
EVALUATION IN GO BY A NEURAL NETWORK

USING SOFT SEGMENTATION

M. Enzenberger
University of Alberta, Edmonton, Alberta, Canada

emarkus@cs.ualberta.ca, http://www.cs.ualberta.caremarkusl

Abstract In this article a neural network architecture is presented that is able to build a soft

segmentation of a two-dimensional input. This network architecture is applied to

position evaluation in the game of Go. It is trained using self-play and temporal

difference learning combined with a rich two-dimensional reinforcement signal.

Two experiments are performed, one using the raw board position as input, the

other one doing some simple preprocessing of the board. The second network is

able to achieve playing strength comparable to a 13-kyu <;Jo program.

Keywords: Go, neural networks, segmentation, connectivity, NeuroGo

1. Evaluating Go Positions

Writing a program that plays the game of Go is a notoriously hard problem.

Despite many efforts the best programs stiH play at a weak to medium amateur

level of about 8 kyu (Schaeffer, 2001). This is not only due to the large branching

factor but also to the fact that the evaluation of Go positions is difficult. State

of-the-art programs rely on a knowledge intensive approach. They use large

databases of patterns, rule-based systems, and hand-tuned heuristics (Bouzy

and Cazenave, 2001).

1.1 Simplification by Segmentation

The evaluation of a Go position can be simplified by segmenting the position

into parts. This works well in positions with independent subgames where

playing one subgame does not affect the value of other subgames. A typical

example are Go endgame positions to which combinatorial game theory bas

been applied successfully (Miiller and Gasser, 1996). Positions without a clear

segmentation are more difficult: in particular, middle-game positions with many

possible continuations each leading to different follow-up segmentations, and

positions with multiple nearby tactica! fights. Many Go programs use some

influence-based segmentation of positions (Chen, 2002).

H. J. Van Den Herik et al. (eds.), Advances in Computer Games

© IFIP International Federation for Information Processing 2004

98 M. Enzenberger

Cognitive studies on human Go players have shown that humans perceive Go

positions not as a set of hierarchical structured patterns with clear boundaries

but rather as a set of overlapping clusters (Reitman, 1976).

1.2 Neural Networks

Neural networks have been used for evaluating full-board Go positions.

Schraudolph, Dayan, and Sejnowski (1994) used temporal-difference learning

(Sutton, 1988) to train a neural network to evaluate Go positions. They showed

that it is important to use a rich reinforcement signal and a sparsely connected

network architecture that reflects the local character and translational invariance

of the pattern-recognition task. This was accomplished by using 5 x 5 receptive

fields with weight sharing.

However, essential features of a Go position depend on whether two points

on the board are connected by one colour or will become connected later. U sing

fixed-size receptive fields makes the recognition of long distance connections

impossible. The most basic cases are blocks. Blocks are sets of adjacent stones

of the same colour; they can take an arbitrary shape on the board. Moreover,

they can only be captured as a unit.

The Go program NEURoGo (version 2) used receptive fi,elds that dynam

ically adapt their size to fit around blocks (Enzenberger, 1996). This was

achieved by transforming the Go position into a graph with ali stones of a block

merged into a single node. While NEURoGo's performance was improved

greatly compared to a network using fixed-size receptive fields, it was still im

possible for the network to represent higher-level objects like groups. Groups

are a set of loosely connected blocks that might become connected later. This

was the motivation for the development of a new network architecture with

better abilities for segmenting the board.

2. Architecture using Soft Segmentation

This section presents a neural-network architecture that is able to process a

Go position by building a soft segmentation of the position. This architecture

is now used in version 3 of NEURoGo.

The neural network uses a feedforward backpropagation architecture. The

neurons have a sigmoid activation function, .with activation values between O

and 1 and a bias weight. The soft segmentation of a position is represented as

two connectivity maps, one for each colour. Bach connectivity map assigns a

connectivity strength between O and 1 to each pair of points on the board. See

Figure 1 for an overview of the network architecture.

The next section describes the reinforcement signal that is used for learning,

followed by a description of the layers in the network and the connections

between them.

Evaluation in Go by a Neural Network Using Soft Segmentation 99

hidden layer

Receplive fields

Figure 1. Network architecture.

2.1 Reinforcement Signal

The final position of a Go game contains much fichef inforrhation than mefely

the global scofe. The netwofk uses single-point eyes, connections, and live

points which are defined as follows.

• A single-point eye is an empty point with ali adjacent points occupied by

stones of the same block Of by stones of two blocks of the same colour

that share anothef single-point eye.

• A paif of points is connected by one colouf if thefe is a path between

them containing only stones of that colour Of single-point eyes.

• A point is said to be alive if it is connected to two single-point eyes.

Chinese scofing rules are used dufing the netwofk tfaining. No pass move is

allowed until ali points on the board are alive1. Also, it is not allowed to play

in one's own single-point eyes.

Single-point eyes and connections can occuf in earlief positions of the game,

but may not exist in the end position, because those blocks could have been

captured. Li ve points stay ali ve from the fifst position in which they occuf until

the end position.

The netwofk uses single-point eyes, connections and live points as a fein

fofcement signal. Connections are used only locally within a 3 x 3 window

centred around each point.

