
Evaluation complexity of adaptive cubic regularization methods

for convex unconstrained optimization

Coralia Cartis∗, Nicholas I. M. Gould† and Philippe L. Toint‡

October 30, 2010; Revised March 30, 2011

Abstract

The adaptive cubic regularization algorithms described in Cartis, Gould & Toint (2009, 2010) for

unconstrained (nonconvex) optimization are shown to have improved worst-case efficiency in terms of

the function- and gradient-evaluation count when applied to convex and strongly convex objectives. In

particular, our complexity upper bounds match in order (as a function of the accuracy of approxima-

tion), and sometimes even improve, those obtained by Nesterov (2004, 2008) and Nesterov & Polyak

(2006) for these same problem classes, without requiring exact Hessians or exact or global solution of

the subproblem. An additional outcome of our approximate approach is that our complexity results

can naturally capture the advantages of both first- and second-order methods.

1 Introduction

State-of-the-art methods for unconstrained smooth optimization typically depend on trust-region [6] or

line-search [7] techniques to globalise Newton-like iterations. Of late, a third alternative, in which a

local cubic over-estimator of the objective is used as the basis for a regularization strategy for the step

computation, has been proposed [9, 12, 13]; see [2, §1] for a detailed description of these contributions.

Such ideas have been refined so that they are now well suited to large-scale computation for a wide class of

nonlinear nonconvex objectives; rigorous convergence and complexity analyses under weak assumptions,

together with promising numerical experience with these techniques, are available [2, 3]. Our objective in

this paper is to show that the complexity bounds for this type of algorithms significantly improve in the

presence of convexity or strong convexity.

Specifically, at each iteration of what we call an ARC (Adaptive Regularization with Cubics) framework,

a possibly nonconvex model

mk(s)
def
= f(xk) + sT gk + 1

2s
TBks+ 1

3σk‖s‖3, (1.1)

is employed as an approximation to the smooth objective f(xk + s) we wish to minimize. Here σk > 0

is a regularization weight, we have written ∇f(xk) = g(xk) = gk and here and hereafter we choose the

Euclidean norm ‖ · ‖ = ‖ · ‖2. To compute the change sk to xk, the model mk is globally minimized, either

exactly or approximately, with respect to s ∈ IRn. Note that if Bk is taken to be the Hessian H(x) of f ,

and the latter is globally Lipschitz continuous with Lipschitz constant σk/2, we have the overestimation

property f(xk+s) ≤ mk(s) for all s ∈ IRn [2, §1]. Thus in this case, minimizing mk with respect to s forces

a decrease in f from the value f(xk), since f(xk) = mk(0). In the general ARC algorithmic framework,

∗School of Mathematics, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3JZ, Scotland, UK. Email:

coralia.cartis@ed.ac.uk. All three authors are grateful to the Royal Society for its support through the International Joint

Project 14265.
†Computational Science and Engineering Department, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11

0QX, England, UK. Email: nick.gould@stfc.ac.uk. This work was supported by the EPSRC grant EP/E053351/1.
‡Department of Mathematics, FUNDP - University of Namur, 61, rue de Bruxelles, B-5000, Namur, Belgium. Email:

philippe.toint@fundp.ac.be.

1

2 Complexity of adaptive cubic regularization methods for convex unconstrained optimization

H need not be Lipschitz, nor need Bk be H(xk), but in this case σk must be adjusted as the computation

proceeds to ensure convergence [2, 3, S2.1]. The generic ARC framework [2, 3, §2.1] may be summarised

as follows:

Algorithm 1.1: Adaptive Regularization using Cubics (ARC) [2, 3].

Given x0, γ2 ≥ γ1 > 1, 1 > η2 ≥ η1 > 0, and σ0 > 0, for k = 0, 1, . . . until convergence,

1. Compute a step sk for which

mk(sk) ≤ mk(s
C

k), (1.2)

where the Cauchy point

sC

k = −αC

kgk and αC

k = arg min
α∈IR+

mk(−αgk). (1.3)

2. Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

f(xk)−mk(sk)
. (1.4)

3. Set

xk+1 =

{

xk + sk if ρk ≥ η1
xk otherwise.

(1.5)

4. Set

σk+1 ∈

(0, σk] if ρk > η2 [very successful iteration]

[σk, γ1σk] if η1 ≤ ρk ≤ η2 [successful iteration]

[γ1σk, γ2σk] otherwise. [unsuccessful iteration]

(1.6)

For a detailed description of the algorithm construction, including a justification that (1.2)–(1.4) are

well-defined until termination, see [2]. The above ARC algorithm is a very general first-order framework

that due to the Cauchy condition (1.2) ensures at least a steepest-descent-like decrease in each (successful)

iteration. This is sufficient to ensure global convergence of ARC both to first-order critical points [2, §2.1]
and with steepest-descent-like function-evaluation complexity bounds of order ǫ−2 [3, §3] to guarantee

‖gk‖ ≤ ǫ. (1.7)

These results require that g(x) is uniformly and Lipschitz continuous (respectively) and that {Bk} is

uniformly bounded above. Clearly, the Cauchy point sC

k achieves (1.2) in a computationally inexpensive

way (see [2, §2.1]); the choice of interest, however, is when sk is an (approximate global) minimizer of

mk(s) and Bk, a nontrivial approximation to the Hessian H(xk) (see §3).
Although mk might be nonconvex, its global minimizer over IRn is always well-defined and can be

characterized in a computationally-viable way [2, Thm.3.1], [9, 12]. This characterization is best suited

for exact computation when Bk is sparse or of modest size. For large problems, a suitable alternative

is to improve upon the Cauchy point by globally minimizing mk over (nested and increasing) subspaces

that include gk—which ensures (1.2) remains satisfied—until a suitable termination condition is achieved.

(For instance, in our ARC implementation [2], the successive subspaces that the model is minimized over

are generated using Lanczos method.) These ARC variants are summarized in Algorithm 1.2; where

hk(‖sk‖, ‖gk‖) is some generic function of ‖sk‖ and ‖gk‖, with specific examples of suitable choices given

in (1.10) and (1.11) below.

C. Cartis, N. I. M. Gould and Ph. L. Toint 3

Algorithm 1.2: ARC(h) [2, 3].

In each iteration k of Algorithm 1.1, compute sk in Step 1 as the global minimizer of

min
s∈IRn

mk(s) subject to s ∈ Lk, (1.8)

where Lk is a subspace of IRn containing gk, and such that the termination condition

TC.h ‖∇smk(sk)‖ ≤ θk‖gk‖, where θk
def
= κθ min(1, hk) and hk

def
= hk(‖sk‖, ‖gk‖) > 0,

(1.9)

is satisfied, for some constant κθ ∈ (0, 1) chosen at the start of the algorithm.

Clearly, TC.h is satisfied when sk is the global minimizer of mk over the whole space, but one hopes that

termination of the subspace minimization will occur well before this inevitable outcome, at least in early

stages of the iteration. Note that in fact, TC.h only requires an approximate critical point of the model,

and as such the global subspace minimization in (1.8) may only need to hold along the one-dimensional

subspace determined by sk [2, (3.11), (3.12)], provided (1.2) holds.

For ARC(h) to be a “proper” second-order method, a careful choice of hk needs to be made, such as

hk = ‖sk‖ or hk = ‖gk‖2, yielding the termination criteria

TC.s ‖∇smk(sk)‖ ≤ θk‖gk‖, where θk = κθ min(1, ‖sk‖). (1.10)

and

TC.g2 ‖∇smk(sk)‖ ≤ θk‖gk‖, where θk = κθ min
(

1, ‖gk‖2
)

. (1.11)

Forthwith, we refer to ARC(h) with TC.s and with TC.g2 as ARC(S) and ARC(g2), respectively. The

benefit of requiring the more stringent conditions (1.8), and (1.10) or (1.11), in the above ARC variants is

that ARC(S) and ARC(g2) are also guaranteed to converge locally Q-quadratically and globally to second-

order critical points [2, §4.2,§5], and to have improved function-evaluation complexity of order ǫ−3/2 to

ensure (1.7) [3, §5], provided H(x) is globally Lipschitz continuous along the path of the iterates and there

is sufficiently good agreement between the H(xk) and its approximation Bk.

