to compute BIC 

Rank models using BIC to 
compute P(Mi|D) 

If necessary, combine outputs of non-
dominated models 
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PRINCIPLE OF MAXIMUM LIKELIHOOD ESTIMATION 

The principle of maximum likelihood estimation (MLE), can be used to estimate 

statistical parameters for a sample of data where those parameters are unknown. The 

obtained parameters represent the best fit of the assumed distribution of the population to 

the sample data. The following sections will include a brief discussion of MLE, as well as 

a discussion of its applicability to VS30 models. 

For a model with parameter(s), θ, to be estimated, and observed data set, D, there exists 

a joint probability density function (PDF), f(D|θ), that represents the chance of observing 

D given θ. In the context of this paper, D is the benchmark database of VS30 values against 

which a VS30 model will be compared. The equation of the PDF, if viewed as a function of 

θ, can be written as l(θ|D), and is referred to herein as the likelihood function. Assuming 

that the observations of a data set D are statistically independent, the likelihood function 

can be evaluated using (e.g. Juang et al. 2015): 
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where ( | )if d θ  is the joint probability of observing the data D given the unknown 

parameters θ, di is an individual observation within D, and n is the total number of data in 

D. Equation (1) is a generalized form of the equation used for MLE. In this study, it is 

assumed that the data are log-normally distributed. Therefore, Equation (1) becomes (e.g. 

Haldar and Mahadevan 2000): 
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where θ1 and θ2 are the parameters of the lognormal distribution. 

The objective of the MLE analysis is to maximize the value of the likelihood function, 

which will yield an optimal value of θ (Givens and Hoeting 2005). In this context, the 

maximized likelihood function represents the assumed model’s best fit of the data. It is 

known that a maximum or minimum value of a function is obtained when the first 

derivative of the function has a value of zero. Therefore, the likelihood function must be 

differentiated with respect to θ. For ease of evaluation, it is often desirable to take the 

natural logarithm of the likelihood function and the resulting general and study specific 

forms of the log-likelihood function are written as 

    
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Since the natural logarithm is a monotonically increasing function, a maximization of 

the log-likelihood function is also a maximization of the likelihood function. In this work, 

the log-likelihood function in the form of Equation (4) is used. 

RANKING OF COMPETING VS30 MODELS 

While MLE is indeed useful for estimation of model parameters, in reality, it is possible 

to have several competing models for a given problem. To justify which model is the best 

based on geotechnical knowledge, the Bayesian Information Criterion (BIC) (Schwarz 

1978) is often used for comparing and ranking these models. The BIC, defined in Equation 

(5), can be computed for each model in a set with models M1, M2, …, Mr (Ku et al. 2012): 
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  *BIC 2 ln | , ln( )i il M k n      D   (3.5) 

where θ* is the maximized parameter of the likelihood function, ln[ l(*| Mi|D) ] is the value 

of the log-likelihood function for model Mi at point θ* for data set D, k is the number of 

parameters of the model (e.g. k = 2 for a lognormal distribution), and n is the number of 

data values in D. The BIC is considered an appropriate means for selecting model fit due 

to its design to account for both model fit and complexity. The model with the lowest BIC 

value is considered to be best supported by the data. The first term in Equation (5) accounts 

for a model’s goodness of fit, while the second term accounts for model complexity, 

negatively affecting the model’s BIC ranking for higher degrees of complexity (i.e., having 

more parameters). 

Once the BIC is calculated for each model, the competing models can be compared 

using Equation (6) (Burnham and Anderson 2004), which gives the probability that a 

certain model, Mi, is a good predictor of the data D relative to the other models included in 

the analysis (Ku et al. 2012; Juang et al. 2015). 
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where Δi(BIC) is the difference between the BIC of model Mi and the minimum BIC of the 

models included in the analysis and r is the number of models included in the analysis. The 

values of P(Mi|D) for all investigated models can be used to rank their relative 
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performance, with higher probabilities corresponding to better performance of the model 

with respect to the benchmark data D. 

NON-DOMINATED MODEL PERFORMANCE 

When performing the analysis, the ideal outcome is to find one VS30 model that exhibits 

superior performance relative to the other models, as evidenced by the lowest BIC value 

(Equation 5) or the highest probability value (Equation 6). However, it is possible for more 

than one model to perform well enough at predicting the benchmark data that each model 

that has shown sufficient performance should be considered when making a final model 

output selection. In the cases where more than one model performs well, the models’ 

outputs can be combined using the total probability theorem (after Zhang et al. 2014):  

      30 30,
1

* | * | , |
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k i i
k

p Vs p Vs M P M
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D D D   (3.7) 

where  30* |p Vs D  is the final, predicted value of VS30, and  30,* | ,k ip Vs M D is the 

predicted VS30 given by model Mi. For a pair (or group) of models to be considered non-

dominated, the value of P(Mi|D) for a given model must be greater than 1/20th of the next-

highest model. In this case, the values of each qualifying model should contribute to the 

final accepted value of the parameter being investigated. It has been extensively studied 

and proven that combining model outputs using a general form of Equation (7) will result 

in a superior set of predictions based on known information when compared to single 

model results (e.g. Raftery et al. 1997). 
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3.3 CANDIDATE VS30 PREDICTION MODELS 

The criteria for selecting VS30 models for this study are based on the desired outcomes. 

Namely, it is desirable for a given model to be able to predict VS30 at any location in the 

study area. Therefore, the model needs to take location data as inputs (e.g. a latitude and 

longitude pair) and gives an estimated VS30 value as an output. For the region of interest 

(California), three models are available for this evaluation, the USGS global VS30 model 

(Wald and Allen 2007), which is based on a correlation between topography and VS30; a 

California Geological Survey (CGS) geology-based VS30 model by Wills et al. (2015), and 

a second USGS model that combines slope and geologic inputs to create a refined 

estimation of VS30 (Thompson et al. 2014). 

TOPOLOGY-BASED VS30 MODEL 

Wald and Allen (2007) developed a model capable of predicting VS30 based on an 

empirical relationship between topographic slope and VS30. With the availability of 

topographic data gathered by a space shuttle mission in 2000, Wald and Allen developed a 

global map of VS30 values. A notable strength of this method, when compared to geology-

based methods, is that it provides a high-resolution grid of individual estimates instead of 

a single-value estimate for large areas. Figure 3.2 illustrates the data available in the model 

and the extent to which it is available. A limitation of this model is that the maximum value 
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predicted by the model is 760 m/s. The model’s output should be interpreted as 760 m/s or 

greater at locations where 760 m/s is predicted. 

 

Figure 3.2: Graphical representation of the Wald and Allen (2007) topology and slope based VS30 model. The 

colors in the figure represent a gradient of VS30 values, with green being high VS30 and red being low VS30. 

SURFICIAL GEOLOGY-BASED VS30 MODEL 

Classification of site conditions based on geology has been used extensively and 

consistently as a reliable methodology. Recent work (e.g. Wills et al 2015) combines 

multiple surficial geologic units which possess similar characteristics into so-called 
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simplified geologic units. Site condition information (i.e., VS30 values) is then averaged 

within each simplified geologic unit. Because input data are averaged when developing site 

condition maps using this methodology, only a single VS30 value is available for each 

simplified geologic unit. This results in large areas of consistent geology being assigned a 

constant VS30 value. Figure 3.3 illustrates this phenomenon well, with large areas of 

consistent surficial geology clearly evident in the figure. 

 

Figure 3.3: Graphical representation of the Wills et al. (2015) model in ArcMap. Each color represents a 

surficial geologic unit that has a unique VS30 value assigned to it. 
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HYBRID VS30 MODEL 

Thompson et al. (2014) have developed a model that utilizes both geologic and 

topographic constraints in estimating VS30. Using regression kriging, this methodology 

combines topology-based estimations with geologic unit-based estimations while also 

considering site-specific measurement data to produce updated site condition estimations. 

This method derives its strength from the ability to combine topographic data with geologic 

data, and is still capable of producing unique VS30 estimations for each location instead of 

only producing a set of single value estimations, as is the case with the geology-based 

method. Figure 3.4 shows a rendering of the model’s outputs of VS30 values in California. 
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Figure 3.4: Graphic representation of the Thompson et al. (2014) model, rendered in ArcMap. Red areas 

correspond to areas of lower VS30. 

OBTAINING VS30 MODEL OUTPUTS 

The VS30 model outputs are available in geographic information system (GIS) file 

format from each source. These files are manually uploaded into ArcMap, a commercial 

GIS package developed and distributed by ESRI (www.esri.com). This software package 

contains a tool that allows separate sets of data to be joined together based on spatial 

location. After converting the files to an appropriate format, the spatial join tool is used to 
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join the output files from different models into one comprehensive file containing all model 

outputs. This step can be computationally intensive if the models provide high-resolution 

spatial data across a large area, but once completed, it allows for very rapid comparison of 

the models throughout the rest of the procedure. 

The Wald and Allen (2007) and Thompson et al. (2014) models are both obtained in 

the form of .grd files and are then converted to point data in ArcMap. Each point in the file 

consists of a VS30 value and spatial data to correspond to a specified location. These point 

estimations are available on a global grid with 30-arcsecond spacing. By contrast, the Wills 

et al. 2015 paper separates simplified geologic units into polygons, and each unit’s polygon 

stores a VS30 value to represent the area covered by that polygon. The spatial join tool in 

ArcMap is capable of joining points to points and points to polygons, and both methods 

are utilized to join the three model’s outputs to the benchmark data for location-based 

comparison. The point-to-point join tool is set to join data points that are closest to one 

another, and the point-to-polygon tool joins the points falling within any polygon to the 

values of that polygon. 

3.4 BENCHMARK VS30 DATA 

To evaluate multiple VS30 models, it is assumed that the “best” model will be the one 

that most accurately predicts the benchmark VS30 data. Therefore, obtaining high-quality 

benchmark data are of paramount importance for this methodology to produce high-quality 

results. However, the eventual model ranking, discussed below, is based on a comparison 

between each model’s relative ability to predict the benchmark data. As such, the 
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methodology is merely an indication of which model shows the best performance relative 

to the other models; it does not evaluate the accuracy of the model itself.  

OBTAINING BENCHMARK VS30 DATA 

Two databases are identified for use as benchmarks for this study. One is the USGS 

VS30 measurement database (Yong et al. 2015), which provides VS30 data and associated 

spatial location information for locations throughout the United States. The other is the 

NGA-West2 database (Ancheta et al. 2013; Seyhan et al. 2014), developed by the Pacific 

Earthquake Engineering Research Center (PEER) for the NGA project. The Next 

Generation Attenuation (NGA) project is an ongoing research effort to improve the state 

of seismic hazard research and knowledge and to develop new, more accurate earthquake 

attenuation equations. This database is selected for its ongoing utilization in state-of-the-

art earthquake-related research. The NGA project has been divided into West and East 

study areas corresponding to portions of the United States (i.e., eastern and western United 

States), though the NGA-West2 project database also includes data from other areas of the 

world. However, only data corresponding to locations in California is selected for inclusion 

in the benchmark database in this study. The spatial distribution of data in the benchmark 

database can be seen in Figure 3.5. The unfiltered benchmark database consists of 3412 

data points. 
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Figure 3.5: Spatial distribution of benchmark data in California 

It can be seen in Figure 3.5 that much of the available data are concentrated in two 

areas: the San Francisco Bay area in the northern portion of the state, and the Los Angeles 

area to the south. The distribution of the benchmark database’s VS30 values is plotted in 

Figure 3.6. 
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Figure 3.6: Distribution of VS30 values in the benchmark database 

3.5 EXAMPLE APPLICATION AND DEVELOPMENT OF A VS30 DATABASE 

FOR CALIFORNIA 

In this section, the proposed methodology is applied to evaluate the performance of 

multiple VS30 models and, using the results of the model evaluation, to develop a VS30 

database for California. The three VS30 models’ outputs are combined with the benchmark 

data using ArcMap’s spatial join tool, which allowed efficient location-based pairing of 

benchmark data points to appropriate model outputs. 
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Figure 3.7. Grid used for California, shown with a varying resolution of model data. Inset (a) shows the San 

Francisco Bay and surrounding area, with all three resolutions used in the study visible in the image. Inset 

(b) shows a closer shot of the San Francisco Bay, with only the finest two resolutions of data visible. 

In order to reduce the computational load when performing the analysis, a grid of 

varying resolution is used. A higher resolution grid is used in higher population areas, such 

as in the San Francisco Bay and Los Angeles areas. A lower resolution is distributed in 

areas with lower populations, such as the Sierra Nevada mountain range in the middle of 

the state. The grids used in this study are shown in Figure 3.7. 

(b) 

(a) 
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Figure 3.8: Scatter plots of model performance in predicting benchmark VS30 values by the (a) Wald and 

Allen (2007) topography-based, (b) Wills et al. (2015) geology-based, and (c) Thompson et al. (2014) hybrid 

models. The dashed line is a 1:1 (45 degree) line indicating a perfect match between predicted and benchmark 

VS30 values. 