1 This makes scoring and detection of the end of the game easy, but will lead to wrong play in case of seki

situations or more complicated single-point eyes (involving more than two blocks). However these cases

rarely occur in actual games.

100 M. Enzenberger

2.2 Neuron Layers

Each layer of neurons in the architecture contains one or more neurons for

each point on the board. There are 7 layers as follows.

Input layer: This layer contains one or more neurons per point depending on

the number of (boolean) input features that are used. The activation of

the neurons is set to O or 1 according to whether a certain input feature

is present in the Go position at this point. A Go position is always

transformed such that Black is to move. This makes an additional input

for indicating what colour is to move unnecessary.

First hidden layer: This layer contains one or more neurons per point. The

number of neurons per point is a parameter of the network architecture.

The layer is connected with receptive fields to the in put '.Iayer.

Second hidden layer: Like the first hidden layer, this layer contains one or

more neurons per point. The number of neurons per point is another pa

rameter of the network architecture. The layer is connected with receptive

fields to the first hidden layer.

Simple eyes layer: This layer contains 2 neurons per point, one for each colour.

The activation is a prediction of whether that colour is able to create a

single-point eye at this point. The layer is connected with receptive fields

to the first hidden layer. It receives a reinforcement signal when a simple

eye is created on the board.

Local connections layer: This layer contains 18 neurons per point, 9 for each

colour. The activation is a prediction of whether that colour is able to

create a connection from this point to each of the 9 points in a 3 x 3 window

around this point (including self-connection). Neurons corresponding

to off-board points are unused. The layer is connected with receptive

fields to the first hidden layer. It receives a reinforcement signal when a

connection is created on the board.

Global connectivity layer: This layer contains 2 · n2 neurons per point for

board size n. The activation is a prediction whether each colour is able

to create a connection from this point to any point on the board. The

activation is computed by the connectivity pathfinder (see 2.5) from the

local connections layer.

Evaluation layer: This layer contains 1 neuron per point. The activation is

a prediction whether this point will be alive for Black (activation 1) or

White (activation 0). The layer is connected to the second hidden layer

and the simple eyes layer by connectivity-based weight selection (see

2.6). It receives a reinforcement signal for live points when they are

created on the board.

Evaluation in Go by a Neural Network Using Soft Segmentation 101

2.3 Point Types

Bach neuron corresponds to a point. Different point types are defined. The

actual weights are chosen from weight sets depending on the point type.

There are two reasons for using weight sets. They increase the number of free

parameters without significantly affecting the time for processing a position,

since only one weight of a set is selected. They also compensate for effects of

the edge of the board while still making it possible to learn local patterns that

are mostly invariant with respect to translation.

The function type(p) assigns a type to each point p. See Figure 2 for the

point types that were used.

type(p)

O Empty comer point

1 Empty edge point next to comer

2 Other empty edge point

3 Empty point diagonal from comer

4 Other empty point on second line

5 Empty point on 'line 3 or higher

6 Black stone

7 White stone

Figure 2. Point types: definition and example.

2.4 Receptive Fields

The function window (p) assigns to each point p the set of points within a 3 x 3

square window centred at this point. If a layer is connected with receptive fields

to a previous layer then each neuron corresponding to a point p is connected to

all neurons in the previous layer corresponding to the points p' E window(p).

The spatial relationship of two points p and p' is described by a field index given

by the function field(p, p') (see Figure 3).

Consider a layer L with n neurons per point connected to a previous layer

L' with m neurons per point by receptive fields. Then a neuron corresponding

to a point p and index i E { 1.. n} is connected to all neurons in the previous

layer corresponding to points p' E window(p) and index j E { 1.. m} using the

weights
LL'

wi,j,type(p) ,type(p') ,field(p,p')

The neuron bas a bias weight bf,type(p) ·

102 Mo Enzenberger

A B C O E F G H J

9 9
"'{''''/A//-

8 8

7 7

6 6

!11111111!
3 3

2 2

1 1

Figure 30 Receptive fieldso Field indices for 2 receptive fields centred at Al and G70

2.5 Connectivity Pathfinder

The connectivity pathfinder creates a global connectivity map from the local

connections layero It assigns a connection value between O and 1 to each pair

of points for each colouro '

Local connections are assumed to be independent. Connection values of

points outside the local connection window are computed as the product of the

local connection valueso Only the path resulting in the highest connection value

is consideredo The current implementation of the pathfinder runs Dijkstra's

shortest-path algorithm with each point as a starting point.

2.6 Connectivity-based Weight Selection

The simple eyes layer and second hidden layer are connected to the evaluation

layer using connectivity-based weight selectiono

Every neuron in the evaluation layer is connected to ali nelltons in the pre

vious layer with weights depending on the connection value between the cor

responding points predicted by the global connectivity layero For that purpose

connection values are transformed from the continuous values between O and

1 into 8 equally sized intervals2 o For each colour c and pair of points p and p'

the function connection(c,p,p') E {1..08} retums the index of the interval.