In this paper, we investigate the worst-case function-evaluation complexity of the basic ARC framework

and its second-order variants ARC(S) and/or ARC(g2) when applied to the minimization of special classes

of objectives, namely convex and strongly convex ones. In particular, we show that as expected, these

algorithms satisfy improved bounds compared to the nonconvex case. Specifically, generic ARC (Algorithm

1.1) takes at most O(ǫ−1) and O(log ǫ−1) function-evaluations to reach the neighbourhood

f(xk)− f∗ ≤ ǫ (1.12)

of the (global) minimum f∗ of convex and strongly convex objectives, respectively, with Lipschitz continu-

ous gradients, where the dependence of these bounds on problem conditioning is carefully considered (see

page 9). Unsurprinsingly, due to the simple Cauchy decrease condition (1.2) required on the step, these

bounds match in order those for standard steepest-descent methods on the same classes of objectives [10].

When applied to convex objectives with bounded level sets and globally Lipschitz continuous Hessian,

ARC(g2) with Bk = H(xk) will reach approximate optimality in the (1.12) sense in at most O(ǫ−1/2)

function-evaluations; this matches in order the bound obtained in [11, 12] for cubic regularization on

the same problem class when the exact subproblem solution is computed in each iteration. Note that

asymptotically, in ARC(g2), the subproblem is solved to higher accuracy than in ARC(S), which seems

to be crucial when deriving the improved bound compared to the first-order basic ARC. We also present

an illustration on a common convex objective that indicates that despite being worst-case, the bounds

presented here may be tight.

4 Complexity of adaptive cubic regularization methods for convex unconstrained optimization

If the objective is strongly convex, then ARC(S) and ARC(g2) (with approximate Hessians as Bk) require

at most O(| log κ| + | log log ǫ|) function-evaluations to satisfy (1.12), where κ is a problem-dependent

constant and where the double logarithm term expresses the local Q-quadratic rate of convergence of

these variants. The strongly convex-case bound improves that obtained in [11, 12] for cubic regularization

with exact subproblem solution in that the former has a logarithmic dependence on κ while the latter only

includes a polynomial dependence on problem condition numbers. Our result is a direct consequence of

using increasing accuracy in the subproblem solution with first-order-like behaviour, and hence complexity

early on, and second-order characteristics asymptotically.

Note that the assumption labeling used throughout the paper was chosen to maintain consistency with

notation introduced in [2, 3]. The structure of the paper is as follows. Section 2 analyzes the complexity

of basic ARC, while Section 3 that of the second-order variants ARC(S) and ARC(g2), in the convex and

strongly convex cases. Section 3.3 presents a convex example of inefficient ARC behaviour with O(ǫ−1/2)

complexity, and Section 4 draws some conclusions and open questions.

2 The complexity of the basic ARC framework

This section addresses the basic ARC algorithm, Algorithm 1.1. We assume that

AF.1 f ∈ C1(IRn), (2.1)

and that the gradient g is Lipschitz continuous on an open convex set X containing all the iterates {xk},

AF.4 ‖g(x)− g(y)‖ ≤ κH‖x− y‖, for all x, y ∈ X, and some κH ≥ 1. (2.2)

If f ∈ C2(IRn), then AF.4 is satisfied if the Hessian H(x) is bounded above on X. Note however, that for

now, we only assume AF.1. In particular, no Lipschitz continuity of H(x) will be required in this section.

The model mk is assumed to achieve

AM.1 ‖Bk‖ ≤ κB, for all k ≥ 0, and some κB ≥ 1. (2.3)

In the case when f ∈ C2(IRn) and Bk = H(xk) for all k, then AF.4 implies AM.1 with κB = κH.

Naturally, we assume f is bounded below, letting f∗ > −∞ be the (global) minimum of f and

∆k
def
= f(xk)− f∗, for all k ≥ 0. (2.4)

2.1 Relating successful and total iteration counts

Note that the total number of ARC iterations is the same as the number of function evaluations (as we

also need to evaluate f on unsuccessful iterations in order to be able to compute ρk in (1.4)), while the

number of successful ARC iterations is the same as that of gradient evaluations.

Let us introduce some useful notation. Throughout, denote the index set

S def
= {k ≥ 0 : k successful or very successful in the sense of (1.6)}, (2.5)

and, given any j ≥ 0, let

Sj
def
= {k ≤ j : k ∈ S}, (2.6)

with |Sj | denoting the cardinality of the latter.

Concerning σk, we may require that on each very successful iteration k ∈ Sj , σk+1 is chosen such that

σk+1 ≥ γ3σk, for some γ3 ∈ (0, 1]. (2.7)

Note that (2.7) allows {σk} to converge to zero on very successful iterations (but no faster than {γk
3 }). A

stronger condition on σk is

σk ≥ σmin, k ≥ 0, (2.8)

C. Cartis, N. I. M. Gould and Ph. L. Toint 5

for some σmin > 0. These conditions on σk and the construction of ARC’s Steps 2–4 allow us to quantify

the total iteration count as a function of the successful ones.

Theorem 2.1. For any fixed j ≥ 0, let Sj be defined in (2.6). Assume that (2.7) holds and let σ > 0

be such that

σk ≤ σ, for all k ≤ j. (2.9)

Then

j ≤
⌈

1− log γ3
log γ1

⌉

· |Sj |+
⌈

1

log γ1
log

(

σ

σ0

)⌉

. (2.10)

In particular, if σk satisfies (2.8), then it also achieves (2.7) with γ3 = σmin/σ, and we have that

j ≤
⌈

1 +
2

log γ1
log

(

σ

σmin

)⌉

· |Sj |. (2.11)

Proof. Apply [3, Theorem 2.1] and the fact that the unsuccessful iterations up to j together with

Sj form a partition of {0, . . . , j}. 2

Values for σ in (2.9) are provided in (2.16) below, and under stronger assumptions, in (3.6). (Note

that due to Lemmas 2.4 and 2.6, the condition required for (2.16) is achieved by the gradient of convex

and strongly convex functions, with appropriate values of ǫ, whenever ∆k > ǫ.) Thus, based on the above

theorem, we are left with bounding the successful iteration count |Sj | until iteration j that is within ǫ of

the optimum, which we focus on for the remainder of the paper and that has the outcome that the total

iteration count up to j is of the same order in ǫ as |Sj |.

2.2 Some useful properties

The next lemma summarizes some useful properties of the basic ARC iteration.

Lemma 2.2. Suppose that the step sk satisfies (1.2).

i) [2, Lemma 2.1] Let AM.1 hold. Then for k ≥ 0, we have that

f(xk)−mk(sk) ≥
‖gk‖
6
√
2
min

‖gk‖
κB

,
1

2

√

‖gk‖
σk

 , (2.12)

and so ∆k in (2.4) is monotonically decreasing,

∆k+1 ≤ ∆k, k ≥ 0. (2.13)

ii) [3, Lemma 3.2] Let AF.1, AF.4 and AM.1 hold. Also, assume that

√

σk‖gk‖ >
108

√
2

1− η2
(κH + κB)

def
= κHB. (2.14)

Then iteration k is very successful and

σk+1 ≤ σk. (2.15)

6 Complexity of adaptive cubic regularization methods for convex unconstrained optimization

iii) [3, Lemma 3.3] Let AF.1, AF.4 and AM.1 hold. For any ǫ > 0 and j ≥ 0 such that ‖gk‖ > ǫ

for all k ∈ {0, . . . , j}, we have

σk ≤ max

(

σ0,
γ2κ

2
HB

ǫ

)

, 0 ≤ k ≤ j. (2.16)

A generic property follows.

Lemma 2.3. Assume AF.1, AF.4 and AM.1 hold, and that when applying ARC to minimizing f ,

∆k ≤ κc‖gk‖p, for all k ≥ 0, (2.17)

for some κc > 0 and p > 0, with ∆k defined in (2.4). Then

f(xk)−mk(sk) ≥ κm∆
2/p
k , for all k ≥ 0, (2.18)

where κHB is defined in (2.14) and

κm

def
=

1

12
√
2κ

2/p
c

min

√

√

√

√

κ
1/p
c

σ0∆
1/p
0

,
1√

γ2κHB

 . (2.19)

Proof. We first show that

σk∆
1/p
k ≤ max

(

σ0∆
1/p
0 , γ2κ

1/p
c κ2

HB

)

, for all k ≥ 0. (2.20)

For this, we use the implication

σk∆
1/p
k > κ1/p

c κ2
HB =⇒ σk+1∆

1/p
k+1 ≤ σk∆

1/p
k , (2.21)

which follows from (2.15) in Lemma 2.2 ii), (2.17) and (2.13). Thus, when σ0∆
1/p
0 ≤ γ2κ

1/p
c κ2

HB, (2.21)

implies σk∆
1/p
k ≤ γ2κ

1/p
c κ2

HB, where the factor γ2 is introduced for the case when σk∆
1/p
k is less than

κ1/p
c κ2

HB and the iteration k is not very successful. Letting k = 0 in (2.21) gives the first inequality in

(2.20) when σ0∆
1/p
0 ≥ γ2κ

1/p
c κ2

HB, since γ2 > 1. Next we deduce from (2.12) and (2.17) that

f(xk)−mk(sk) ≥
∆

2/p
k

6
√
2κ

1/p
c

min

1

κ
1/p
c κB

,
1

2κ
1/(2p)
c

√

σk∆
1/p
k

 ,

which together with (2.20) and the definition of κHB, gives (2.18) and (2.19). 2

In the next two sections, we show that when applied to convex and strongly convex functions with

globally Lipschitz continuous gradients, the basic ARC algorithm, with only the Cauchy condition for the

step computation, satisfies the same upper iteration complexity bounds—namely O(ǫ−1) and O(| log ǫ|),
respectively—as steepest descent when applied to these problem classes; see [10, Theorems 2.1.14, 2.1.15].