Figure 3.8 plots the benchmark VS30 values and the values predicted by each VS30 model 

at the benchmark locations. Although not sufficient for determining the relative 

performance of each model, Figure 3.8 does provide some insights into the behavior of 

each model and general performance. First, in Figure 3.8(a), it can be seen immediately 

that there appears to be a hard limit of 760 m/s imposed on the upper bounds of the model. 

Therefore, the model has limited capacity to correctly characterize sites with VS30 greater 

than 760 m/s. Velocities greater than 760 m/s tend to be observed at sites with 

(a) (b) 

(c) 
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predominantly rocky subsurface conditions. Therefore, it can be expected that the Wald 

and Allen topology-based model will perform poorly in any locations with rocky 

subsurface conditions. A similar limit can be observed for values that fall below 150 m/s. 

Figure 3.8(b), which corresponds to the Wills et al, geology-based model, shows a distinct 

banking behavior at various values of VS30. This illustrates the limitation of the approach 

used to develop the model, whereby the model assigns a constant VS30 value to all locations 

characterized with a given geologic classification. However, as is seen in the figure, this 

method can result in some poor characterizations of data points from time to time. Figure 

3.8(a) and Figure 3.8(c) do not demonstrate the same banding behavior witnessed in Figure 

3.8(b), but rather show a scatter of data clustered around the 1:1 line. 

Quantitative performance evaluation of the three VS30 models in term of the probability 

(Equation 4) is shown in Figure 3.9. The probabilities are evaluated using all benchmark 

data in California. It can be seen in the figure that the Thompson et al. model is superior in 

its prediction of VS30 values based on the benchmark data. Therefore, any entity wishing 

to select the best model based on a simple analysis of their relative performance would be 

able to quickly determine that the Thompson et al. (2014) model should be used. 
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Figure 3.9. Ranking of VS30 model performance (i.e. P(Mi|D)) for the state of California 

REFINING RANKINGS WITH RESPECT TO COMMON PROPERTIES 

The Bayesian Method for the model ranking procedure (described previously) is used 

to rank various models and their ability to accurately predict benchmark data. It is common 

knowledge that subsurface conditions differ on a site-by-site basis. Therefore, a 

performance analysis of predictive models that evaluates their accuracy over large areas 

that include different site conditions runs the risk of masking an individual model’s 

strengths. To mitigate the potential loss of model performance in this study, the data are 

separated by surficial geology using the maps of simplified surficial geologic units defined 

in Wills et al. (2015) and summarized in Table 3.1.  

Table 3.1: Representation of Simplified Geologic Units in Benchmark Database 

Geologic Unit 
Number of 
Benchmark 
Data Points 

af/Qi 125 
crystalline 341 

KJf 124 
Kss 39 
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Qal1 364 
Qal2 745 
Qal3 563 
Qi 19 

Qoa 501 
Qs 33 
QT 115 
sp 26 

Tsh 159 
Tss 169 
Tv 74 

Total 3397 
 

The results of the model ranking in term of the probability (Equation 4), when divided 

by geologic unit, have been tabulated in Table 3.2. Recall that any models that show 

performance 20 times greater than the next best model are said to be dominant, and the 

models with worse performance are disregarded. 

Table 3.2: Tabulated results of model ranking in terms of P(Mi|D) for California 

Geologic 
Unit 

Wills 
et al. 

Wald 
and 

Allen 

Thompson 
et al. 

No. 
Benchmark 

af/Qi 0.75 0 0.25 125 
Crystalline 0 0 1.00 341 

KJf 1.00 0 0 124 
Kss 0.89 0 0.11 39 
Qal1 0 0 1.00 364 
Qal2 0 0 1.00 745 
Qal3 0 0 1.00 563 
Qi 0 0 1.00 19 

Qoa 0 0 1.00 501 

Qs 0.06 0.06 0.88 33 

QT 1.00 0 0 115 
sp 0.99 0 0.01 26 

Tsh 0.73 0 0.27 159 
Tss 0 0 1.00 169 
Tv 0 0 1.00 74 
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As can be seen in Table 3.2, the Thompson et al. (2014) model tends to have the best 

performance for a majority of the geologic units in California, indicated by a higher 

probability number. However, it should be noted that the Wills et al. (2015) model also 

performs best in some geologic units. It is clear, then, that choosing to refine the study by 

geologic units has improved the end user’s ability to select an appropriate model for their 

use when geologic information is known. It is also worth noting that the Wald and Allen 

(2007) model does not perform as well as the other two. In fact, the model only contributes 

to the prediction of one geologic unit: Qs. In Table 3.2, the number of benchmark data 

points available to assess each geologic unit is also shown. 

In four units (af/Qi, Kss, Qs, and Tsh), none of the models’ relative performance is 

sufficient to be considered dominant. For those four units, the outputs of the Wills et al. 

(2015) model and the Thompson et al. (2014) model must be combined to give the most 

confident estimation of VS30.  

DATABASE OF VS30 FOR CALIFORNIA 

Using the model combination methodology discussed previously and the results of 

the model ranking from the previous section, a new statewide database of VS30 predictions 

for the state of California is created. This new database is generated by selecting the model 

output that shows the best performance for each location in the state, and can be considered 

a synthetic database as a result. The new database provides VS30 estimates at the variable 

resolution grid locations displayed in Figure 3.7. The entire database, in comma delimited 

(.csv) file format, is provided as an electronic supplement to this paper. It should be noted, 
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however, that this methodology can be used to produce a database for any defined grid of 

locations at which model outputs can be obtained. 

For reference, Table 3.3 contains the simplified geologic units in the state and the 

models which should be used for prediction in areas with that geology. 

Table 3.3: Geologic Units and Contributing Models for Updated California Database 

Geologic 
Unit 

Wills et 
al. 2015 

Wald and 
Allen 
2007 

Thompson 
et al. 2014 

af/Qi x  x 

Crystalline   x 

KJf x   

Kss x  x 

Qal1   x 

Qal2   x 

Qal3   x 

Qi   x 

Qoa   x 

Qs x x x 

QT x   

sp x   

Tsh x  x 

Tss   x 

Tv   x 
 

As seen in Table 3.3, in many instances, only one model’s output is to be used. To 

generate the final database, the values of P(Mi|D), reported previously, are used to 

determine the relative weight of each model. However, in instances where only one model 

is to be used, the model’s output is given a weight of 1.0, and not the value of P(Mi|D). 

This is in contrast to situations in which more than one model’s outputs contribute to the 

final output, where the relative weighting is based on P(Mi|D).  
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Figure 3.10. Comparison of new VS30 database to benchmark data 

Figure 3.10 plots the new VS30 database at benchmark locations. As seen in Figure 

3.10, there is a good performance of the model to fit the 1:1 line when comparing the new 

database to the benchmark data. 

Figure 3.11 shows the mapped VS30 values in the new VS30 database. The inset in 

the figure shows the distribution of VS30 values within the database. The various resolutions 

of the data can be clearly observed in the figure. 
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Figure 3.11: VS30 Map of California based on new database with histogram of prediction data (inset) 

3.6 APPLICATION OF THE VS30 DATABASE 

VS30 is an important indicator of site response in many earthquake engineering 

applications and is used by ground-motion prediction equations and building codes. To 

demonstrate the application of the new VS30 database (shown in Figure 3.11), the 

recommended VS30 values are used to calculate site amplification factors. As an example, 

the long-period site amplification factor Fv is calculated following the recommendations 

given in FEMA (2015) (Table 11.4.2 in the referred document). For the spectral 
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acceleration parameter at a period of 1 second, denoted as S1, the 2014 USGS National 

Seismic Hazard Maps (Petersen et al. 2014) are used to obtain its values at the grid 

locations. The resulting map of site amplification factor Fv in California is shown in Figure 

3.12. 

 

 

Figure 3.12: Site amplification factor Fv map of California based on new VS30 database. 
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3.7 DISCUSSION 

Although the methodology presented in this paper is demonstrated for use in evaluating 

VS30 models and their predictive capacity, it can be used in any situation in which multiple 

geotechnical models must be compared and evaluated against one another. This procedure 

has been documented for such general application by Zhang et al. (2014). In addition, it is 

possible to modify the methodology to account for uncertainties in both benchmark 

database and outputs from evaluated models, provided that information on the uncertainties 

is available or can be estimated. While quantifying and evaluating uncertainties would 

enhance the validity of the results demonstrated above, that procedure is beyond the scope 

of this paper. 

The BIC-based methodology presented herein has also been verified independently 

using Laplace’s Approximation (Carlin and Louis, 2009), which is a highly accurate but 

much more computationally intensive method. Figure 3.12 shows a plot to demonstrate the 

convergence of ranking results between the BIC method and Laplace’s approximation. 

This figure is generated using random sampling from the benchmark database in California 

to create a new, temporary database for which the model ranking is performed. This 

procedure was repeated multiple times for each number of data points to generate the 

convergence curve shown. Although good agreement can be achieved as early as the 

threshold of 15 data points, it is recommended that users choose approximately 20 data 

points as their threshold for using BIC method whenever possible, and to use results 

obtained with fewer than 20 data points with caution.  
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Figure 3.13: Convergence of BIC and Laplace Approximation ranking results expressed as a difference 

With this convergent performance, the BIC-based Bayesian model ranking is a viable 

and computationally more efficient option for spatial ranking of VS30 models, especially 

when there are a sufficient number of benchmark data points. The VS30 ranking results of 

this study, using the BIC-based methodology, have been verified with Laplace’s 

approximation, and the two methods are found to have a very good agreement.  

In the analysis of VS30 models presented in previous sections, the VS30 models and 

benchmark database have also been refined based on common properties, such as surficial 

geologic units. In cases where there were fewer than 20 benchmark data points within a 

geologic unit, two options are considered: either assign the global ranking to those units 

with insufficient information or group all remaining units into one special category and 

assign a ranking to that new group which would apply to all included units. Both options 

suffer from essentially the same limitation, i.e., all individual units’ performance will not 

be explicitly considered in the ranking. However, when considering the ways in which bias 
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might manifest itself using each option, the primary consideration is that units grouped into 

a special category will be more likely to experience an extreme bias towards one unit’s 

performance, especially in situations where there is considerably more benchmark data for 

one unit than the others. Therefore, in this work, the first option is used, i.e., geologic units 

with insufficient benchmark data points were assigned the same ranking as that of the 

global model analysis. 

Finally, while this new methodology is effective at identifying the strongest model for 

use in regional-level analysis, it should be noted that this method does not claim to improve 

upon the limitations of individual VS30 models chosen for the analysis nor does it improve 

any model’s ability to predict site-specific conditions. Any site-specific design should be 

based on investigations performed at that site and is beyond the scope of this paper. 

3.8 CONCLUSIONS 

In this work, probabilistic methods are developed and implemented to assess the 

relative probability that a proxy-based VS30 model, among multiple candidate VS30 models, 

will provide the correct value for VS30 when evaluated against benchmark data. The 

methodology utilizes the maximum likelihood principle to evaluate how well a candidate 

VS30 model can predict the sample data and uses the Bayesian Information Criterion to 

quantify and rank the relative performance of multiple VS30 models. The methodology is 

computationally efficient and can be easily implemented using spreadsheet-based software 

that has basic probability tools. Analyses of this work show that, for California, the hybrid 

VS30 model has the best overall performance and is the superior model for the majority of 

the geologic units, when evaluated against the compiled benchmark database. With the 
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ranking results, a new synthetic VS30 database for California is developed, which contains 

a superior set of VS30 predictions when compared to any single VS30 model. The 

methodology developed in this work, though demonstrated only in evaluating and 

developing a VS30 database, can be used in any situation in which multiple models must be 

compared and evaluated against one another, which will be explored in future studies.  
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CHAPTER 4  

SITE CONDITION EVAULATION AND VS30 

RECOMMENDATIONS FOR SELECTED U.S. REGIONS 

In this chapter, the methodology presented in Chapter 3 is applied to two additional US 

regions: the Seattle and Puget Sound area and the Salt Lake City, Ogden, and Provo area. 

These two regions each had two models available for evaluation, the topography-based 

Wald and Allen (2007) model and the geology-topography hybrid model (Thompson et al., 

2014), both which were evaluated previously for California. Also similar to the previous 

chapter, the benchmark database was primarily constructed from the NGA-West2 and 

USGS VS30 measurement databases. However, 12 additional VS30 measurements were 

added to the Seattle database (Stuedlein, 2010). 

4.1 SEATTLE AND THE PUGET SOUND 

GEOLOGY INFORMATION 

In Chapter 3, the geologic information used to refine the model results for ranking was 

obtained from the Wills et al. (2015) model. However, because the Wills et al. model is 

constrained to the state of California, it is unusable in other parts of the country. The 

Washington State Department of Natural Resources (WA-DNR) and the Utah Geologic 

Survey have published geology information for their respective state online, and that 

information can be downloaded for use in GIS programs. The WA-DNR website can be 

accessed at http://www.dnr.wa.gov/programs-and-services/geology/geologic-maps. The 
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geologic resources from the Utah Geological Survey website can be accessed at 

http://geology.utah.gov/resources/data-databases/.  

MODELS 

Two models were identified as available for use in the Seattle and Puget Sound area. 