2.3 Basic ARC complexity on convex objectives

Let us now assume that

AF.7 f is convex, (2.22)

C. Cartis, N. I. M. Gould and Ph. L. Toint 7

and also that the level sets of f are bounded, namely

AF.8 ‖x− x∗‖ ≤ D, for all x such that f(x) ≤ f(x0), (2.23)

where x∗ is any global minimizer of f and D ≥ 1. The following property specifies the values of p and κc

for which (2.17) holds in the convex case.

Lemma 2.4. Assume AF.1 and AF.7–AF.8 hold, and let f∗ = f(x∗) be the (global) minimum of f .

When applying ARC to minimizing f , we have for (2.4),

∆k ≤ D‖gk‖, for all k ≥ 0. (2.24)

Proof. AF.7 implies f(x) − f(y) ≥ g(y)T (x − y), for all x, y ∈ IRn. This with x = x∗ and y = xk,

the Cauchy-Schwarz inequality, f(xk) ≤ f(x0) and AF.8 give (2.24). 2

An O(ǫ−1) upper bound on the ARC iteration count for reaching within ǫ optimality of the objective

value is given next.

Theorem 2.5. Assume AF.1, AF.4, AF.7–AF.8 and AM.1 hold, and let f∗ = f(x∗) be the (global)

minimum of f . Then, when applying ARC to minimizing f , we have

∆j = f(xj)− f∗ ≤ 1

|Sj |η1κc
m

, j ≥ 0, (2.25)

where Sj is defined in (2.6), and κc
m has the expression

κc
m

def
=

1

12
√
2D2

min

(

√

D

σ0∆0
,

1√
γ2κHB

)

. (2.26)

Thus, given any ǫ > 0, ARC takes at most
⌈

κc
s

ǫ

⌉

(2.27)

successful iterations and gradient evaluations to generate f(xj)− f∗ ≤ ǫ, where κc
s

def
= (η1κ

c
m)

−1.

Proof. From (1.4) and (1.5), we have

f(xk)− f(xk+1) ≥ η1(f(xk)−mk(sk)), k ∈ S. (2.28)

Lemma 2.4 implies that the conditions of Lemma 2.3 are satisfied with p = 1 and κc = D, and so

(2.18) and (2.28) imply

f(xk)− f(xk+1) ≥ η1κ
c
m∆

2
k,

where κc
m is defined in (2.26). Thus, recalling (2.4), we have

∆k −∆k+1 ≥ η1κ
c
m∆

2
k, k ∈ S,

or equivalently,
1

∆k+1
− 1

∆k
=

∆k −∆k+1

∆k∆k+1
≥ η1κ

c
m

∆k

∆k+1
≥ η1κ

c
m, k ∈ S,

8 Complexity of adaptive cubic regularization methods for convex unconstrained optimization

where in the last inequality, we used (2.13). Since ∆k = ∆k+1 for any k /∈ S, summing up the above

inequalities up to j gives
1

∆j
≥ 1

∆0
+ |Sj |η1κc

m ≥ |Sj |η1κc
m, j ≥ 0,

which gives (2.25), and hence, also (2.27). 2

2.4 Basic ARC complexity on strongly convex objectives

When we know even more information about f , namely, that f is strongly convex, a global linear rate

of convergence, and hence, an improved iteration-complexity of at most O(log ǫ−1) can be proved for the

ARC basic framework, as we show next. This represents, as expected, a marked improvement over the

global sublinear rate of convergence obtained in the nonconvex and convex cases, and the corresponding

iteration complexity bounds.

Let us assume that f is strongly convex, namely, there exists a constant µ > 0 such that

AF.9 f(y) ≥ f(x) + g(x)T (y − x) +
µ

2
‖y − x‖2, ∀x, y ∈ IRn. (2.29)

When AF.9 holds, f has a unique minimizer, say x∗.

The next property specifies the values of p and κc for which (2.17) holds in the strongly convex case.

Lemma 2.6. Assume AF.1 and AF.9 hold, and let x∗ be the global minimizer of f . When applying

ARC to minimizing f , we have

∆k ≤ 1

2µ
‖gk‖2, for all k ≥ 0. (2.30)

Proof. AF.9 implies f(y) ≤ f(x) + g(x)T (y − x) + 1
2µ‖g(x) − g(y)‖2, for all x, y ∈ IRn; see [10,

Theorem 2.1.10] and its proof. Letting x = x∗ and y = xk in the latter gives (2.30). 2

An O(log ǫ−1) upper bound on the ARC iteration count for reaching within ǫ optimality of the objective

value is given next.

Theorem 2.7. Assume AF.1, AF.4, AF.9 and AM.1 hold, and let x∗ be the global minimizer of f .

Then, when applying ARC to minimizing f , we have

∆j = f(xj)− f∗ ≤ (1− η1κ
sc
m)

|Sj | ∆0, j ≥ 0, (2.31)

where Sj is defined in (2.6), and κsc
m has the expression

κsc
m

def
=

µ

6
√
2
min

(

1
√

σ0

√
2µ∆0

,
1√

γ2κHB

)

∈ (0, 1). (2.32)

Thus, given any ǫ > 0, ARC takes at most

⌈

κsc
s log

∆0

ǫ

⌉

(2.33)

successful iterations and gradient evaluations, to generate f(xj)− f∗ ≤ ǫ, where κsc
s

def
= (η1κ

sc
m)−1.

C. Cartis, N. I. M. Gould and Ph. L. Toint 9

Proof. Lemma 2.6 implies that (2.17) holds with p = 2 and κc = 1/(2µ), and so the conditions of

Lemma 2.3 are satisfied and it follows immediately from (2.18), (2.19), (2.28) and the above choices

of p and κc that

∆k −∆k+1 = f(xk)− f(xk+1) ≥ η1κ
sc
m ∆k,

where κsc
m is defined in (2.32), which immediately gives (2.31) since ∆k = ∆k+1 for any k /∈ S. To

show that κsc
m < 1, use γ2 ≥ 1, κHB > κH and κH/µ ≥ 1; the latter inequality follows from (2.30) and

from (2.37) with x = xk. The bound (2.31) and the inequality (1− η1κ
sc
m)|Sj | ≤ e−η1κ

sc
m |Sj | imply that

∆j ≤ ǫ provided e−η1κ
sc
m |Sj |∆0 ≤ ǫ, which then gives (2.33) by applying the logarithm. 2

Some remarks on basic ARC’s complexity for convex and strongly convex objectives.

Let us comment on the results in Theorems 2.5 and 2.7. Note that, despite AF.7 or AF.9, no convexity

assumption was made on mk, confirming the basic ARC framework to be a steepest-descent-like method.

The only model assumption is AM.1. Our results match in order, as a function of the accuracy ǫ, the

(nonoptimal) complexity bounds for steepest-descent applied to convex and strongly convex objectives

with Lipschitz continuous gradients given in [10, Corollary 2.1.2, Theorem 2.1.15].

Let us now discuss the condition numbers that occur in our bounds and their connection to standard

measures of conditioning. Consider first the convex-case bound in Theorem 2.5. Assume that the initial

regularization parameter σ0 is chosen small enough, namely, σ0 ≤ 1/‖g0‖. Then (2.24) implies that

D/(σ0∆0) ≥ 1 and so (2.26) becomes κc
m = (12

√
2γ2κHBD

2)−1, where we also used that γ2, κHB ≥ 1.