The Thompson et al. (2014) hybrid model and the Wald and Allen (2007) topography-

based model both provide global estimates of VS30 and are therefore suited for use here. 

DATA AND RANKING RESULTS 

The Seattle and Puget Sound area had a total of 87 benchmark data points available, 

but after adjusting for points classified as plotting on water, the final benchmark database 

was constrained to 82 benchmark data points. Using the geology data obtained from the 

Washington State Department of Natural Resources, the data were assigned a geologic unit 

classification. It should be noted, however, that the same rigor was not taken to group the 

data by simplified geologic unit as was done by Wills et al. (2015). This step was not 

considered necessary because there were sufficiently fewer geologic units in the study area 

as to avoid the need for grouping of units with like characteristics. However, this 

opportunity for enhanced classification of geologic units in the Seattle and the Puget Sound 

region represents an additional avenue for research and offers the potential for development 

of a new geology-based VS30 model. 

Of the 84 data points in the database, 65 data points, or approximately 77%, plotted 

within three geologic units, as summarized in Table 4.1. 
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Table 4.1: Summary of Geologic Units and Associated Benchmark Data in the Puget Sound Area 

Geologic 

Unit 
Count 

Qa 15 

Qg1o 16 

Qg1t 34 

Other 19 

Total 84 

 
The “Other” category in Table 4.1 contains the data of 4 additional geologic units, and 

represents 23% of the benchmark data. Because a significant portion of the benchmark data 

could not be evaluated in the respective geologic units, a model ranking was performed for 

each of the three appropriately represented units individually as well as for the entire region 

(i.e., all 84 data points), and the regional evaluation results were assigned to the “Other” 

category. 

Table 4.2 shows the ranking results for the Seattle and Puget Sound area. Note that the 

table actually refers to two separate runs of the model ranking, once to obtain the ranking 

results within the individual geologic units, and once more to perform a regional ranking. 

The regional ranking results indicate the relative performance of both models and can be 

used to guide decisions if geologic unit information is not present. In addition, the regional 

results indicate the model that should be used for any unit defined under the “Other” 

category, in this case the Thompson et al. (2014) hybrid model. 
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Table 4.2: Results of the Model Ranking for the Seattle and Puget Sound area 

 
Wald and Allen 

Topography 
Thompson et al. 

Hybrid 
Qa 0.06 0.94 

Qg1o 0.06 0.94 
Qg1t 0 1.0 

Regional 0 1.0 
 

It can be seen in the table that the hybrid model performed best overall, but that the 

topography-based model contributed in two of the three geologic units in the area, if only 

slightly. 

SEATTLE SITE CONDITIONS MAP 

Using the ranking results for the Seattle area, a new site conditions map was generated. 

As was done in Chapter 3, a variable resolution grid was used to place emphasis in areas 

that are projected to be of higher interest, such as highly developed urban areas (e.g. 

downtown Seattle). The site conditions map is shown in Figure 4.1.  
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Figure 4.1: Site conditions map of Seattle and the Puget Sound 

It can be seen in the figure that although most of the greater Seattle area has a relatively 

high VS30, there are some areas of weaker material that designers and stakeholders should 

be aware of when making decisions. Based on the ranking results in which the Thompson 

et al. 2014 model was dominant, however, there is little deviation from the Hybrid model, 

even when refining the rankings by geologic units. Therefore, the Bayesian method for 

model ranking provides little improvement over the hybrid model. However, as will be 

discussed later in this chapter, it is still useful as a model selection tool. Figure 4.2 is 

included to illustrate the amount of improvement that can be expected between using the 
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hybrid model predictions and the synthetic, updated VS30 database based on the model 

rankings. It is clear that there is only a small change in VS30 predictions, up to 

approximately 30 m/s at the largest. 

 

Figure 4.2: Illustration of the difference between the (dominant) hybrid model prediction and the updated 
site condition database 

4.2 SALT LAKE CITY, OGDEN, AND PROVO 

GEOLOGY INFORMATION 

Geology information was obtained from the Utah Geologic Survey. Upon inspection 

of the benchmark data and how it was classified by geology, it was found that a significant 

majority of the data (95%) fell into one of two categories of geologic unit, while only 12 

data points (5% of the database) described the other 6 units in the region. Therefore, the 

same strategy of grouping the geologic units with insufficient data for model ranking was 
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adopted. The breakdown of data dispersion and model ranking results can be seen in Table 

4.3 and Table 4.4, respectively. 

Table 4.3: Geologic Units and Number of Benchmark Data in the Salt Lake City Area 

Geologic 

Unit Count 

Qa 90 

Ql 133 

Other 12 

Total 235 

 

Table 4.4: Results of the Model Ranking for Salt Lake City, Ogden, and Provo 

 
Wald and Allen 

Topography 
Thompson et al. 

Hybrid 
Qa 0 1.0 
Ql 1.0 0 

Regional 1.0 0 
 
Using the ranking results, a site condition map for the Salt Lake City area was 

developed. The map and VRG of this region can be seen in Figure 4.3. 
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Figure 4.3: Site conditions map of the Salt Lake City area 

It is interesting to note that the topography-based model exhibits greater performance in 

this region in one of the two geologic units that were used for ranking, and is also the 

dominant model for the regional analysis. This result is surprising when considered in light 

of the results for other regions, especially California, in which the topography-based model 

was never the dominant model during the analysis. A possible explanation is that this result 
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is due to relatively low quality geology-based VS30 estimation information that is being 

used to inform the Hybrid model. Intuitively, it is logical that a poor characterization of 

geology-based VS30 estimates would negatively affect the predictive capacity of the hybrid 

model, which uses both geology and slope-based information. 

4.3 DISCUSSION 

The results obtained from the studies of the above two areas reveals some interesting 

properties regarding the Bayesian method for model ranking and its applicability to site 

condition characterization. First, it should be noted that additional areas were investigated 

as part of this research. However, only one publicly available model, the Wald and Allen 

(2007) topography model was identified for study. The regions investigated and the 

available models are shown in Table 4.5. 

Table 4.5: Regions investigated for potential model ranking analysis and the candidate models available 

 Candidate Models 
Region Wald and Allen 

Topography 
Wills et al. 
Geology 

Thompson et al. 
Hybrid 

California x x x 
Seattle and Puget 

Sound 
x  x 

Salt Lake City, 
Ogden, and Provo 

x  x 

Charleston, SC x   
New York, NY x   
New Madrid 
Seismic Zone 

x   

 

It becomes immediately apparent then, that the Bayesian method for model ranking is only 

applicable when multiple candidate models exist. In the case where only one model exists, 

that model must be chosen by potential users. 
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In other situations, even when only two model choices exist, the Bayesian model 

ranking framework provides useful information to users. First, at its most basic level, the 

framework provides users with a simple evaluation of the better model for site condition 

selection. This analysis can be seen in the regional ranking results for the Seattle and Salt 

Lake City areas. Although only two models were available for comparison, the regional 

ranking provides a concrete selection of the overall better method. 

As discussed in the Salt Lake City, Ogden, and Provo section, the topography-based 

model, which has shown poor relative performance in California and Seattle, was identified 

as the superior model. Because the hybrid model is newer and has previously shown 

superior performance, it is possible that potential VS30 model users would be inclined to 

select the Hybrid model. However, application of the Bayesian framework identified that 

doing so would result in relatively poor ranking results. 

4.4 SUMMARY 

The Bayesian model ranking framework developed in Chapter 3 was applied to two 

regions to develop new, synthetic VS30 site conditions databases from available models. In 

both regions, two models, the Wald and Allen (2007) topography-based model and the 

Thompson et al. (2014) hybrid model were chosen as the candidate models, and their 

performance was evaluated. It was found that the Thompson et al. (2014) model showed 

superior performance at the regional level in the Seattle and Puget Sound area, while the 

Wald and Allen (2007) model demonstrated superior performance in the Salt Lake City, 

Ogden, and Provo region. The model rankings were also refined for analysis within the 
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individual geologic units where sufficient benchmark information was present, and the 

synthetic VS30 site condition database was developed from those results. 

After consideration of the results of model rankings in two additional regions, it can be 

seen that there is still merit to using the Bayesian framework for VS30 model ranking if at 

least two candidate VS30 models are present. Although there is potentially only small 

benefit to generating a new, synthetic VS30 database, it is useful to have confirmation that 

a selected model is most appropriate among the candidate models. 
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CHAPTER 5  

QUANTIFYING UNCERTAINTIES IN BAYESIAN 

FRAMEWORK-BASED VS30 MODEL EVALUATIONS 

5.1 INTRODUCTION 

The devastation caused by earthquakes throughout human history has been a driving 

force behind the efforts that scientists and engineers have devoted to their study. An area 

of significant research in earthquake engineering has been the potential for amplification 

at a site (e.g., Gilbert, 1907). The time-averaged shear wave velocity to a depth of 30 meters 

(VS30) has been identified as a parameter that can be used to estimate the seismic site 

condition and can be used for estimation of site amplification (e.g., Borchdert, 1994, Boore 

et al., 1994) and in ground motion prediction equations (GMPEs) (e.g. Boore and Atkinson, 

2008). Although VS30 is not capable of fully characterizing site amplification, it is still 

widely used in building codes (e.g. ASCE 2010; FEMA, 2015), and therefore, an important 

need exists to develop accurate, reliable strategies to predict the parameter. 

While VS30 can easily be calculated if the appropriate geotechnical measurement data 

exists to 30 meters, it is often desirable to have large-scale estimates of VS30. Measurement 

for VS30 can be expensive, time consuming, or otherwise challenging, so methods to 

estimate VS30 without measurement are attractive alternatives. As VS30 has become more 

widely utilized, multiple methods for estimating its value based on proxy information have 

emerged. Proxy-based methods are popular due to the relative ease of acquiring the proxy 

information, such as topographic slope (Wald and Allen, 2007; Allen and Wald, 2009), 
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surficial geology (Wills et al., 2000; Wills and Clahan, 2006; Scasserra et al., 2009; Wills 

et al. 2015), terrain features (Yong et al. 2012), or hybrid methods that combine proxies 

(Thompson et al. 2014). However, users of proxy-based methods, from researchers to 

insurers, have no clear guidelines for which proxy-based method is best for their specific 

application, despite the existence of statistical methods that could be used to aid their 

decisions (e.g. Buckland et al, 1997; Schwarz, 1978; Zhang et al., 2014; Juang et al., 2015). 

In Chapter 3, Brownlow et al. (2017) presented a Bayesian framework for ranking and 

selection of VS30 models, and that methodology is adopted and enhanced in this paper. 

Specifically, this paper focuses on methods to account for uncertainties that exist in both 

the proxy-based models that are used to predict VS30 and the uncertainties in benchmark 

data used to evaluate candidate model performance. 

Using the Bayesian framework developed in Chapter 3, the new method updates the 

likelihood function to contain uncertainty terms for both model uncertainties and 

benchmark data uncertainties. An example calculation using the updated methodology is 

performed and compared to the results that do not account for uncertainties. A sensitivity 

study is also included to illustrate the effects of changing uncertainty values and how the 

ranking results can be influenced. 

5.2 METHODOLOGY 

To adequately quantify the uncertainties present in a VS30 model, the potential sources 

of uncertainties in the model must first be identified. Because the purpose of a model is to 

predict reality, it is important that the set of data used to represent reality is of sufficient 

quality to be of use. However, even high quality benchmark databases will contain 
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observational errors that affect their ability to effectively calibrate a model. Uncertainties 

can also arise from a model’s inability to fully account for the complexity of a geotechnical 

system, a limitation referred to as model uncertainties.  

In this paper, the assumed relationship between a predictive model and reality is 

expressed in Equation (5.1) (e.g., Ronold and Bjerager, 1992). 

    30 30S Sd p
V N V    (5.1) 

where (VS30)d is observed VS30 data, such as that in a benchmark database for model 

calibration purposes; (VS30)p is the predicted VS30 value from a model, and N is a model 

bias factor that relates the two values. If each term in Equation (5.1) is assumed to have 

some uncertainty, then those terms can be characterized as random variables. Furthermore, 

because none of the terms can have a zero value, it can also be assumed that each term in 

Equation (5.1) is lognormally distributed. For ease of communication throughout the text, 

the following properties of the lognormal distribution are presented (e.g. Haldar and 

Mahadevan 2000): 
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where μ and σ are the mean and standard deviation and λ and ξ are the parameters that 

describe the lognormal distribution. 



64 

 

VS30 MODEL LIKELIHOOD FUNCTION 

Often, a decision maker such as a design engineer is required to make decisions 

regarding model selection with limited information. In the case of VS30 models, the 

Brownlow et al. (2017) study in Chapter 3 proposed a Bayesian method for model ranking 

to assist with model selection. The framework of that study is used herein, though 

modifications are suggested in this text to better accommodate uncertainty calculations. 

The Bayesian method for model ranking is based on identifying the likelihood function 

for a distribution and maximizing it for the parameters of the distribution. Considering a 

general version of Equation (5.1) in which all three terms are random variables, a mean 

and standard deviation and therefore the parameters of a lognormal distribution exist for 

each term—λd and ξd for (VS30)d, λN and ξN for N, and λp and ξp for (VS30)p. Maximum 

likelihood estimation (MLE) is used to maximize the likelihood function for each VS30 

model under consideration. 