Recalling (2.14) and that γ2, η1 and η2 are user-chosen constants, we deduce that the bound (2.27) is a

problem-independent constant multiple of

max(κB, κH)D
2

ǫ
,

where D measures the size of the f(x0)−level set, and κH and κB are the exact and approximate Lipschitz

constants of the gradient, respectively. The displayed expression coincides with the bound in [10, Corollary

2.1.2] when the exact Hessian is used in place of Bk so that κB = κH and all iterations are successful.

Consider now the strongly convex case and Theorem 2.7. Choosing again σ0 ≤ 1/‖g0‖, (2.30) provides
that σ0

√
2µ∆0 ≤ 1. Using this, γ2 ≥ 1 and κHB ≥ 1, (2.32) becomes κsc

m = (6
√
2γ2κHB/µ)

−1. Employing

(2.14) for the expression of κHB, (2.31) now becomes

∆j = f(xj)− f∗ ≤
(

1− η

c(H)

)|Sj |

∆0, (2.34)

where η
def
= η1(1− η2)/(2592

√
γ2) ∈ (0, 1) and

c(H)
def
=

max(κH, κB)

µ
. (2.35)

Note that c(H) is a uniform upper bound on the Hessian’s condition number, which equals the common

measure κH/µ when exact Hessians are employed in place of Bk. Recalling that η1,2 and γ2 are user-chosen

parameters, we deduce that, whenever σ0 ≤ 1/‖g0‖, (2.33) is a problem-independent constant multiple of

c(H) log
∆0

ǫ
, (2.36)

where c(H) is defined in (2.35). When Bk = H(xk), the function-decrease bound for steepest descent

method in [10, Theorem 2.1.15] has a similar form to the simplified bound (2.34) with the term 1−η/c(H)

replaced by the slightly smaller expression (c(H)− 1)2/(c(H) + 1)2.

Note that both (2.27) and (2.33) are worse than the complexity bounds of the optimal gradient method

[10]. The latter enjoys a worst-case bound of order O(1/
√
ǫ) when applied to convex objectives [10,

Theorems 2.1.7, §2.2.1], and of order O((
√

c(H)−1)2/(
√

c(H)+1)2 log ǫ−1) for strongly convex functions.

These two upper bounds match the lower complexity bounds for the minimization of convex and strongly

convex functions with Lipschitz continuous gradient by means of gradient methods [10], and hence they

are optimal from a worst-case complexity point of view.

10 Complexity of adaptive cubic regularization methods for convex unconstrained optimization

2.5 Complexity of basic ARC generating approximately-optimal gradients

Let us address the implication of the above results on the ARC’s complexity for achieving (1.7). This

issue is important as the latter can be used as a termination condition for ARC, while ∆k in (2.4), whose

complexity was estimated above, cannot be computed in practice since f∗ and x∗ are unknown. The

following generic property is useful in this and other contexts.

Lemma 2.8. Let AF.1 and AF.4 hold, and assume f is bounded below by f∗. Then

f(x)− f∗ ≥ f(x)− f(x− αg(x)) ≥ 1

2κH

‖g(x)‖2, for all α ≥ 0 and x ∈ IRn. (2.37)

Thus, when ARC is applied to minimizing f , we have

∆k ≥ 1

2κH

‖gk‖2, k ≥ 0, (2.38)

and so, for any ǫ > 0, ‖gj‖ ≤ ǫ holds whenever

f(xj)− f∗ ≤ ǫ2

2κH

. (2.39)

Proof. First-order Taylor expansion and AF.4 give the overestimation property

f(x+ s) = f(x) + g(x)T s+

∫ 1

0

(g(x+ ts)− g(x))dt ≤ f(x) + g(x)T s+
κH

2
‖s‖2, for all x, s ∈ IRn.

Thus, letting s = −αg(x), we obtain

f(x)− f(x− αg(x)) ≥
(

α− κH

2
α2
)

‖g(x)‖2, for all α ≥ 0.

The minimum of the right-hand side of the above inequality is attained at α∗ = 1/κH, giving (2.37). 2

Under the conditions of Theorem 2.5, ARC will take at most O(ǫ−2) successful iterations to ensure

(2.39) when applied to convex objectives. For strongly convex functions, Theorem 2.7 implies the same

order of complexity of | log ǫ| for ‖gj‖ ≤ ǫ. (Note that the term f(x0) − f∗ in (2.25) and (2.31) can be

replaced by D‖g0‖ and ‖g0‖2/(2µ), respectively.)
Now recall [3, Corollary 3.4], which states that, when applied to nonconvex objectives, the basic ARC

scheme takes at most O(ǫ−2) iterations to generate a first iterate k with ‖gj‖ ≤ ǫ. Hence we see that the

difference between the convex and nonconvex cases is not so great, and the bound improvement (for gj) is

somewhat slight. Namely, as the bound on gj in the convex case was obtained from that on the function

values f(xj) which decrease monotonically, it follows from (2.38) that once ‖gk‖ ≤ ǫ, it will remain as such

for all subsequent iterations, and so the O(ǫ−2) iteration bound represents the maximum total number of

(successful) iterations with ‖gk‖ > ǫ that may occur. Clearly, there is a marked improvement in ARC’s

worst-case complexity for the strongly convex case.

3 The complexity of second-order ARC variants

Let us now consider the complexity of Algorithm 1.2 with inner iteration termination criteria (1.10) and

(1.11), namely of the ARC(S) and ARC(g2) variants. For the remainder of the paper, we assume that

AF.3 f ∈ C2(IRn). (3.1)

C. Cartis, N. I. M. Gould and Ph. L. Toint 11

While no assumption on the Hessian of f being globally or locally Lipschitz continuous has been imposed in

the complexity results of §2.2, we now require that the objective’s Hessian is globally Lipschitz continuous

on the path of the iterates, namely, there exists a constant L > 0 independent of k such that

AF.6 ‖H(x)−H(xk)‖ ≤ L‖x− xk‖, for all x ∈ [xk, xk + sk] and all k ≥ 0, (3.2)

and that Bk and H(xk) agree along sk in the sense that

AM.4 ‖(H(xk)−Bk)sk‖ ≤ C‖sk‖2, for all k ≥ 0, and some constant C > 0. (3.3)

By using finite differences on the gradient for computing Bk, we showed in [5] that AM.4 can be achieved

in O(n| log ǫ|) additional iterations and gradient evaluations (for any user-chosen constant C).

Next we recall some results for ARC(h), in particular, necessary conditions for the global subproblem

solution (1.8) and expressions for the model decrease (see Lemma 3 i)); also, some general properties that

hold for a large class of (nonconvex) functions (see Lemma 3 ii) and iii)).

Lemma 3.1. i) [2, Lemmas 3.2, 3.3] Let sk be the global minimizer of (1.8) for any k ≥ 0. Then

g⊤k sk + s⊤k Bksk + σk‖sk‖3 = 0, (3.4)

and

f(xk)−mk(sk) =
1

2
sTkBksk +

2

3
σk‖sk‖3. (3.5)

ii) [2, Lemma 5.2] Let AF.3, AF.6 and AM.4 hold. Then

σk ≤ max (σ0, 3
2γ2(C + L))

def
= L0, for all k ≥ 0. (3.6)

iii) [3, Lemma 5.2] Let AF.3–AF.4, AF.6, AM.4 and TC.s hold. Then sk satisfies

‖sk‖ ≥ κg

√

‖gk+1‖ for all successful iterations k, (3.7)

where κg is the positive constant

κg
def
=
√

(1− κθ)/(L+ C + L0 + κθκH). (3.8)

Note that in our second-order ARC variants in [2, 3], we employ the more general condition (3.4) and

an approximate nonnegative curvature requirement [2, (3.12)] for defining the choice of sk, which may

hold at other points (of local minimum) than the global minimizer over Lk as prescribed by (1.8). When

the model is convex, as it is often the case here, such situations do not arise.

The bound (3.7) ensures that the step sk does not become too small compared to the size of the

gradient, and it is a crucial ingredient for obtaining, as shown in [3, Corollary 5.3], an O(ǫ−3/2) upper

bound on the iteration count of ARC(S) to generate ‖gk‖ ≤ ǫ for general nonconvex functions. Next we

improve the order of this bound for convex and strongly convex objectives.

Despite solving the subproblem to higher accuracy than the generic ARC framework, the second-order

ARC variants still only evaluate the objective function and its gradient once in each (major) iteration and

each successful iteration, respectively; hence the correspondence between (successful) iteration count and

the number of (gradient) function evaluations continues to hold. Recall also Theorem 2.1 that relates the

total number of iterations to that of successful ones.

12 Complexity of adaptive cubic regularization methods for convex unconstrained optimization

3.1 ARC(g2) complexity on convex objectives

Here, we prove an O(1/
√
ǫ) iteration upper bound for ARC(g2) to achieve (1.12), which improves the

steepest-descent-like bound of order 1/ǫ for basic ARC in Theorem 2.5.

A stronger requirement than AF.6 is required in this section, namely, that the Hessian is globally

Lipschitz continuous

AF.6′ ‖H(x)−H(y)‖ ≤ L‖x− y‖, for all x, y ∈ IRn. (3.9)

Note that AF.6′ and AF.8 imply AF.4 on the f(x0)−level set of f , which is the required domain of gradient

Lipschitz continuity for the results in this section.

We also employ the true Hessian values for Bk, namely, we make the following choice in ARC(g2),

Bk = H(xk), for all k ≥ 0. (3.10)

Thus AM.4 holds in this case with C = 0, and AF.4 (or AF.6′ and AF.8) implies AM.1.

A useful lemma is given first.

Lemma 3.2. Let AF.3, AF.6′ and AF.7–AF.8 hold. Let f∗ = f(x∗) be the (global) minimum of

f . Consider the subproblem (1.8) with Bk = H(xk) and for a(ny) subspace Lk of IRn with g ∈ Lk.

Then

min
s∈Lk

mk(s) ≤ f(xk)− 2κc
m(g2)[f(xk)− f(xk + s∗k)]

3
2 , (3.11)

where s∗k is a (global) minimizer of f(xk + s) over s ∈ Lk, and where

κc
m(g2)

def
=
(

6D
√

6DL1

)−1

and L1
def
= max(σ0, γ2L, κH). (3.12)

Proof. From AF.3 and AF.6′, we have the overestimation property

∣

∣f(xk + s)− f(xk)− sT gk − 1
2s

TH(xk)s
∣

∣ ≤ L

6
‖s‖3, s ∈ IRn, (3.13)

and so, from (1.1) and Bk = H(xk), we have

mk(s) ≤ f(xk + s) +
2σk + L

6
‖s‖3, s ∈ IRn.

Employing (3.6) and γ2 ≥ 1, we further obtain

mk(s) ≤ f(xk + s) + L1‖s‖3, s ∈ IRn, (3.14)

where L1 is defined in (3.12). (Note that κH is not needed as yet in the definition of L1; it will be

useful later as we shall see.) Minimizing on both sides of (3.14) gives the first inequality below

min
s∈Lk

mk(s) ≤ min
s∈Lk

{

f(xk + s) + L1‖s‖3
}

≤ min
α∈[0,1]

{

f(xk + αs∗k) + L1α
3‖s∗k‖3

}

, (3.15)

where the second inequality follows from the definition of s∗k which gives αs∗k ∈ Lk for all α ∈ [0, 1].

From AF.7, we have f(xk + αs∗k) ≤ (1− α)f(xk) + αf(xk + s∗k), for all α ∈ [0, 1], and so, from (3.15),

min
s∈Lk

mk(s) ≤ f(xk) + min
α∈[0,1]

{

α[f(xk + s∗k)− f(xk)] + L1α
3‖s∗k‖3

}

. (3.16)

The construction of the algorithm implies f(xk) ≤ f(x0), so that ‖xk − x∗‖ ≤ D due to AF.8.

Furthermore, f(xk+s∗k) ≤ f(xk), and so ‖xk+s∗k−x∗‖ ≤ D. Thus ‖s∗k‖ ≤ ‖xk−x∗‖+‖xk+s∗k−x∗‖ ≤
2D, and (3.16) implies

min
s∈Lk

mk(s) ≤ f(xk) + min
α∈[0,1]

{

α[f(xk + s∗k)− f(xk)] + 8α3L1D
3
}

. (3.17)

C. Cartis, N. I. M. Gould and Ph. L. Toint 13

The minimum in the right-hand side of (3.17) is attained at

α∗
k = min {1, α̂k} , where α̂k :=

√

f(xk)− f(xk + s∗k)

2D
√
6L1D

.

Let us show that α̂k ≤ 1, namely, f(xk)− f(xk + s∗k) ≤ 24L1D
3. AF.7 gives the first inequality

f(xk + s∗k)− f(xk) ≥ gTk s
∗
k ≥ −‖gk‖ · ‖s∗k‖ ≥ −2D‖gk‖ = −2D‖gk − g(x∗)‖ ≥ −2κHD

2,

where we also used the Cauchy-Schwarz inequality, the bound on s∗k just before (3.17), AF.4 and AF.8.

Since we assumed in AF.8 that D ≥ 1, and the definition of L1 implies L1 ≤ κH, we conclude that

f(xk + s∗k) − f(xk) ≥ −2κHD
3 ≥ −2L1D

3 ≥ −24L1D
3. Thus, α∗

k = α̂k and substituting the above

value of α̂k in (3.17), we deduce (3.11) with the notation (3.12). 2

The main result of this section follows.

Theorem 3.3. Let AF.3, AF.6′ and AF.7–AF.8 hold. Let f∗ = f(x∗) be the (global) minimum of

f . Apply ARC(g2) with the choices (2.8) and (3.10) to minimizing f . Then

∆j = f(xj)− f∗ ≤ 1

(|Sj |η1βκc
m(g2))

2
, j ≥ 0, (3.18)

where Sj is defined in (2.6), κc
m(g2) in (3.12) and

β
def
=

1

2
min

(

1,
κ
3/2
G

4(κHD)3/2

)

with κG

def
=

σmin(κ
c
m(g2))

2

4κ2
θκ

3
H

. (3.19)

Thus, given any ǫ > 0, ARC(g2) takes at most

⌈

κc
s(g2)√
ǫ

⌉

(3.20)

successful iterations and gradient evaluations to generate f(xj)−f∗ ≤ ǫ, where κc
s(g2)

def
= (η1βκ

c
m(g2))

−1.

Proof. Let k ∈ S. From (1.4), (1.5) and (2.5), we have

f(xk+1) ≤ (1− η1)f(xk) + η1mk(sk) = (1− η1)f(xk) + η1[mk(sk)−mk(s
m
k)] + η1mk(s

m
k), (3.21)

where smk denotes the global minimizer of mk(s) over IR
n. AF.7 implies H(xk) is positive semidefinite

and so mk(s) is convex, which gives the first inequality below,

mk(sk)−mk(s
m
k) ≤ ∇smk(sk)

T (sk − smk) ≤ ‖∇smk(sk)‖ · ‖sk − smk ‖ ≤ κθ‖gk‖3 · ‖sk − smk ‖. (3.22)

where the second inequality follows from TC.g2 (1.11). To bound ‖sk − smk ‖, recall that both sk and

smk satisfy (3.4), which implies due to (2.8) and Bk = H(xk) being positive semidefinite,

σmin‖s‖3 ≤ σk‖s‖3 ≤ −gTk s ≤ ‖gk‖ · ‖s‖, where s = sk or s = smk .

Thus max{‖sk‖, ‖smk ‖} ≤
√

‖gk‖/σmin, and so

‖sk − smk ‖ ≤ 2

√

‖gk‖
σmin

.

14 Complexity of adaptive cubic regularization methods for convex unconstrained optimization

This and (3.22) now provide the first inequality below,

mk(sk)−mk(s
m
k) ≤ 2κθ√

σmin
‖gk‖

7
2 ≤ 2κθκH

√
2κH√

σmin

√

‖gk‖ ·∆
3
2

k , (3.23)

while the second inequality follows from (2.38). Recalling (3.21), we are left with bounding mk(s
m
k)

above, for which we use Lemma 3.2 with Lk = IRn. Then, s∗k = x∗−xk and so f(xk)−f(xk+s∗k) = ∆k,

and (3.11) implies

mk(s
m
k) ≤ f(xk)− 2κc

m(g2)∆
3
2

k .

Substituting this bound and (3.23) into (3.21), we deduce

f(xk+1) ≤ f(xk) + 2η1

(

κθκH

√
2κH√

σmin

√

‖gk‖ − κc
m(g2)

)

∆
3
2

k ,

or equivalently, recalling (2.4) and (3.19),

∆k −∆k+1 ≥ 2η1κ
c
m(g2)

1−
√

‖gk‖
2κG

∆
3
2

k .