From Equation (5.1), Equations (5.4) and (5.5) can be written. 

    30 30ln ln lnS Sd p
V N V    (5.4) 

    30 300 ln ln lnS Sp d
N V V     (5.5) 

Let y = ln N + ln (VS30)p – ln (VS30)d. The variable y is normally distributed with a mean of 

N p d     and a standard deviation of  2 2 2
N p d    . The above equation indicates 

that the chance to observe (VS30)d is equal to the probability to observe a value of zero when 

the random variable is y, i.e., 
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where  is the probability density function (PDF) of the standard normal random variable 

(e.g., Ang and Tang 2007). 

Assuming there are n observations about (VS30)d and that these observations are 

statistically independent, the chance to observe these n observations are as follows  
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where p,i, d,i, p,i, and d,i are the values of p, d, p, and d for the ith observation, and 

VS30, di is the ith observation.  

Equation (5.7) is indeed the likelihood function of N and N. To maximize the 

likelihood function, the derivative of the likelihood function is used to identify maximum 

and minimum values. The natural logarithm can be used to simplify the likelihood function, 

producing the so-called log-likelihood function: 
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Because the natural logarithm is monotonically increasing, maximizing the log-

likelihood function is equivalent to maximizing the likelihood function. It is common 

practice to use a log-likelihood function to reduce the computational complexity of the 
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maximization. In this application, the terms  and  are the parameters of the likelihood 

function to be maximized. 

RANKING RELATIVE PERFORMANCE OF VS30 MODELS 

The methodology presented in Chapter 3 can be used to evaluate competing VS30 

models and determine which model demonstrates the best performance using a Bayesian 

method for model ranking. However, instead of computing the Bayesian Information 

Criterion (BIC) to determine P(Mi|D), the analysis in this paper is based on results obtained 

using Laplace’s Approximation (Zhang et al. 2014) to compute a value termed the Laplace 

Information Criterion (LIC). The LIC and BIC can both be used to compute P(Mi|D), which 

indicates the probability that model i is able to correctly predict the benchmark data D. The 

deviation from the Bayesian method for model evaluation presented in Chapter 3 is due to 

the higher degree of accuracy achieved using the LIC. 

To identify a superior model, the models’ predictions are compared to benchmark data. 

In Chapter 3, Brownlow et al. (2017) propose a Bayesian method for evaluating each 

model’s performance by evaluating their ability to accurately predict the benchmark data 

in a set of models M1, M2, …, Mr: 
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where, Mi is one of the models being evaluated, D is the benchmark data, Δi(BIC) is the 

difference between model Mi’s BIC value and the minimum BIC of the set of models being 

evaluated, P(Mi|D) is the probability that model Mi’s prediction is the true value of VS30 

given the benchmark data, ln[l(θ*|Mi,D)] is the value of the optimized log-likelihood 

function at θ*, θ*
 is the optimized value of the parameter(s) evaluated using maximum 

likelihood estimation, k is the number of parameters in the likelihood function (e.g. k = 2 

for a lognormal distribution), and n is the number of data points in D. 

The LIC, used instead of the BIC, can be calculated using the following equation: 
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where βi
* is the point where the likelihood function is maximized, ri is the dimension of 

βi
*, and A(βi

*|D) is the Hessian matrix of the logarithm of the likelihood function evaluated 

at βi
*. The variables βi

* and ri in Equation (5.11) are equivalent to the variables θ* and k, 

respectively, in Equation (5.10). It should be noted that the natural log of Equation (5.11) 

should be used if the log-likelihood function is used to evaluate βi
*. 

Therefore, P(Mi|D) can be calculated as follows: 
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The value of P(Mi | D), obtained for an individual model, denotes the probability, 

relative to all models in the study, that the model in question, Mi, represents the true value 
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of VS30. Therefore, a ranking of each models’ predictive performance can be established, 

and the best model can be chosen. 

DOMINANT AND NON-DOMINANT MODEL PERFORMANCE 

As denoted by Equation (5.12), the final result of this methodology is a probability 

value that indicates each model’s relative performance, allowing the user to identify the 

best predictor of the benchmark data. In some cases, as will be shown later in this report, 

one model dominates the others. In a situation where one model shows superior 

performance, the result indicates that the dominant model’s predictions are always the best 

choice for areas that are well represented by the benchmark data. However, in some cases, 

more than one model can demonstrate sufficient performance to warrant consideration. A 

model is considered non-dominated if P(Mi | D) is at least 1/20th of the next largest model’s 

probability.  In the case that there is not a single dominant model, Equation (5.13), based 

on total probability, can be used to resolve each model’s predictions into a single value for 

end use. 
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In Equation (5.13), p*(VS30 | D) is the final predicted value of VS30 to be used by the 

investigator, p*(VS30,k | Mk,D) is the predicted VS30 by model Mk, P(Mk | D) is the probability 

that model Mk is correct, as evaluated in Equation (5.12), and t is the number of non-

dominated models to be included in the final prediction. 
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INCOMPLETE UNCERTAINTY INFORMATION 

In many cases, it is unlikely that uncertainty information will be available for both the 

database and each model included in the study. Depending on the nature of the available 

data, Equation (5.8) can be reduced to only account for those uncertainties that can be 

quantified. Because measurement error tends to be well understood, it is common for 

benchmark data to either possess uncertainty distribution information or to easily establish 

uncertainty distribution values based on the information that is known about how the 

benchmark data were developed. Model prediction data, by contrast, is not nearly as easily 

evaluated for uncertainties. Each model will be developed using unique methods, and those 

methods will include assumptions, each of which possess their own uncertainty, and which 

will likely need to be evaluated individually. In the event that uncertainty information 

cannot be determined for the model predictions, the following equation applies. 
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Similarly, in the event that the model uncertainty is known and the benchmark data 

uncertainty is unknown, the log-likelihood function can be expressed as Equation (5.15). 
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In the event that neither the model prediction uncertainty nor the benchmark data 

uncertainty can be quantified, Equation (5.16) can be used as the log-likelihood function. 
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 It is important to note that, if uncertainty is to be considered in the analysis (i.e., 

through use of Equations (5.8), (5.14), or (5.15)) each uncertainty term must be evaluated 

in its entirety. It is critical that, if incomplete uncertainty information exists for a particular 

uncertainty term, the uncertainty is not considered in the analysis. The reason for this is the 

nature by which the uncertainty is considered, and is best illustrated with a simple 

theoretical example. 

Consider a situation in which only the uncertainty in the model predictions is to be used 

to evaluate three VS30 models, but for which only one model, A, has uncertainty 

information available, while the other two models, B and C, have no uncertainty 

information available. Because the uncertainties in the model predictions will weaken their 

performance, it is very unlikely that model A will be able to show competitive performance 

relative to models B and C, regardless of its actual performance. It is likely that model A 

could have shown dominant performance in a comparison in which no uncertainty was 

considered, but that performance would be lost if it was evaluated with uncertainties 

against models where no uncertainty information was included. 

The same tenet holds for the benchmark data. Unless all benchmark data can have 

uncertainty information included, it should not be included in the analysis. 
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5.3 APPLICATION OF METHODOLOGY 

To illustrate the methodology presented within this paper, three publicly available VS30 

models are evaluated and compared. Furthermore, a database of high quality VS30 data, 

complete with uncertainty information, was compiled to assist with the comparison. 

VS30 MODELS 

Current VS30 prediction techniques utilize topography, geology, or a combination to 

inform their predictions. These techniques are commonly referred to as proxy-based 

methods. Proxy-based methods are useful for spatial prediction of VS30 because they utilize 

information that is more readily available than subsurface exploration data, which is 

frequently cost-prohibitively expensive to obtain for regional studies. Two sources of 

information that can be used for VS30 proxy-based estimates are topography and geology. 

Topographic information is available for the entire globe thanks to the Shuttle Topography 

Radar Mission (STRM) (Farr and Kobrick, 2000; Farr et al., 2007), which provided digital 

elevation data for the globe at resolutions up to 1 arcsecond (approximately 30 meters) per 

measurement. Some geologic information is available through state-specific geologic 

societies, the United States Geologic Survey (USGS), or various state-sponsored 

departments of natural resources. However, detailed geologic information is not always 

available, or is not available digitally, which can be challenging for researchers working 

with geology-based proxies. 

The models used in this analysis are the same as those included in Brownlow et al. 

(2017). As mentioned in Brownlow et al. (2017), appropriate VS30 models would need to 

possess a few baseline criteria to be included in the analysis. Specifically, appropriate VS30 
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models would be able to provide a predicted VS30 value with only location as an end-user 

input with sufficient resolution. No specific resolution was determined as a decision-

making criterion, but it was desirable for predictions to be densely-packed enough to be 

reasonably representative of any benchmark data locations. The study was limited to the 

state of California due to the relative abundance of data available for benchmarking 

applications and the number of publicly available VS30 models (three, total) available for 

comparison. Two of the models, developed by Wald and Allen (2007) and Thompson et 

al. (2014), are available at 30 arcsecond resolution. The third, Wills et al. (2015), gives 

predictions at any location. 

TOPOGRAPHY-BASED MODEL 

A topography-based VS30 model was developed to take advantage of the STRM data 

collected in 2000 by the space shuttle Endeavor (Wald and Allen 2007).  The model uses 

a correlation between the slope measurements and observed VS30 values to create global 

predictions of VS30. The model was developed for a 30 arcsecond resolution, which is 

detailed enough to allow for good characterization of small scale geologic features that are 

important for proper site characterization. The predictions are generated at the same 30 

arcsecond resolution for which the topography was evaluated. The data could be obtained 

from the USGS global VS30 website for either a predefined area or for a user-defined area 

with ease. However, between the time of this study and the time of writing, the tool for 

obtaining these model outputs has been removed from the USGS website. 

One of the strengths of the topography-based model is its ability to spatially interpret 

specific topography characteristics and give an appropriate characterization. The result of 
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that characteristic is a map of predictions in a 30 arcsecond grid with individual values at 

each prediction location. However, a limitation of this model is that its maximum predicted 

VS30 is 760 m/s, which is lower than the VS30 observed in predominantly hard rock 

subsurface conditions. Therefore, model outputs that are 760 m/s should be interpreted as 

being at least 760 m/s. Figure 5.1 is a graphical representation of the Wald and Allen (2007) 

model with scale included. However, the scale included in the next few figures uses a 

consistent color gradient, and therefore the maximum and minimum values on the scale are 

not necessarily indicative of the maximum and minimum VS30 values displayed in a given 

figure. 
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Figure 5.1: Visual representation of the Wald and Allen (2007) topography-based VS30 model. Velocity 

shown in m/s. Note that the maximum value in the scale does not necessarily correspond to the maximum 
VS30 displayed in the figure. 

SURFICIAL GEOLOGY-BASED MODEL 

Geology-based models utilize the extensive degree of geologic investigation and 

characterization that has been performed across the country. Geologic maps show soil and 

rock classification information, including physical properties, and tend to be widely 

available. Wills et al. (2015) have refined a geology-based model that implements a 

correlation between simplified geologic units and VS30. Park and Elrick (1998) and Wills 

et al. (2000) initially performed studies correlating geology to VS30, the former being 

confined to the Los Angeles area and the latter applying to the entirety of California. Wills 
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et al. (2000) grouped geologic units of similar age and physical properties for the sake of 

relating the relatively scarce number of VS30 values in the state to each geologic unit, 

though that was not always possible, and the final result was a map of California that 

classified areas by their NEHRP Vs category or intermediate category. Wills and Clahan 

(2006) updated the model by regrouping misclassified units, increasing the amount of VS30 

measurements used for classification, and reporting VS30 values for each simplified 

geologic unit in the map. Wills and Gutierrez (2011) identified a slope-based correlation 

to subdivide young alluvium units to improve VS30 predictions in those areas. The Wills et 

al. (2015) work applies the Wills and Gutierrez (2011) slope-based correlation to the VS30 

map of California and utilizes a more detailed set of geologic maps to improve the accuracy 

of the surficial geology classifications. 

The Wills et al. (2015) model was developed based on the notion that surficial geology 

provides an indication of the VS30 that can be expected in a given area. Therefore, the model 

is built with geology as its primary means of predicting VS30. However, geologic maps, 

even at their most detailed, are still incapable of displaying the minute variations in 

subsurface conditions. Furthermore, although the volume of available VS30 measurement 

data has improved in recent years, there is still a significant lack of data, so geologic units 

need to be combined to effectively use the available information. Finally, an averaged VS30 

value must be recommended for each geologic unit in this method. As a result of both the 

relatively coarse characterization of local effects and the combination of geologic units, 

when VS30 values are assigned to each map unit, the resulting map contains large areas that 

are all rated to have the same VS30 value. This is a weakness of the model, since there are 
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many local effects that can also control VS30 (and site response). Figure 5.2 provides a 

visual representation of the VS30 values that are predicted by the model. As mentioned 

previously, because a consistent scale was shared between each of Figure 5.1 through 

Figure 5.3, the maximum and minimum values are not necessarily representative of the 

maximum and minimum values predicted by the model. 