Thus we have the implication

‖gk‖ ≤ κG

2
=⇒ ∆k −∆k+1 ≥ η1κ

c
m(g2)∆

3
2

k . (3.24)

It remains to prove a bound of the same form as the right-hand side of (3.24) when ‖gk‖ > κG/2. For

this, we employ again Lemma 3.2, this time for sk and the subspace Lk in the kth iteration of ARC(g2)

with g ∈ Lk. Thus noting that the left-hand side of (3.11) is equal to mk(sk) in this case, we employ

(3.11) to upper bound the first inequality in (3.21), and obtain

f(xk+1) ≤ f(xk)− 2η1κ
c
m(g2)[f(xk)− f(xk + s∗k)]

3
2 . (3.25)

Since s∗k is a global minimizer of f(xk + s) over s ∈ Lk, and g ∈ Lk, we have the first inequality below,

for any α ≥ 0,

f(xk)− f(xk + s∗k) ≥ f(xk)− f(xk − αgk) ≥
1

2κH

‖gk‖2 ≥ ‖gk‖
2κHD

∆k,

where the second and third inequalities follow from the second inequality in (2.37) and from (2.24),

respectively. It follows from (3.25) that

f(xk+1) ≤ f(xk)− η1κ
c
m(g2)

‖gk‖
3
2

κHD
√
2κHD

∆
3
2

k ,

or equivalently,

∆k −∆k+1 ≥ η1κ
c
m(g2)

‖gk‖
3
2

κHD
√
2κHD

∆
3
2

k .

Thus we have the implication

‖gk‖ >
κG

2
=⇒ ∆k −∆k+1 ≥ η1κ

c
m(g2)

κG

√
κG

4κHD
√
κHD

∆
3
2

k . (3.26)

Finally, we conclude from (3.24) and (3.26) that

∆k −∆k+1 ≥ 2η1βκ
c
m(g2)∆

3
2

k , k ∈ S, (3.27)

C. Cartis, N. I. M. Gould and Ph. L. Toint 15

where β is defined in (3.19). For any k ∈ S, we have the identity below

1
√

∆k+1

− 1√
∆k

=
∆k −∆k+1

√

∆k∆k+1(
√
∆k +

√

∆k+1)
≥ 2η1βκ

c
m(g2)

∆k
√

∆k+1(
√
∆k +

√

∆k+1)
≥ η1βκ

c
m(g2),

where we also used (3.27) and (2.13), respectively. Thus, recalling that ∆k remains unchanged on

unsuccessful iterations and summing the above up to j, we deduce

1
√

∆j

≥ 1√
∆0

+ |Sj |η1βκc
m(g2) ≥ |Sj |η1βκc

m(g2), j ≥ 0,

which gives (3.18) and also (3.20). 2

As TC.g2 is satisfied at the global minimizer of the cubic model mk(s), the latter can be chosen as the

step in our algorithm, which is an efficient choice as far as the cost of the subproblem solution is concerned,

provided the problem is medium-size or the Hessian at the iterates is sparse.

Note the two regimes of analysis in the above proof, namely in the model decreases (3.24) and (3.26).

To obtain the former “asymptotic” case, the termination criteria TC.g2 was used, while for the latter “early

stages” case, the first-order condition that the gradient be included in the subspace of minimization, and

the ensuing decrease along the steepest descent direction, were essential. Thus the construction of ARC(g2)

to behave like steepest-descent early on and then naturally switch to higher accuracy as it approaches the

solution is reflected in our complexity analysis, with the slight caveat that the (converging) gradient is

nonmonotonic and so the distinction between the asymptotic and nonasymptotic regimes is not strict.

Furthermore, the nonasymptotic result (3.26) also holds for ARC(S), but the termination condition TC.s

does not seem strong enough to ensure a similar property to (3.24) for the asymptotic regime of ARC(S).

Assuming that σ0 is chosen small enough, then the condition number κc
m(g2) in (3.12) and (3.18) that

characterizes the asymptotic function decrease is a problem-indepedent constant multiple of 1√
max(κH,L)D3

while β ∈ (0, 1) in (3.18) represents the fraction of this function decrease that can be ensured in the non-

asymptotic regime when only a Cauchy decrease is achieved.

The iteration complexity of Nesterov & Polyak’s cubic regularization algorithm applied to convex

problems is analysed in [12, Theorem 4] and [11, Theorem 1], and an O(1/
√
ǫ) bound is obtained. Here, we

relax the requirement that the subproblem be solved globally and exactly, allowing approximate solutions

to obtain a same-order bound.

Complexity of generating approximately-optimal gradient values The complexity of ARC(g2)

generating a gradient value ‖gj‖ ≤ ǫ can be obtained as described in Section 2.5, by using (2.39) in Lemma

2.8, and an O(1/ǫ) upper bound on the total number of iterations and gradient-evaluations with ‖gk‖ > ǫ

ensues.

3.2 ARC(S) complexity on strongly convex objectives

For generality purposes (since TC.s is a milder condition than TC.g2), we focus on ARC(S) in this section,

but similar results can be shown for ARC(g2).

Let us now assume AF.9. Due to AF.3, (2.29) is equivalent to

uTH(x)u ≥ µ‖u‖2, for all u, x ∈ IRn. (3.28)

Employing (2.29) with y = x and x = x∗, we deduce that AF.8 is implied by AF.9 with

D ≤
√

2∆0/µ. (3.29)

The strong convexity of f implies that asymptotically, ARC(S) converges Q-quadratically to the (global)

minimizer and hence it possesses an associated evaluation complexity of order log2 | log2 ǫ| from some

iteration jq ≥ 0 onwards [1, §9.5.3].

16 Complexity of adaptive cubic regularization methods for convex unconstrained optimization

Lemma 3.4. Assume AF.3–AF.4, AF.6, AF.9 and AM.4 hold, and let x∗ be the global minimizer of

f . Apply ARC(S) to minimizing f , and assume that the Rayleigh quotient of Bk along sk is uniformly

bounded away from zero, namely

Rk(sk)
def
=

sTkBksk
‖sk‖2

≥ Rmin > 0, ∀ k ∈ S. (3.30)

Then, recalling κg defined in (3.8) and letting δ
def
= 1

2 (η1Rminκ
2
g
√
µ)2,

Nf
def
= {x : f(x)− f(x∗) ≤ δ} (3.31)

is a neighbourhood of quadratic convergence for f , so that if there exists jq ≥ 0 such that xjq ∈ Nf

with ∆jq ≤ δ/2, then xk ∈ Nf for all k ≥ jq, and

∆k+1 ≤ 1

δ
∆2

k, for all k ∈ S and k ≥ jq. (3.32)

Furthermore, given ǫ > 0, ARC(S) takes at most

⌈

log2 log2

(

δ

ǫ

)⌉

(3.33)

successful iterations and gradient evaluations from jq onwards, to generate f(xj)− f∗ ≤ ǫ.

Proof. Let k ∈ S. Then (1.5), (3.5), (3.30) and (3.7) imply

f(xk)−f(xk+1) ≥ η1(f(xk)−mk(sk)) ≥ 1
2η1Rk(sk)‖sk‖2 ≥ 1

2η1Rmin‖sk‖2 ≥ 1
2η1Rminκ

2
g‖gk+1‖, k ∈ S.

Lemma 2.6 applies at k + 1 and so

∆k+1 ≤ 1

2µ
‖gk+1‖2.

The last two displayed equations further give

∆k ≥ f(xk)− f(xk+1) ≥ 1
2η1Rminκ

2
g

√

2µ∆k+1,

and so

∆k+1 ≤ 1

δ
∆2

k, for all k ∈ S, (3.34)

where δ is defined in (3.31). Thus the expression of Nf in (3.31) follows, as well as (3.32). Assuming

that xjq ∈ Nf with ∆jq ≤ δ/2, we deduce from (3.32) that

∆j ≤ δ1−2l∆2l

jq , for any j ≥ jq, (3.35)

where l = |{jq, jq+1, . . . , j} ∩ S| denotes the number of successful iterations from jq up to j. Now

employing ∆jq ≤ δ/2 in (3.35) shows that ∆j ≤ ǫ provided 2−2lδ ≤ ǫ, which gives the bound (3.33). 2

Remark on satisfying (3.30). If exact Hessians are used so that Bk = H(xk) for all k, then AF.9

implies (3.30) due to (3.28). Alternatively, (3.30) can be ensured if AM.4 holds with a sufficiently small

C. Namely, note that AF.9, AM.4 and (3.29) imply

µ ≤ sTkHksk
‖sk‖2

≤ Rk(sk) +
sTk (Hk −Bk)sk

‖sk‖2
≤ Rk(sk) + C‖sk‖ ≤ Rk(sk) + 2CD, k ≥ 0.

C. Cartis, N. I. M. Gould and Ph. L. Toint 17

Thus (3.30) holds provided C < µ/(2D). Recall our comments on satisfying AM.4 by finite differencing

following (3.3). 2

We are left with bounding the successful iterations up to jq, namely, the iterations ARC(S) takes until

entering the region of quadratic convergence Nf (which must happen under the conditions of Corollary

3.5 as xk converges to the unique global minimizer x∗). From the definition of jq and Nf in Lemma 3.4,

this is equivalent to counting the successful iterations until

∆jq = f(xjq)− f(x∗) ≤ 1
2δ, (3.36)

with δ defined in (3.31). The choice of sk in (1.8) with gk ∈ Lk implies that ARC(S) always satisfies

the Cauchy condition (1.2) and so the bound in Theorem 2.7 holds. This yields an upper bound on (the

successful iterations up to) jq of order log(∆0/δ), and emphasizes again that early on in the running of the

algorithm, steepest-descent-like decrease is sufficient even from a worst-case complexity viewpoint. The

bound on the total number of successful iterations is then obtained by adding up the bounds on the two

distinct phases, up to and then inside the neighbourhood of quadratic convergence.

Corollary 3.5. Assume AF.3–AF.4, AF.6, AF.9, AM.1 and AM.4 hold, and let x∗ be the global

minimizer of f . Apply ARC(S) to minimizing f , assuming that (3.30) holds. Then, given any ǫ > 0,

ARC(S) takes, in total, at most

⌈

κsc
s log

2∆0

δ
+ log2 log2

(

δ

ǫ

)⌉

(3.37)

successful iterations and gradient evaluations to generate f(xj)− f(x∗) ≤ ǫ, where κsc
s is defined in

(2.33) and δ in (3.31).

Proof. The conditions of Theorem 2.7 are satisfied, and so letting ǫ = δ/2 in (2.33), we deduce that

(3.36) holds in at most ⌈κsc
s log(2∆0/δ)⌉ successful iterations. To bound the number of iterations from

jq to j, we employ Lemma 3.4. Thus the total number of successful iterations up to j is the sum of

these two bounds. 2

Recalling our comments following (2.34), let us interpret the condition numbers in (3.37). In particular,

provided σ0 is chosen sufficiently small, we obtain from (2.36) that κsc
s is a problem-independent multiple of

the bound c(H) in (2.35) on the condition number of the Hessian matrixH(x). Additionally, if Bk = H(xk)

so that C = 0 and Rmin = µ, δ in (3.31) and (3.37) simplifies to a multiple of
√
µ/c(H).

Note that for the non-asymptotic phase of ARC(S), an O(1/
√
δ) bound can be deduced similarly to the

proof of Theorem 3.3. Namely, using Lemma 3.2, which clearly holds for ARC(S), we deduce (3.25); then

employ (2.37) just as in the first displayed equation after (3.25) and use (2.30). Then the total ARC(S)

complexity would be of order δ−1/2 + log2 log2(δ/ǫ), which matches the bounds for cubic regularization

with exact subproblem solution in [12, pages 203–204] and [11, pages 176–177]. Note that such bounds

are weaker than the ones we obtained in Corollary 3.5.

Complexity of generating approximately-optimal gradient values We have the following

result, where the constants have already been defined in Corollary 3.5.

18 Complexity of adaptive cubic regularization methods for convex unconstrained optimization

Lemma 3.6. Assume AF.3–AF.4, AF.6, AF.9, AM.1 and AM.4 hold. Apply ARC(S) to minimizing

f , assuming that (3.30) holds. Then Ng
def
= {x : ‖g(x)‖ ≤ (1

2η1Rminκg)
2 def
= ζ} is a neighbourhood of

quadratic convergence for the gradient g, namely, there exists jq such that xjq ∈ Ng with ‖gjq‖ ≤ ζ/2,

then xk ∈ Ng for all k ≥ jq, and

‖gk+1‖ ≤ 1

ζ
‖gk‖2, for all k ∈ S and k ≥ jq. (3.38)

Thus, given ǫ > 0, ARC(S) takes at most

⌈

log2 log2

(

ζ

ǫ

)⌉

(3.39)

successful iterations from jq onwards, to generate ‖gj‖ ≤ ǫ. Furthermore, to generate ‖gjq‖ ≤ ζ,

ARC(S) takes at most
⌈

2κsc
s log

‖g0‖
√
κH

ζ
√
µ

⌉

(3.40)

successful iterations, so that the total number of successful iterations and gradient evaluations re-

quired to generate ‖gj‖ ≤ ǫ is at most equal to the sum of the bounds (3.39) and (3.40).

Proof. AF.9 implies AF.7 which gives

f(xk+1)− f(xk) ≥ gTk sk ≥ −‖gk‖ · ‖sk‖, k ≥ 0.

This and the first set of displayed equations in the proof of Lemma 3.4 give the first inequality below

‖gk‖ ≥ 1
2η1Rmin‖sk‖ ≥ 1

2η1Rminκg

√

‖gk+1‖, k ∈ S, (3.41)

where the latter inequality follows from (3.7). The expression and properties of Ng follow. The bound

(3.39) is obtained similarly to the proof of (3.33) in Lemma 3.4. To deduce (3.40), let ǫ = ζ in (2.39)

and in (2.33), and replace ∆0 in the latter by its upper bound ‖g0‖2/(2µ). 2

A similar estimate of a neighbourhood of quadratic convergence for the gradient can be found in [11]

for Nesterov & Polyak’s cubic regularization algorithm.

3.3 On the tightness of ARC’s complexity bounds

The question arises as to whether the complexity bounds on ARC’s performance on special problem classes

presented in this section are too pessimistic, even for the worst-case, and could potentially be improved.

This is particularly relevant when it comes to the convex case and the corresponding bound of order

1/
√
ǫ (Theorem 3.3), implying a sublinear rate of convergence of second-order ARC variants on convex

functions. (For the strongly convex case, the log | log ǫ| bound can commonly be observed numerically

when Q-quadratic convergence takes place.)

Here, we find a convex function that satisfies all the conditions of Theorem 3.3 apart from having

bounded level sets and on which ARC takes precisely order 1/
√
ǫ iterations (and function- and gradient-

evaluations), to generate f(xj)− f∗ ≤ ǫ.

Consider a convex function f ∈ C2(IR), with

f(x) = e−x, for x ≥ 0. (3.42)

We have the following complexity result, whose proof is given in the Appendix.

C. Cartis, N. I. M. Gould and Ph. L. Toint 19

Lemma 3.7. The function (3.42) is convex, bounded below by f∗ = 0 and has bounded above

and Lipschitz continuous second derivatives f ′′(x) for x ∈ [0,∞) with constants κH = L = 1, thus

satisfying AF.4, AF.6′ and AF.7.

Apply ARC to minimizing (3.42), starting with x0 ≥ 0. On each iteration k, compute the step sk as

the global minimizer of the model mk(s) in (1.1) with Bk = f ′′(xk) and with the (reasonable) choice

σk := σ ≥ L

2
=

1

2
, ∀k ≥ 0, (3.43)

which ensures that every iteration is very successful and that (2.8) holds. Then AM.1 and AM.4 hold

(with κB = 1 and C = 0), and ARC takes Θ(ǫ−1/2) total iterations to achieve f(xk) ≤ ǫ, where Θ(·)
denotes upper and lower bounds of that order.

Several remarks are in order concerning the above example.

• This example also applies to Nesterov & Polyak’s cubic regularization algorithm [12, 11]; recall our

choice of sk and σk in the above. In particular, it satisfies all the conditions in [11, Theorem 1]

including σk = L/2 but except f having bounded level sets. The latter theorem establishes the

O(ǫ−1/2) iteration upper bound for Nesterov & Polyak’s cubic regularization.

• Approximate termination criteria like TC.g2 and TC.s do not give better performance than the

exact subproblem solution in this case (see the right-hand side plot of basic ARC with the Cauchy

condition in Figure 3.1).

• If Newton’s method is applied to this example, the complexity would be better; see Figure 3.1.

Similarly, if we allowed σk to decrease to zero so that the step approaches the Newton step, the

complexity would again improve. Thus the inefficient behaviour in this example is due to keeping

the regularization always switched ‘on’, and always ‘strongly’ regularizing. However, we have shown

in [4] that for nonconvex problems, Newton’s method can behave worse than second-order ARC in

the worst case, in fact it can be as poor as steepest descent. It remains to see whether this is also

possible for convex problems, or for problems with bounded level sets.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Iterations vs Objective; log scale

Newton

σ
k
 −−−> 0

σ
k
=L/2

Cauchy

Figure 3.1: Graph of (3.42) and the local cubic regularizations at the ARC iterates (left-hand side).