 
Figure 5.2: Visual representation of the Wills et al. (2015) geology-based VS30 model. Velocity in m/s. 

HYBRID MODEL 

Wills and Gutierrez (2011) and Thompson et al. (2014) presented a method for 

combining predictions from both geology-based and topography-based VS30 predictions. 
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The model attempts to capitalize on the strength of each individual model by utilizing the 

local information available at high resolution from the topography-based method and 

combining it with the strong predictability available from geology-based methods. 

Furthermore, the method implements the geostatistical method known as regression 

kriging (RK) to refine the model locally for known VS30 values. 

The Thompson et al. (2014) model uses the Wills and Clahan (2006) geology-based 

model as a baseline for VS30 estimates, and establishes a scaling function that utilizes the 

Wald and Allen (2007) for predicting local deviations in VS30 based on topography. The 

code to generate a map containing the hybrid model predictions is available as a Linux-

based repository on the file hosting site Github (github.com/usgs/earthquake-global_vS30). 

Figure 5.3 illustrates the VS30 estimates from the Thompson et al. (2014) model for 

California. 
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Figure 5.3: Visual representation of the Thompson et al. (2014) hybrid VS30 model. Velocity in m/s. 

VS30 MODEL OUTPUTS 

For comparison of the spatial VS30 prediction capabilities of each model to be possible, 

the VS30 models needed to provide some form of location data for each VS30 prediction 

location. The Wald and Allen (2007) and Thompson et al. (2014) model data were obtained 

in raster file format with predictions in a 30 arcsecond grid. The Wills et al. (2015) model 

is available as an electronic supplement to their study, and is available as one of two file 

types that can be imported into ArcGIS for analysis. 
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ArcMap, a program that is part of the ArcGIS software suite by ESRI, is a geographic 

information system (GIS) program that allows users to easily view and manipulate spatial 

data. The program was utilized to convert the source files from each model into usable 

formats for comparison when necessary. Additionally, ArcMap contains functionality that 

allows users to easily combine data based on spatial position, referred to as a “spatial join” 

operation in the program, and that tool was used to relate the models to the benchmark 

data, which is discussed below. 

5.4 BENCHMARK DATABASE 

In order to properly evaluate each model’s capacity for accurate prediction of site 

conditions, a high quality database of VS30 data was compiled for this study. In addition to 

providing location information and VS30 information, the source databases also needed to 

either provide uncertainty information or give enough additional information to allow for 

estimation of uncertainties associated with each VS30 value provided. The two databases 

used by this study are the NGA-West2 ground motion database (Ancheta et al., 2013) and 

the USGS VS30 measurement database (Yong et al., 2015). 

The NGA-West2 database was compiled as part of the Next Generation Attenuation 

Project, and was developed to create a consistent, state of the art source of ground motion 

data for use in developing ground motion prediction equations (GMPE’s). The NGA-

West2 database is the database used in the second and most recent iteration of the NGA 

project. Although the database’s intended purpose is not to provide VS30 data, significant 

care was put into accurate characterization of the VS30 data. The VS30 data provided by the 

database is a combination of measured VS30, extrapolated VS30 when measurements do not 
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extend to 30 meters, and proxy-based estimates when the other data are not available. 

Furthermore, the database contains a value for the natural logarithm of the standard 

deviation for each VS30 measurement-based value or estimate provided by the database. 

Ancheta et al. (2013) describe the entirety of the data available in the database. 

The USGS VS30 database consists of various sources of measurement data used to 

provide VS30 values for locations across the United States. The database’s characteristics 

are summarized in Yong et al. (2015). The database is comprised of data that were obtained 

using multiple measurement techniques. Table 5.1 summarizes (and simplifies) the data 

from Yong et al. (2015) and shows the various methods used to obtain the data. Because 

the database does not include uncertainty information, that information was assumed based 

on the measurement technique(s) used. The specifics of the process used to estimate the 

uncertainty of each method in Table 5.1 is provided with a list of assumed values is 

presented in the Benchmark Database Uncertainty section of this paper. 

Table 5.1: Summary of data available from Yong et al. (2015) 

Measurement Technique 
Number of 

Test Sites 

AM 13 
Downhole 318 

Downhole-Crosshole 1 
iMASW 31 
MASW 153 
ReMi 731 
SASW 307 
SCPT 984 

Seismic Refraction 61 
Seismic Refraction/Reflection 28 

CXW 27 
Multi-method 99 

Total 2753 
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It can be seen in Table 5.1 that the majority of measurements originate from only a few 

measurement techniques. It is notable that nearly half of the database consists of invasive 

methods, with the majority of those measurements originating from SCPT soundings. The 

other half of the database consists of measurements from various noninvasive techniques, 

though 99 of the total reported VS30 values in the database are reported as originating from 

multiple methods. It should be noted that the information in Table 5.1 is condensed, and a 

single technique listed in the table may represent multiple methods of performing the same 

general technique. 

Figure 5.4 shows the spatial dispersion of data in the combined database for this report. 

It can clearly be seen that the majority of benchmark data are clustered around the San 

Francisco Bay area to the north and Los Angeles and Orange County area to the south. 

Therefore, it is reasonable to assume that the results reported later in this report will be 

most applicable for those regions. 
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Figure 5.4: Distribution of benchmark data in California 

BENCHMARK DATABASE UNCERTAINTY 

To implement the new methodology, uncertainty information for the benchmark 

database is needed. In a perfect theoretical environment, there would be no uncertainty in 

the benchmark data, and the benchmark would be a perfect representation of reality. 

However, much of geotechnical engineering involves uncertainty, including the evaluation 

of geotechnical parameters. Geotechnical subsurface exploration techniques can be divided 

into two general categories: invasive and noninvasive techniques. Invasive techniques 
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involve penetration of the ground surface for the purpose of measuring the soil properties. 

They are considered to be a good source of data because the soil properties are being 

measured as directly as possible, which leaves less room for misrepresentation of the 

measurement data due to nearby subsurface features (Moss, 2008). A limitation of invasive 

methods is that they disturb the soil that they intend to measure, potentially altering the 

soil’s properties in the process. Additionally, invasive techniques tend to be relatively 

expensive. Noninvasive techniques avoid the problem of disturbing the soil structure, and 

tend to be less expensive than invasive methods due to lower equipment costs. Invasive 

methods involve creating a known vibratory ground motion, referred to as an active source, 

and interpreting how that source varies between the input location and the receiver location. 

Noninvasive techniques, on the other hand, can use either an active source or passive 

sources (e.g. cars on a highway or waves on a beach) and a series of receivers to measure 

the way that seismic energy propagates beneath the surface. 

The invasive tests included in the Yong et al. (2015) database are the downhole, 

suspension logging, crosshole, and seismic cone penetration test (SCPT) methods. The 

noninvasive methods include the microtremor array method (AM), controlled-source 

measurement of surface wave dispersion (CXW), horizontal-to-vertical-spectral-ratio 

(HVSR), refraction mictrotremor (ReMi), spectral analysis of surface waves (SASW), 

Multi-channel analysis of surface waves (MASW), interferometric multi-channel analysis 

of surface waves (iMASW), seismic reflection and refraction, and spatial autocorrelation 

(SPAC). 
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Moss (2008) studied measurement uncertainty in VS30 techniques. Although not all of 

the techniques listed in Table 5.1 were addressed in the Moss (2008) report, it serves as a 

good baseline for establishing additional uncertainty information for the other methods. 

Moss (2008) found that uncertainty in VS30 measurements tends to increase with increasing 

velocity, and therefore uses coefficient of variation (COV), defined as the standard 

deviation divided by the mean, to report measurement uncertainty for various techniques. 

For SASW and MASW, a COV of 5-6% was reported, and invasive techniques were 

reported to have a COV of 1-3% with an associated bias correlation to account for soil 

disturbance. Although other noninvasive techniques were investigated as part of the Moss 

(2008) study, insufficient data were available for drawing meaningful conclusions. 

However, the baseline COV of 5-6% for SASW and MASW as noninvasive techniques is 

useful for calibrating expectations for the expected COV of other techniques. Because of 

the results of the Moss (2008) study, downhole measurements in the database were 

assigned a COV of 1% and SCPT measurements were assigned a COV of 2%. A value of 

5.5% was assigned to the COV for SASW and MASW techniques. 

Pancha et al. (2008) studied the ReMi technique, including its uncertainty. They found 

that the maximum variation in VS30 was slightly over 9%, and a COV of approximately 5% 

can be obtained from their data. The researchers theorized that some variations in their 

results could be explained by variations in the passive source. 

Although not a study on uncertainty, the viability of the seismic reflection and 

refraction methods were investigated by Odum et al. (2013). They compared seismic 

reflection and refraction VS30 measurements to those obtained using ReMi and found an 
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average difference of 12% between the two methods, though the differences were generally 

evenly split between being higher and lower than one-another at each measurement 

location. A COV of 6% was assumed for this method. 

The iMASW method was evaluated by O’Connell and Turner (2011), and was 

compared to downhole measurements. It was found to have very good agreement to 

downhole predictions to within 1% accuracy. A COV of 3% was adopted for this technique 

due to its impressively similar performance to an invasive technique. 

Liu et al. (2000) performed a comparison between the AM method and borehole 

measurements, finding that the AM VS30 measurements were within 11% of the measured 

borehole data. The assumed COV for AM VS30 measurements was chosen to be 5.5%. 

In the case of the CXW method, a COV of 5.5% was a sufficient assumption. This 

assumption was made by observing the initial study data by Poran et al. (1996) and a lack 

of additional literature addressing uncertainties in the CXW method. 

When the database lists more than one method that was used to generate VS30 data, it 

was decided that a COV of 5.5% was a sufficient assumption. This assumption was based 

on the lack of information regarding how the data from multiple methods was resolved into 

a single VS30 value in the Yong et al. (2015) database. A relatively small number of data 

points (127 in a combined database of 3000+ individual values) were affected by this 

assumption, so its veracity is relatively minimized. Furthermore, this assumption is almost 

certainly conservative for the 100 multi-method measurements, since multimethod analysis 

is believed to improve confidence in measured VS30 (Odum et al., 2013). 
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5.5 VS30 MODEL RANKING RESULTS FOR CALIFORNIA 

To illustrate the methodology described in this paper, the state of California is used as 

an example case. The results from this paper will be compared to those produced by 

Brownlow et al. (2017), as it is an extension of the methodology in that paper. Comparison 

with the results from Brownlow et al. (2017) will help highlight the importance of explicit 

consideration of uncertainties when performing a model comparison. 

DATA PREPARATION 

As mentioned previously, ArcMap was used to handle the spatial prediction data from 

each model. Using the spatial join tool in ArcMap, each benchmark data point had the 

closest VS30 prediction from each of the 3 candidate models joined to it. Therefore, the 

finalized spatial view of the data is identical to that of the benchmark database itself. This 

procedure was selected as an acceptable way to relate model data to the benchmark 

database due to the nature of the model data and how it is presented. The Wald and Allen 

(2007) and the Thompson et al. (2014) models both provide VS30 estimates as an image 

consisting of boxes (similar to pixels but with 30 arcsecond center-to-center spacing) that 

contain stored VS30 and location information. Therefore, it is reasonable to interpret the 

model as assigning the VS30 value from each box to the entire area covered by that box. 

Although the ArcMap program needs to convert the image file to point data before the 

spatial join tool can be used, picking a model estimate for each benchmark data point 

preserves the logic of assigning VS30 to the corresponding area of interest for both models. 

Figure 5.5 shows the model as viewed in ArcMap for illustration of this point. In the figure, 

both the point data estimate and the area which each point data represents are shown. The 
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point data markers are not colored to show VS30 so that they will remain easily 

distinguishable in the figure. By contrast the Wills et al. (2015) model provides its VS30 

predictions in the form of a series of polygons that define geologic units and their 

boundaries. The benchmark data were assigned the VS30 value of whichever Wills et al. 

(2015) polygon it resided within. 

 

Figure 5.5: San Francisco Bay area with the Thompson et al. (2014) model resolution rendered in ArcMap. 

Each colored box and point of data in the figure represents one VS30 prediction. 

To further improve the amount of information obtained from the analysis, the models 

were ranked based on their performance within each simplified geologic unit identified in 

Wills et al. (2015). The simplified geologic unit classification for each benchmark database 

value was assigned during the spatial join operation of the Wills et al. (2015) model. 
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The benchmark database uncertainty was discussed in a previous section. It was used 

in addition to the reported measurements to calculate the corresponding values of  and  

using Equations (5.2) and (5.3), respectively. Because model uncertainty was not able to 

be easily characterized, it was assumed that each model had the same uncertainty and that 

uncertainties did not fluctuate with each prediction for the sake of avoiding confounding 

results. Thus, for each model, the COV was set to 10%, though any consistent COV value 

would be sufficient to avoid biased results. The potential impact of model uncertainty will 

be discussed in a later section as well. It should be noted that a correlation equation does 

exist to establish uncertainty estimates for geology-based VS30 predictions (Moss, 2008). 

However, because this was the only model uncertainty available, it was not included due 

to reason discussed earlier in this text. 

MODEL RANKING WITH UNCERTAINTY CONSIDERATIONS 

The models were evaluated using a MATLAB script that handles the raw data (in Excel 

file format) and performs the analysis. The script uses the “fminunc” command to evaluate 

the objective function (Equation (5.8) in this case) and then calculates the LIC. Table 5.2 

displays the ranking results obtained from this study as well as the results from the 

Brownlow et al. (2017) study (which does not consider uncertainty). 

Table 5.2: Comparison of results including uncertainty to results obtained in Brownlow et al. (2017) 

 
Wald and Allen 

Topography 

Wills et al. 

Geology 

Thompson et al. 

Hybrid 
Number of 
benchmark 
data points  

Brownlow 
et al. 

This 
Study 

Brownlow 
et al. 

This 
Study 

Brownlow 
et al. 

This 
Study 

af/Qi 0 0 0.75 1.00 0.25 0 125 
Crystalline 0 0 0 0 1.00 1.00 341 

KJf 0 0 1.00 1.00 0 0 124 
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Kss 0 0 0.89 0 0.11 1.00 39 
Qal1 0 0 0 0 1.00 1.00 364 
Qal2 0 0 0 0 1.00 1.00 745 
Qal3 0 0 0 0 1.00 1.00 563 
Qi 0 0 0 0 1.00 1.00 19 

Qoa 0 0 0 0 1.00 1.00 501 
Qs 0.06 0.33 0.06 0.16 0.88 0.51 33 
QT 0 0 1.00 0.99 0 0.01 115 
sp 0 0 0.99 0.86 0.01 0.14 26 

Tsh 0 0 0.73 0.32 0.27 0.68 159 
Tss 0 0 0 0 1.00 1.00 169 
Tv 0 0 0 0.01 1.00 0.99 74 

 

Comparison of the results immediately shows the impact of considering the 

uncertainties in the analysis. The af/Qi, Kss, Qs, sp, and Tsh simplified geologic units 

showed notable changes in relative model performance once uncertainty was considered. 

The significance of this result lies in the potential for application, in which model selection 

must be considered not only on the basis of the most advanced model, but also on the 

validity of the data that are used to verify its predictions. It can also be observed that in 

most geologic units, the Thompson et al. (2014) hybrid model outperforms the other 

models, while the Wald and Allen (2007) model only performs well enough to contribute 

to the estimation of one geologic unit, Qs. 

SENSITIVITY OF RANKING RESULTS TO MODEL UNCERTAINTY 

Although specific uncertainties could not be characterized for each model, it is still 

possible to test the impact of uncertainty assumptions on the ranking results. To illustrate 

the sensitivity of the ranking results to model uncertainty, the model ranking was 

performed multiple times with a varying COV for the Thompson et al. (2014) model. 

Because the rankings obtained from the Bayesian model ranking method are relative, the 
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sensitivity illustration is much more meaningful when all but one COV are fixed. For this 

analysis, the COV of the Wald and Allen (2007) and Wills et al. (2015) models was fixed 

at 10%, and the COV of the Thompson et al. (2014) model (COVH) was varied from 5% 

to 60% in 5% increments, where the H subscript denotes the hybrid model. Three geologic 

units, KJf, Qal1, and Qs were selected for inclusion in this analysis for their illustrative 

capacity. KJf is a unit in which the Thompson et al. (2014) model did not perform well, 

Qal1 is a unit in which the Thompson et al. (2014) model demonstrated superior 

performance, and Qs is the only unit in which all three models contribute to the final 

predictions of VS30. Figure 5.6 shows the results of the three geologic units chosen to 

represent the sensitivity study. Graphical results for the entire sensitivity study are available 

in the Appendix at the end of this dissertation. 
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As shown in Figure 5.6, the KJf performance of the Thompson et al. (2014) model was 

generally unaffected by varying COVH. Not apparent in the figure are minute changes in 

the probability of P(Mi|D) that manifested as COVH was adjusted, reaching a maximum of 

1% when COVH = 30%. The performance of the hybrid model in Qal1 units followed an 

intuitive, if abrupt, trend. The value of P(Mi|D) dropped from 100% to 0% between COVH 

= 15% and 20% for the Thompson et al. (2014) model, while the Wills et al. (2015) model 

showed the reverse trend and the Wald and Allen (2007) model did not contribute. In the 

Qs geologic unit, a different trend was observed. As COVH, and, therefore, the uncertainty 
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units 
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in the model predictions increased, the relative performance of the Thompson et al. (2014) 

model similarly increased until COVH exceeded 35%, after which its performance 

deteriorated rapidly. This is a counterintuitive result because of the tendency to expect 

performance to decrease as standard deviation, used here to represent uncertainty, 

increases. However, in this case, it is likely that the increased standard deviation of the 

model uncertainties helps to explain some variation in the scatter of the data between 

benchmark and model prediction values. In this case, the method interprets the scatter of 

data, which is now partially understood as a part of the model uncertainty, as less impactful 

than a purely incorrect prediction by the model that falls outside of its distribution. In other 

words, to a certain extent, increasing the standard deviation decreases the performance 

ranking penalty associated with wrong guesses. This phenomenon was also observed by 

Zhang et al. (2009) and Zhang et al. (2012) in their work regarding model uncertainty. 

5.6 DISCUSSION AND CONCLUSIONS 

The results of this study highlight the importance of explicit consideration of 

uncertainty when performing model rankings. The methodology presented in this paper 

will not only allow users to evaluate competing VS30 models and select the model best 

suited for their application, but they can do so with confidence that their results account for 

uncertainty information that would otherwise be a potential cause for concern or reason to 

mistrust their results. Although the results presented herein are impactful, there are also 

many ways in which the analysis could be improved. 

The benchmark database was compiled from publicly available sources, and there is 

definite overlap between the benchmark database and the databases used to verify each 
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model. This overlap can cause a candidate model to appear to demonstrate better 

performance than it would otherwise because it has been partially calibrated to the 

benchmark data. The uncertainty quantification for the benchmark data were performed 

with a considerable degree of judgement exercised in the interpretation and uncertainty 

selection. Therefore, one clear opportunity for improvement would be to construct a high 

quality database of independent measurements and evaluate the model performance against 

that data. Furthermore, additional studies targeting the uncertainty associated with VS30 

measurement techniques would significantly improve the veracity of the results. 

As stated earlier in the text, the model uncertainty was not quantified individually, and 

an assumption of uniform COV for each model was used to avoid biased results. The results 

from this report could be enhanced by quantification of the uncertainty associated with 

each model’s predictions. Moss (2008) provides a method for determining the uncertainty 

for geology-based methods, and a similar relationship for topography and hybrid models 

would allow for further evaluation of relative performance. 

This text can be considered a follow-up to the Brownlow et al. (2017) study, and is 

intended to illustrate an enhancement to the methodology presented therein. It is important 

for users to understand the limitations of Bayesian model ranking to avoid over-reliance 

on the results. As clearly demonstrated in this paper, although the results of Brownlow et 

al. (2017) are generally good, the analysis presented in this paper illustrates that the results 

are still imperfect. However, due to the ease of use of the Brownlow et al. (2017) method 

and its viability for implementation in spreadsheet software, it remains an attractive option 

for engineers and decision makers who rely on proxy-based VS30 models. 
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CHAPTER 6  

PROBABILISTIC LIQUEFACTION HAZARD 

QUANTIFICATION, WITH HAZARD INFORMATION 

INFORMED BY THE UPDATED VS30 SITE CONDITION 

DATABASE 

6.1 INTRODUCTION 

Liquefaction is a devastating phenomenon that can result in massive damages to 

infrastructure and potentially lead to loss of life. Liquefaction is a result of a sudden applied 

stress to saturated, granular soils, causing pore pressures in the soil to increase, and 

resulting in suspension of the soil particles in the pore water and loss of strength and 

stiffness. When liquefaction occurs, soils tend to temporarily exhibit liquid-like behavior 

and have been observed to lose bearing capacity, flow down shallow gradients, and rise to 

the surface. Liquefaction-induced damages include settlement, lateral spreading, and sand 

boils, which each pose their own unique challenges for prediction and quantification. 

Multiple, separate methods for liquefaction hazard potential evaluation exist. These 

methods tend to be based on one of several in situ geotechnical subsurface investigations 

which can be used to evaluate soil properties. The most commonly used methods are 

standard penetration test-based (SPT) (e.g. Idriss and Boulanger, 2010), cone penetration 

test-based (CPT) (e.g. Robertson and Wride 1998), and shear wave velocity-based (e.g. 

Andrus and Stokoe 2000) methods. 
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This chapter will focus on CPT-based liquefaction hazard quantification, and will 

utilize the USGS CPT-measurement database for the computation of cyclic resistance. 

Cyclic loading data will be obtained from the USGS hazard tools, and this hazard data will 

be informed by the new synthetic site database developed in Chapter 3, which will in turn 

affect the predicted seismic loading. This section utilizes the procedure by Juang et al. 

(2008) to construct a joint probability distribution of amax and Mw, both of which are derived 

from the hazard tool data. Furthermore, to automate the process of liquefaction hazard 

quantification, a MATLAB script was developed to automatically perform numerous 

liquefaction hazard quantification computations for multiple locations while requiring only 

minimal inputs. 

6.2 METHODOLOGY 

The CPT is a method commonly used by geotechnical engineers to evaluate the 

properties of soils below the ground surface. CPT testing is an invasive technique that 

involves pushing a cone into the ground and recording the forces, specifically the sleeve 

friction and tip resistance, that act upon it. (e.g. Schmertmann 1978, Robertson 1990). The 

USGS provides a digital database of CPT soundings for the continental United States 

online (https://earthquake.usgs.gov/research/cpt/data/). This data tends to be concentrated 

in areas of higher earthquake hazard, though that is not always the case. Figure 6.1 shows 

a map of the United States, including the general location and number of CPT data 

soundings for the continental US. 
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Figure 6.1: Screenshot showing approximate locations of the soundings available in the USGS CPT database. 
The inset shows the measurement concentration in the San Francisco Bay Area, with approximately 250 
located in the center of the Bay area inset and another 180 in the south Bay area. 

It can be seen in Figure 6.1 that a significant number of CPT soundings are available 

in California, with concentrations in the San Francisco Bay area and Los Angeles area. As 

shown in the inset, over 400 of the CPT soundings shown in Figure 6.1 are in the immediate 

Bay area. 

When determining the potential for a soil to liquefy, a factor to describe the resistance 

of the soil to cyclic loading, or the cyclic resistance ratio (CRR), is compared to a factor 

describing the hypothetical cyclic loading that the soil will experience, i.e., the cyclic stress 

ratio (CSR). The factor of safety to resist liquefaction can be defined as (e.g. Robertson 

2009a): 

 
CRR

FS
CSR

   (6.1) 
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A factor of safety of less than 1.0 is considered to be likely to liquefy, and a value greater 

than 1.2 is considered less likely, but still possible to experience liquefaction (Sonmez, 

2003). It is important to note that these values for the factor of safety are not absolute; there 

is still a chance for liquefaction to occur when FS exceeds 1.2, and there is no guarantee 

that liquefaction will occur if FS is below 1.0. 

The CRR is used to quantify the liquefaction resistance of a soil. The CPT-based CRR 

calculation used in this methodology was developed by Robertson and Wride (1998), and 

can be approximated with the following equation: 
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  (6.2) 

where (qc1N)cs is the clean-sand equivalent normalized cone penetration tip resistance. 

The details of calculating (qc1N)cs can be found in the Youd et al. (2001) report. 

The CSR represents the expected cyclic loading on a soil. It is a function of both the 

properties of the expected hazard and the properties of the soil. (Youd et al., 2001) 
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  (6.3) 

where amax is the peak horizontal acceleration at the ground surface generated by the 

earthquake; g is the acceleration of gravity; vo and ’vo are total and overburden stresses, 

respectively. 
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The variable rd is the stress reduction coefficient, defined below (z is the depth in 

meters): 

 
0.5 1.5

0.5 1.5 2

1.000 0.4113 0.04052 0.001753

1.000 0.4177 0.05729 0.006205 0.001210
d

z z z
r

z z z z

 


   
  (6.4) 

MSF refers to the magnitude scaling factor. The MSF value is used to normalize the 

intensity of the chosen design earthquake to a value that can be used with the CSR equation, 

which was developed for Mw 7.5 events. The MSF can be calculated as follows: 

 
2.24

2.56

10

w

MSF
M

   (6.5) 

Finally, Kσ is a correction factor developed by Hynes and Olsen (1999) to account for 

the nonlinear effect of overburden pressure: 

 

 1

'
f

vo

a

K
P





 

  
 

  (6.6) 

where Pa is the atmospheric pressure, and f is an exponent used to reflect site conditions. 

Youd et al. (2001) recommend that the exponent f be given a value of 0.7 to 0.8 for relative 

densities between 40 and 60%, and a value of 0.6 to 0.7 for relative densities between 60 

and 80%. 