Plot of objective values at the iterates on a log scale for different ARC variants and for Newton’s method

(right-hand side).

20 Complexity of adaptive cubic regularization methods for convex unconstrained optimization

4 Conclusions

The behaviour of ARC on some special problem classes was investigated and, as expected, improved

complexity bounds were shown when additional structure was assumed to be present in the problem. In

particular, upper bounds of order O(1/
√
ǫ) and O(| log κ|+ log | log ǫ|) were proved for second-order ARC

variants when applied to convex and strongly convex objectives, respectively. For the latter case, the

fact that the constant number of steps before entering the region of quadratic convergence is a logarithmic

function of condition numbers is an improvement over existing complexity bounds for second-order methods

applied to such problems.

We have also given an example of (relatively) inefficient behaviour of second-order ARC on a convex

problem with unbounded level sets which takes order 1/
√
ǫ iterations to reach within ǫ of the optimum.

Several open questions remain, such as whether a convex objective with bounded level sets can be found

on which the latter iteration bound is attained, or whether Newton’s method always has better worst-case

complexity than ARC in the convex case.

References

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, United

Kingdom, 2004.

[2] C. Cartis, N. I. M. Gould and Ph. L. Toint. Adaptive cubic regularisation methods for unconstrained

optimization. Part I: motivation, convergence and numerical results. Mathematical Programming,

127(2):245–295, 2011.

[3] C. Cartis, N. I. M. Gould and Ph. L. Toint. Adaptive cubic regularisation methods for unconstrained

optimization. Part II: worst-case function- and derivative-evaluation complexity. Mathematical Pro-

gramming, DOI: 10.1007/s10107-009-0337-y, 2010 (online).

[4] C. Cartis, N. I. M. Gould and Ph. L. Toint. On the complexity of steepest descent, Newton’s and regu-

larized Newton’s methods for nonconvex unconstrained optimization. SIAM Journal on Optimization,

20(6): 2833–2852, 2010.

[5] C. Cartis, N. I. M. Gould and Ph. L. Toint. On the oracle complexity of first-order and derivative-free

algorithms for smooth nonconvex minimization. ERGO Technical Report 10-005, School of Mathemat-

ics, University of Edinburgh, 2010.

[6] A. R. Conn, N. I. M. Gould and Ph. L. Toint. Trust-Region Methods. SIAM, Philadelphia, USA, 2000.

[7] J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization and nonlinear

equations. Prentice-Hall, Englewood Cliffs, New Jersey, USA, 1983. Reprinted as Classics in Applied

Mathematics 16, SIAM, Philadelphia, USA, 1996.

[8] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins University Press, Baltimore,

USA, 1996.

[9] A. Griewank. The modification of Newton’s method for unconstrained optimization by bounding cubic

terms. Technical Report NA/12 (1981), Department of Applied Mathematics and Theoretical Physics,

University of Cambridge, United Kingdom, 1981.

[10] Yu. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, Dor-

drecht, The Netherlands, 2004.

[11] Yu. Nesterov. Accelerating the cubic regularization of Newton’s method on convex problems. Math-

ematical Programming, 112(1):159–181, 2008.

C. Cartis, N. I. M. Gould and Ph. L. Toint 21

[12] Yu. Nesterov and B. T. Polyak. Cubic regularization of Newton’s method and its global performance.

Mathematical Programming, 108(1):177–205, 2006.

[13] M. Weiser, P. Deuflhard and B. Erdmann. Affine conjugate adaptive Newton methods for nonlinear

elastomechanics. Optimization Methods and Software, 22(3):413–431, 2007.

Appendix A

Proof of Lemma 3.7. Apply ARC to minimizing (3.42), starting at x0 ≥ 0, where each sk is computed

as the global minimizer of the cubic model mk(s), s ∈ IR, with Bk = f ′′(xk), which thus has the expression

mk(s) = e−xk − se−xk +
1

2
s2e−xk +

σk

3
|s|3, s ∈ IR. (A.1)

Let us compute an explicit expression for sk from xk ≥ 0. We have

∇mk(s) = −e−xk + se−xk + σks|s|, s ∈ IR.

Distinguishing between the case s ≥ 0 and s < 0, we deduce that there is no stationary point — and hence

minimizer — in the latter case, and that the former case yields the unique solution

sk =
2

1 +
√
1 + 4σkexk

(A.2)

to ∇mk(s) = 0. Thus sk > 0, and since x0 ≥ 0, all iterates satisfy

xk ≥ 0, ∀ k ≥ 0; (A.3)

so we only need to consider f(x) for x ≥ 0, which clearly satisfies AF.4 with κH = 1, AM.1 with κB = 1,

AF.6′ with L = 1, AM.4 with C = 0, and AF.7. Furthermore, AF.6′, (1.6) and (3.13) provide the

implication

σk ≥ L

2
=⇒ k is very successful.

This and (3.43) imply that all iterations k are very successful and that the iterates satisfy xk+1 = xk + sk,

with sk in (A.2), for all k ≥ 0. Furthermore, (3.42) and e−x ∈ (0, 1] for x ≥ 0, provide the following

same-order bounds on sk in (A.2)

1√
σ
e−

1
2xk > sk ≥ 2

1 +
√
1 + 4σ

e−
1
2xk , ∀ k ≥ 0,

which further become, by letting

c1 :=
1√
σ

and c2 :=
2

1 +
√
1 + 4σ

,

c1e
− 1

2xk ≥ sk ≥ c2e
− 1

2xk , ∀ k ≥ 0. (A.4)

From (3.42), we have

f(xk+1) = e−xk−sk = e−xke−sk = f(xk)e
−sk ,

which further gives, by employing (A.4),

f(xk)e
−c1e

−

1
2 xk ≤ f(xk+1) ≤ f(xk)e

−c2e
−

1
2 xk

, k ≥ 0.

Employing again (3.42), we obtain

f(xk)e
−c1

√
f(xk) ≤ f(xk+1) ≤ f(xk)e

−c2
√

f(xk), k ≥ 0. (A.5)

22 Complexity of adaptive cubic regularization methods for convex unconstrained optimization

Since the following bounds hold for the exponential function

1− y ≤ e−y ≤ 1− y +
y2

2
, y ∈ [0, 1], (A.6)

it follows from (A.5), (A.6) and fk = f(xk) ∈ (0, 1] that

fk(1− c1
√

fk) ≤ fk+1 ≤ fk

(

1− c2
√

fk +
c22
2
fk

)

, k ≥ 0, (A.7)

and so

c2fk
√

fk

(

1− c2
2

√

fk

)

≤ fk − fk+1 ≤ c1fk
√

fk, k ≥ 0. (A.8)

Furthermore, using c2 ∈ (0, 1) and fk ∈ (0, 1], we obtain

c3fk
√

fk ≤ fk − fk+1 ≤ c1fk
√

fk, k ≥ 0, (A.9)

where c3 := c2(1− c2/2). Next we deduce an explicit expression of fk in terms of k.

It is easy to check that, for any k ≥ 0, we have

1
√

fk+1

− 1√
fk

=
fk − fk+1

√

fkfk+1(
√
fk +

√

fk+1)
,

and so, employing (A.9) on the right-hand side of the above, we obtain

c3fk
√

fk+1(
√
fk +

√

fk+1)
≤ 1
√

fk+1

− 1√
fk

≤ c1fk
√

fk+1(
√
fk +

√

fk+1)
,

and furthermore, using fk ≥ fk+1, we deduce

c3
2

≤ 1
√

fk+1

− 1√
fk

≤ c1
2

· fk
fk+1

, k ≥ 0. (A.10)

Now let us give an upper bound on fk/fk+1. Using (A.5) and fk ∈ (0, 1], we deduce

fk
fk+1

≤ ec1
√

fk ≤ ec1 , k ≥ 0.

Thus (A.10) gives
c3
2

≤ 1
√

fk+1

− 1√
fk

≤ c1
2
ec1 , k ≥ 0. (A.11)

Summing up (A.11) over i ∈ {0, . . . , k}, we obtain

k
c3
2

+
1√
f0

≤ 1√
fk

≤ k
c1
2
ec1 +

1√
f0

, k ≥ 0,

and thus,

k
c3
2

≤ 1√
fk

≤ kmax
(

c1e
c1 , 2e

1
2x0

)

, k ≥ 0. (A.12)

Finally, (A.12) is equivalent to

1

k2
min

(

1

c21
e−2c1 ,

1

4
f0

)

≤ fk ≤ 1

k2
· 4

c23
, k ≥ 0,

which gives the desired complexity result of the Lemma. 2