6.3 LIQUEFACTION HAZARD QUANTIFICATION 

To express the liquefaction hazard in the San Francisco Bay area study locations, 

modified forms of the liquefaction-induced settlement and the liquefaction potential index 

(LPI) were calculated. These two parameters were chosen because they represent different 

forms of quantification. The LPI is an averaged value that combines the liquefaction effects 
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of the top 20 meters beneath the ground surface into a single index value, while the 

liquefaction-induced settlement attempts to quantify the amount of settlement to be 

expected. The expected LPI and the expected settlement, were used in this study, and will 

be presented after the initial formulations for the LPI and liquefaction-induced settlement 

have been introduced. 

6.4 LIQUEFACTION POTENTIAL INDEX 

Liquefaction Potential Index (LPI) is an index that was developed by Iwasaki et al 

(1979, 1982) to provide a simple evaluation of the properties of the top 20 meters of soil 

and the potential that, given a seismic event, liquefaction induced site effects might occur. 

The index utilizes soil layer and FS information as its inputs as follows: 

  
20

0

LLPI z F dz      (6.7) 

where z is the soil depth in meters, FL is related to the factor of safety against 

liquefaction (FS) that was discussed previously as follows (Sonmez 2003): 
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  (6.8) 

The stepwise function used to calculate FL is used to give some weight to liquefaction 

cases that are near 1.0, where liquefaction is possible but unlikely. More information is 

available in Sonmez (2003) and this relationship is represented in Figure 1 of that study. 

The term (z) is a depth weighting factor, defined as: 

   10 0.5z z     (6.9) 
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This weighting factor is included to account for the decreasing effect of liquefaction that 

occurs with depth. In other words, even if liquefaction does occur in a deep soil, as the 

depth of the liquefied layer below the ground surface increases, the chance of surface 

manifestation of that liquefaction decreases. Therefore, the value of (z) decreases with 

increasing depth to a value of zero when the depth reaches 20 meters. 

The LPI can be used to classify the severity of liquefaction that can be expected, with 

higher values of LPI corresponding to greater degrees of severity. 

Table 6.1: Liquefaction Potential Index and corresponding severity class (after Iwasaki 1982) 

Liquefaction potential 
index (LPI) 

Severity class of liquefaction 

LPI = 0 I: Non-liquefiable 
0 < LPI ≤ 2 II: Low 
2 < LPI ≤ 5 III: Moderate 
5 < LPI ≤ 15 IV: High 

LPI > 15 V: Very high 
 

6.5 LIQUEFACTION-INDUCED SETTLEMENT 

The liquefaction-induced settlement is calculated using Equation (6.10) (Juang et al. 

2013): 

 
1

N

vi i i
i

S z IND


    (6.10) 

where S is the predicted liquefaction-induced settlement on level ground, zi is the 

thickness of the ith layer, vi is the volumetric strain of the ith layer, and INDi is an 

indicator—possessing a value of either 0 or 1 to represent non-liquefied or liquefied, 

respectively—of whether the layer will liquefy. The utilization of the INDi term in the 

formulation is used so that only the contribution of liquefied layers will be included in the 
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final calculated predicted settlement. The term for the volumetric strain, vi, can be 

calculated using: 
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  (6.11) 

where a0, a1, a2, a3, b0, b1, and b2 are curve fitting parameters available in Juang et al. 

(2013). 

6.6 EXPECTED LPI AND EXPECTED SETTLEMENT 

The expected value of a parameter can be considered to be the most likely value that 

the parameter can be expected to assume when the probability of possible values is 

considered. The expected value can be expressed generally as (Ross, 2007):  

    
1

n

i i
i

E x x P x


    (6.12) 

where xi is the value of the variable under investigation, and P(xi) is the probability that x 

has the value xi. Juang et al. (2008) apply this concept to obtain the total probability of 

liquefaction in a given exposure time. The hazard terms amax and Mw will be discussed 

below. 

     
 max

max max
All pairs of ,

| , ,
w

LT w w
a M

P P L a M P a M      (6.13) 

where P[L|(amax, Mw)] is the conditional probability of liquefaction given a pair of amax and 

Mw and P(amax ,Mw) is the joint probability of amax and Mw. This relationship can be 
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considered as the expected probability of liquefaction for an event, and the framework can 

be applied to calculations using LPI and liquefaction-induced settlement. 

The expected value concept can be applied to the LPI and settlement calculations as 

well. 

  ELPI LPI P LPI    (6.14) 

 ( )ES S P S    (6.15) 

where LPIE and SE are the expected LPI and expected settlement, respectively, in a given 

exposure time. Applying the same rationale used to develop Equation (6.13), the above 

equations can be rewritten as: 

     
 max

max max
All pairs of ,

| , ,
w

E w w
a M

LPI E LPI a M P a M      (6.16) 

     
 max

max max
All pairs of ,

| , ,
w

E w w
a M

S E S a M P a M      (6.17) 

where E[LPI|(amax ,Mw)] is the conditional expected value of LPI given a pair of amax and 

Mw, and E[S|(amax ,Mw)] is the conditional expected settlement given a pair of amax and Mw. 

In other words, these two equations are expressing that a pair of amax and Mw will produce 

a value of LPI and settlement, and by multiplying the LPI or settlement by its probability 

of occurrence and taking the summation for all pairs of amax and Mw, the total expected 

value for LPI and liquefaction-induced settlement can be calculated. 
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6.7 HAZARD DATA AND JOINT DISTRIBUTION OF AMAX AND MW 

Two sources of hazard data were used during this study, and the procedure for 

development of the joint probability distribution of amax and Mw from those sources is 

available in Juang et al. (2008). That procedure is summarized in Figure 6.2. 

 

Figure 6.2: Flowchart for calculating the joint probability distribution of amax and Mw 

When this study was initially performed, the hazard data were obtained from the USGS 

deaggregation tool and the USGS hazard tool. The split in the flowchart in Figure 6.2 

corresponds to obtaining data from the two tools mentioned previously. At the time of 

writing, the USGS has decommissioned the two tools mentioned previously and replaced 

them with the updated tool named the Unified Hazard Tool (UHT) 

(https://earthquake.usgs.gov/hazards/interactive/), from which both the hazard curves and 

deaggregation curve data can be obtained. 
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The hazard data obtained from the UHT and its manipulation are where the new 

synthetic VS30 database from Chapter 3 manifests in the liquefaction calculation. The 

deaggregation data requires the NEHRP site class as an input, which is based on VS30. The 

percent contribution of the various seismic sources in the deaggregation tool are adjusted 

based on the site class that is assigned to the study site. The hazard curve is downloaded 

for the B/C boundary condition of 760 m/s, and is used to derive amax. The value of amax is 

adjusted based on NEHRP recommended site amplification factors (e.g. FEMA 2015) that 

can be applied to the peak ground acceleration (PGA) from the hazard curve with the 

following relationship: 

 max sa F PGA    (6.18) 

where Fs is the site amplification factor for short period (0.2s) motion and PGA is the peak 

ground acceleration for the B/C soft rock boundary condition. The site amplification factor 

is obtained from the NEHRP provisions (e.g. FEMA 2015) or appropriate building codes. 

From this discussion it is clear that in the current state of practice, updated VS30 values 

obtained from Chapter 3 will only impact liquefaction-based calculations if there is a 

change in the NEHRP site classes between an old model and the current database. 

6.8 IMPLEMENTATION OF MATLAB CODE 

The MATLAB code, while still preliminary in some ways, was designed to be very 

easy for an end-user to use. Currently, the necessary inputs include CPT data (in a .txt file 

format downloaded from the USGS website), soil data, water table data (currently obtained 

from CPT-sounding files), and VS30 data. An important point to note is that the current state 

of the MATLAB code will perform the liquefaction hazard quantification calculations 
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automatically for any number of CPT data files in .txt format that are provided to the 

program. 

The strength of the developed code lies in its ability to rapidly, automatically perform 

the liquefaction hazard quantification calculations by repeating the requisite liquefaction 

hazard quantification calculations for every CPT-data file that is provided as an input, 

collecting new hazard data based on the location provided in the CPT data file and the 

corresponding VS30 value from the provided database. However, this strength can also be 

a weakness due to the need to currently provide soil data to the program. If a user provides 

CPT-profiles for analysis that possess soil properties that are different from those entered 

into the code, the program will currently still provide a set of liquefaction hazard 

quantification results, though the results will be for incorrect soil data. 

Based on the above discussion of the code in its current form, an obvious potential 

improvement would be to automate the assigning of soil data based on location. An option 

for this would be to use the geology information provided by the Wills et al. (2015) model 

to automatically assign soil data based on the average properties of the mapped geologic 

unit. This would be implemented by using the location information from the CPT data file 

to identify the mapped geology and assigning soil data based on the results of that location 

check. 

6.9 RESULTS 

Two locations were selected for a demonstration of the MATLAB code that was 

developed for automatic calculation of the expected settlement and expected LPI for a 

given exposure time. Additionally, settlement exceedance curves (e.g. Juang et al. 2008) 
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were created for the two study locations. The exceedance curves give the probability that 

the settlement that will be experienced at the site is greater than a certain threshold value 

in the given exposure time. For this study, an exposure time of 50 years was used. 

The study locations can be seen in Figure 6.3. They are located on Alameda Island, on 

the east side of the San Francisco Bay. These study locations correspond to the locations 

of CPT-sounding data from the USGS CPT-database. These locations were chosen 

arbitrarily from among the available CPT profiles. 

 

Figure 6.3: Study locations in the San Francisco Bay. ALC008 denoted by pin with "1" and ALC009 denoted 
by pin with a dot 

Using the hazard data from the USGS tools, a joint distribution of amax and Mw was 

prepared. The joint distribution is illustrated in Figure 6.4. 

ALC009 

ALC008 



107 

 

 

Figure 6.4: Joint distribution of amax and Mw for one site 

From Equations (6.16) and (6.17), it can be seen that E[LPI|(amax ,Mw)] and E[S|(amax 

,Mw)], respectively, are also needed. Therefore, the LPI and liquefaction-induced 

settlement for each pair of amax and Mw was calculated as well. The results of the settlement 

calculation for ALC009 are shown in Figure 6.5. 
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Figure 6.5: Calculated liquefaction-induced settlement for each pair of amax and Mw for ALC009 

By combining the joint probability and conditional expected value calculations using 

Equations (6.16) and (6.17), values for the expected LPI and expected liquefaction-induced 

settlement for a 50 year exposure time were obtained. The results of those calculations can 

be seen in Error! Reference source not found.. 

Table 6.2 Results of Expected Liquefaction Hazard Calculation 

Location Expected 
LPI 

Expected 
Settlement (cm) 

ALC008 4.1 5.4 
ALC009 0.8 1.3 

Finally, curves that illustrate the probability of exceedance for settlement threshold 

values for the 50 year exposure time are shown in Figure 6.6. 
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Figure 6.6: Exceedance probability curve for liquefaction-induced settlement with 50 year exposure time 

It can be seen in both Error! Reference source not found. and Figure 6.6 that ALC008 h

as a higher liquefaction risk than ALC009. It can also be seen that some degree of 

seismically-induced liquefaction can be expected at both locations with near certainty. 

6.10  CONCLUSIONS 

In this chapter, a liquefaction hazard quantification calculation was performed for two 

sites in Alameda, CA. The new synthetic VS30 site condition database, developed in Chapter 

3, was used to inform the hazard data that were obtained from the USGS hazard tools. The 

locations and necessary soil testing data were obtained using CPT measurement files 

provided on the USGS CPT measurement website. Calculations were performed using 

MATLAB code that was developed for the purpose of automating the liquefaction hazard 

quantification process. The MATLAB code automatically contacts the USGS hazard tools 

to download the appropriate hazard data as well as performing the calculations, and is a 
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first step towards large-scale evaluation of CPT data for the purpose of liquefaction hazard 

quantification. 

A finalized version of this MATLAB code will allow future researchers to easily 

specify the appropriate liquefaction hazard calculations they are interested in and 

potentially use the computed results to investigate spatial relationships between 

liquefaction hazards and other spatial data. An iteration of this code is available in 

Appendix B. Improvements to the current procedure could include incorporating other 

forms of soil measurement data to increase the number of locations available for 

liquefaction hazard quantification, creating an automatic decision-making process for the 

code to automatically assign appropriate soil data based on known geology, and 

incorporating an independent groundwater database instead of relying on CPT data to 

determine water table levels. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

This dissertation has presented a Bayesian method for ranking VS30 models, both with 

(Chapter 5) and without (Chapter 3) uncertainty considerations. The formulation that does 

not include uncertainty can easily be implemented using common spreadsheet software 

that includes basic statistical functions and a solver. This practical functionality makes the 

method ideal for utilization by engineers and persons with little training in statistical 

methods. 

IN CHAPTER 3: 

The method was shown to be effective at ranking competing VS30 models, and that it 

has the added functionality of evaluating VS30 models for performance within individual 

geologic units when sufficient information is available. The methodology was applied to 

data from California to rank three publicly available proxy-based models. Using the results 

of that analysis, a new, state of the art site conditions map for California was developed 

that contains VS30 predictions and spatial coordinate data. 

IN CHAPTER 4: 

The methodology that was developed in Chapter 3 was applied to two other regions in 

the United States: Seattle and the Puget Sound and the Salt Lake City, Ogden, and Provo 

area. Ranking results were obtained for the models available in those regions, and new site 

conditions databases are proposed for those regions as well. Furthermore, the utility and 

limitations of the model ranking procedure was illustrated as well. It was demonstrated that 
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the model ranking framework is an effective means to make informed decisions when 

selecting VS30 models, but that in some situations, there is only a small deviation from a 

candidate model’s originally predicted values. 

IN CHAPTER 5: 

The Bayesian method for model ranking was revisited to add uncertainty information 

to the calculation. The uncertainty in the benchmark database was characterized using 

currently available information based on the methods used to obtain the VS30 values. The 

VS30 models were studied for their sensitivity to fluctuations in uncertainty estimates. It 

was shown that including uncertainty information in the calculation will affect the model 

ranking results. Furthermore, it was shown that proper characterization of uncertainty for 

the VS30 models is crucial, as their performance can be significantly affected by the 

uncertainty assigned. 

IN CHAPTER 6: 

A demonstration of a potential application of the new synthetic VS30 site condition 

database was performed. A liquefaction hazard quantification calculation was performed 

using a MATLAB script to automatically read CPT data files and use them appropriately. 

The new VS30 database was used to inform the hazard data that were obtained from the 

USGS hazard tools. Calculations of expected LPI and expected settlement were presented 

as well as curves representing the probability of exceedance for settlement threshold 

values. 
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DISCUSSIONS AND FUTURE WORK 

Although the results presented herein represent an update to the current state of the art 

in proxy-based spatial VS30 prediction, further improvements to the research are possible. 

Because the new site conditions maps presented in Chapters 3 and 4 are derived from 

proxy-based models, the results are only as good as the best models. Therefore, it is easy 

to see that the results from Chapter 3 can be improved through improvement of the 

candidate models. Caution should be taken when using the methodology presented herein 

due to that inherent limitation; the method does not evaluate how well a given model 

performs, merely how well the candidate models perform relative to one-another. 

The benchmark database is always a point of interest for users when performing model 

verification studies. Improvements to the benchmark database, in accuracy of measurement 

data, quantification of uncertainties, and/or expanded coverage of geologic units would 

lead to improved confidence in the results from this study. Improving the accuracy of the 

data in the benchmark database would lead to more robust model ranking results, as 

presented in Chapters 3 and 4. Improving the uncertainty quantification of the benchmark 

data would lead to better results if the method from Chapter 5 is used; potentially allowing 

for development of a new site condition database if the degree of confidence in the 

uncertainty quantification is high. Expanded coverage of geologic unit benchmark data 

would result in better results in Chapters 3, 4, and 5 due to the heightened confidence that 

can be placed on the ranking results. Additionally, improvements in the coverage of 

benchmark data would allow researchers to develop better VS30 models, which can then be 
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used to develop a new site condition database through implementation of the method in 

this dissertation. 

Thus, the full strength of the Bayesian method for ranking VS30 models is demonstrated. 

Not only has the method been applied to ranking and synthesizing the current state-of-the-

art models for proxy-based VS30 estimation, but it has continued application as a means to 

evaluate new models and to update the current site condition database appropriately. 
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APPENDIX A 

This appendix contains sensitivity plots prepared in Chapter 5 for the uncertainty 

analysis. The sensitivity analysis was conducted for all 15 geologic units that were 

investigated in the study. The plots show that uncertainty can positively or negatively affect 

the results of the model ranking, and that the results vary by geologic unit. More 

investigation is needed to understand the causes for the fluctuations in performance due to 

uncertainty beyond the explanation provided in Chapter 5. 

Although the thresholds are slightly different, it is clear that similar behavior to that 

which was demonstrated in Chapter 5 is observed here as well. 
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APPENDIX B 

This appendix includes preliminary MATLAB code that can be used to automatically 

perform liquefaction hazard quantification calculations. It was developed to run using the 

API for the USGS 2008 deaggregation tool and hazard curve tool, which are no longer 

available. 

%%%CPT-data interpreter script which can be used to perform 
calculations%%% 
%%%related to liquefaction-induced damage, such as expected settlement  
%%% 
%%%and probability of exceeding threshold settlement values             
%%% 
  
%%%               Written by Andrew Brownlow 1/31/2017                  
%%% 
  
clear 
clc 
%Navigate to appropriate folder 
%This is where the CPT data is stored 
cd('./CPT_data/') 
  
%The year should be defined for the current study, and is needed to 
%communicate with the USGS deaggregation server 
%Note: years is the string version of the exposure time 
years = '50'; 
year = 50; 
  
%%%Read Vs30 Data from provided file. This is a file containing 
location 
%%%data and Vs30 values. The current map (San_Francisco.xyz) was 
obtained 
%%%from the USGS Global Vs30 model website. This map is pre-defined, 
and 
%%%available at 
http://earthquake.usgs.gov/hazards/apps/vs30/predefined.php 
%%%A custom version of this map can be generated using the tool from 
the 
%%%same source http://earthquake.usgs.gov/hazards/apps/vs30/custom.php 
  
%This input can be changed by referencing a different file. The code 
for 
%reading and interpreting this input is in the findVs30.m function. If 
this 
%line is uncommented, it should be commented out in the findVs30.m 
function 



133 

 

Vs30Data = load('../Vs30/San_Francisco.xyz'); 
  
%Obtain input file 
filelist = dir('*.txt'); 
%Create output matrix 
%The number hard-coded into the columns dimension corresponds to the 
number 
%of outputs desired from the location-specific output matrix, which can 
be 
%used to generate an EP curve 
locationmat = {'Longitude','Latitude','Expected LPI','Expected 
Settlement (cm)'}; 
epcurvedata = 
{'Longitude','Latitude','P(S>0.01cm)','P(S>0.025cm)','P(S>0.05cm)','P(S
>0.1cm)','P(S>0.25cm)','P(S>0.5cm)','P(S>1cm)','P(S>2cm)','P(S>3cm)','P
(S>4cm)','P(S>5cm)','P(S>6cm)','P(S>7cm)','P(S>8cm)','P(S>10cm)','P(S>1
2.5cm)','P(S>15cm)','P(S>20cm)'}; 
%Start of runtime measurement 
tic 
  
  
%This is the overarching loop of the script; for each iteration of the 
%loop, one CPT data file is read from the CPT_data directory, and all 
%functions and calculations are performed. This includes downloading 
%location-specific deaggregation files and hazard curves from the USGS 
%website, as well as all geotechnical calculations. A new directory is 
%generated for each iteration of the loop to correspond to each CPT 
data 
%file/location of interest. 
for iii = 1:length(filelist) 
    filename = filelist(iii).name; 
    %Read CPT data in file, and give output of UTM X- and Y- 
coordinates, 
    %water table depth, Vs30 (currently hard-coded for the test so I 
don't 
    %have to worry about inputs), depth, qc, fs, longitude, and 
latitude 
    [UTM_X, UTM_Y, water, vs30, z, qc, fs, lon, lat, site] = 
read_CPT_data(filename, Vs30Data); 
     
     
    %Make a new folder (directory) with name of current site 
    mkdir(site{3}); 
     
  
    %Deaggregation download: inputs loop 
    for jjj = 1:6 
        switch jjj 
            case 1 
                %contact USGS deaggregation website and input the 
correct 
                %hazard information for each location  
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                percents = '01'; 
                percent = 1; 
                deaggi(jjj,:) = {[site{3} '_' percents '_' years], lat, 
lon, percent, vs30, year, 1, 1, 1}; 
            case 2 
                percents = '02'; 
                percent = 2; 
                deaggi(jjj,:) = {[site{3} '_' percents '_' years], lat, 
lon, percent, vs30, year, 1, 1, 1}; 
            case 3 
                percents = '05'; 
                percent = 5; 
                deaggi(jjj,:) = {[site{3} '_' percents '_' years], lat, 
lon, percent, vs30, year, 1, 1, 1}; 
            case 4 
                percents = '10'; 
                percent = 10; 
                deaggi(jjj,:) = {[site{3} '_' percents '_' years], lat, 
lon, percent, vs30, year, 1, 1, 1}; 
            case 5 
                percents = '20'; 
                percent = 20; 
                deaggi(jjj,:) = {[site{3} '_' percents '_' years], lat, 
lon, percent, vs30, year, 1, 1, 1}; 
            case 6 
                percents = '50'; 
                percent = 50; 
                deaggi(jjj,:) = {[site{3} '_' percents '_' years], lat, 
lon, percent, vs30, year, 1, 1, 1}; 
     
        end 
    end 
     
    %create format of text to be written to text file 
    formatspec = '%s %g %g %g %g %g %g %g %g\n'; 
    %create new text file named pars inside folder for current site 
    fileID = fopen(['./' site{3} '/pars.txt'], 'w'); 
    %get dimensions of deaggregation input matrix 
    [nrows, ncols] = size(deaggi); 
    for row = 1:nrows 
        fprintf(fileID, formatspec, deaggi{row,:}); 
    end 
    fclose(fileID); 
     
    %Copy python script to newly created site folder 
    copyfile('../deaggregations.py',[site{3} '/']); 
    copyfile('../goodman.py',[site{3} '/']); 
    copyfile('../goodman.pyc',[site{3} '/']); 
     
     
    %Navigate into the appropriate current site's directory, run the 
python 
    %script to create the deaggregation files in a new directory named 
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    %downloads within each site's directory 
    cd([site{3}]) 
    system('C:\Python27\python deaggregations.py'); 
     
    %create string versions of lat and lon 
    lats = num2str(lat); 
    lons = num2str(lon); 
     
  
    %Hazard curve download from USGS website 
    websave([site{3} 
'.csv'],['http://geohazards.usgs.gov/hazardtool/curves.php?format=2&lat
=' lats '&lon=' lons 
'&site=760&period=0p00'],weboptions('Timeout',Inf)); 
     
    %Transpose .csv file of hazard curve to be in columns without 
column 
    %headers.  This is necessary for the upcoming functions to work 
    %properly. 
    %First, get the field ID to open current site's downloaded hazard 
curve 
    %.csv file 
    fid = fopen([site{3} '.csv']); 
    dataformat = '%*s %*s %*s %*s %*s %q %q %q %q %q %q %q %q %q %q %q 
%q %q %q %q %q %q %q %q'; 
    allcsv = textscan(fid,dataformat,'delimiter',','); 
    allcsv = [allcsv{:}]; 
    for rowi=1:2 
        for coli = 1:length(allcsv) 
            hazcurvs(coli,rowi) = allcsv(rowi+1,coli); 
        end 
    end 
    fclose(fid); 
    hazcurvi = str2double(hazcurvs); 
    csvwrite([site{3} '.csv'], hazcurvi); 
     
  
    %Calculate Joint Distribution of Mw and a_max using MwAmax 
function. 
    sitename = site{3}; 
    [Grid_Mw,Grid_amax,p_Amax_Mw] = MwAmax(sitename); 
     
  
    s_limit = 10 ; 
    [settlement, settlement_matrix, 
settlement001,settlement0025,settlement005,settlement01,settlement025,s
ettlement05,settlement1,settlement2,settlement3,settlement4,settlement5
,settlement6,settlement7,settlement8,settlement10,settlement12_5,settle
ment15,settlement20, LPI, LPI5plus] = 
calc(Grid_Mw,Grid_amax,p_Amax_Mw,s_limit,qc,fs,z, water); 
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    %Navigate back to CPT_data input file to allow main loop to 
continue 
    %with next iteration 
    cd .. 
     
     
    %Temporary output while I test the code; currently writes latitude 
    %and longitude to a matrix. Will be expanded to include outputs of 
LPI 
    %probability and settlement as a final result. (Settlement in cm) 
    locationmat(iii+1,:) = {lon, lat, LPI, settlement};  
    epcurvedata(iii+1,:) = {lon, lat, 
settlement001,settlement0025,settlement005,settlement01,settlement025,s
ettlement05,settlement1,settlement2,settlement3,settlement4,settlement5
,settlement6,settlement7,settlement8,settlement10,settlement12_5,settle
ment15,settlement20};%for settlementX values, X is defined in calc. 
     
     
end 
  
xlswrite('ExpectedResponse.xlsx',locationmat); 
xlswrite('Settlement_EPCurve.xlsx',epcurvedata); 
  
locationmatheader = ['Longitude','Latitude','Expected LPI','Expected 
Settlement (cm)']; 
epcurvedataheader = 
['Longitude','Latitude','P(S>0.01cm)','P(S>0.025cm)','P(S>0.05cm)','P(S
>0.1cm)','P(S>0.25cm)','P(S>0.5cm)','P(S>1cm)','P(S>2cm)','P(S>3cm)','P
(S>4cm)','P(S>5cm)','P(S>6cm)','P(S>7cm)','P(S>8cm)','P(S>10cm)','P(S>1
2.5cm)','P(S>15cm)','P(S>20cm)']; 
fid = fopen('ExpectedResponse.csv', 'w'); 
fprintf(fid, 'Longitude,Latitude,Expected LPI,Expected Settlement 
(cm)\n'); 
fclose(fid); 
  
  
%End of runtime measurement 
toc 
cd('../') 
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