Consider a neuron corresponding to a point pin the evaluation layer Eo The

neuron has a bias weight bgpe(p) o Let L be one of the previous layers to which

the evaluation layer is connected by connectivity-based weight selection (the

simple eyes layer or second hidden layer), with n neurons per point. Then the

2For efficiency, point~ with a connection value smaller than Ool were ignoredo

Evaluation in Go by a Neural Network Using Soft Segmentation 103

neuron is connected to all neurons in the previous layer corresponding to points

p' aud index i E { 1 .. n} using the weights

EL
wi,type(p), type(p') ,connection (c,p,p')

for both colours c.

3. Learning

The learning is described according to the usual distinction between training

(subsection 3.1) aud testing (subsection 3.2).

3.1 Training

Games for training are produced by self-p1ay. A move is selected by using 1-

ply look-ahead with the sum of all outputs in the evaluation layer as the scoring

function.

Although training on larger board sizes provides more reinforcement sig

nal for each position, the 1-ply look-ahead would slow it down considerably.

Therefore the experiments were done on a 9 x 9 board. However, the network

architecture allows retraining the network on increasing board sizes to adapt it

to the different ratios between edge aud centre points.

Forbetter exploration ofthe state space, in 15% ofthe moves, instead ofplay

ing the move with the highest score, Gibbs sampling (Geman aud Geman, 1984)

over the move scores was used. The (unnormalised) probability of selecting a

move with score s was

P(s) = exp(sjT)

with a temperature T of 4.0. These positions were not trained.

After each played game, the 1 O most recent games were trained using temporal

difference learning with >. = O (Sutton, 1988). The games were trained in

random order going backward from the end position with immediate update of

the weights after each position. The reason for the small value of >. is that most

parts of the network see only a porti ou of the board, so that the effective length

of the game is not the number of moves in the global game, but is the number

of moves in a part of the board.

The weights were updated by backpropagation. All neurons in layers that re

cei ve a reinforcement signal by the temporal difference algorithm were treated

as output neurons in the backpropagation algorithm. The algorithmically com

puted connections to aud from the global connectivity layer did not take part in

the backpropagation algorithm.

104 Mo Enzenberger

3.2 Testing

After the first 100 games and every 5,000 games thereafter, the performance

was tested by playing 100 games on a 9 x 9 board against the program G NUGo

version 30000, released in 2001 (GNuGo, 2001)0 On the NNGS Go Server, the

rating of GNuGo in 2001 was about 13 kyu (NNGS, 2001)0

To obtain a variety of different games, every move of the network was selected

by Gibbs sampling over the score with a temperature of Oo33o G NUGo always

played White, the komi was 5050 Identica! games or games that could be mapped

to other games by rotation and mirroring were sorted out.

The error of the mean value of the average score and percentage of wins is

given by the standard deviation of the values divided by the square root of the

number of gameso However, this does not take into account partial correlations

between the gameso To get a more robust estimation of the error it is helpful

to look at the deviation of the values late in the training processo At this time

the changes in the weights of network are small, so that no big change in the

playing strength is expectedo From the reproducibility of the values between

slightly different networks the error of the average score is estimated to be ±5

points and the error ofthe percentage ofwins ±10%0

4. Experiments

The description of the experiments consists of two parts; the setup (subsection

4o1) and the results (subsection 4o2)o

4.1 Setup

The size of the network was chosen to be 8 neurons per point in the first

hidden layer and 2 neurons per point in the second hidden layero The learning

rate for the weight update was 3 o w-4 o The performance of the network was

compared using two kinds of input.

Raw board: Only 1 neuron per point was used in the input layer with constant

activation 10 This corresponds to providing the network only with the raw

Go position as input, because the location of the stones is already used

implicitly in the selection of the weights from the weight sets according

to the point typeso

Preprocessed board: The position was preprocessed and sorne local features

of the position were used as input for the networko Only simple features

that can be computed quickly and non-expensive tactica! searches were

usedo The features included: number of stones and liberties of blocks,

a weighted sum of higher-grade liberties (PON-estimation for blocks

without any concept of groups (Tajima and Sanechika, 1998)) and the

results of simple tactica! searches (ladders (Sensei, 2003))o Also, basic

Evaluation in Go by a Neural Network Using Soft Segmentation 105

link patterns (straight 2 and 3 point jump, knight jump, long knight jump)

were detected. See Table 1 for a detailed listing of the inputs.

Input for empty points

0 .. .5 Black has O, 1, 2, 3, 4, >4 liberties if playing here

6 ... 11 White has O, 1, 2, 3, 4, >4 liberties if playing here

12 Black can be captured in a ladder ifplaying here

13 White can be captured in a ladder if playing here

14 Single-point eye for Black

15 1 move necessary for single-point eye for Black

16 2 moves necessary for single-point eye for Black

17 > 2 moves necessary for single-point eye for Black

18 Ponnuki shape for Black (Sensei, 2003)

19 1 move necessary for single-point eye for White

20 2 moves necessary for single-point eye for White

21 >2 moves necessary for single-point eye for White

22 Ponnuki shape for White

23 Move by Black here puts some white block in atari

24 Point is part of link pattern for Black

25 Point is part of link pattern for White

Input for occupied points

0 ... 7 PON is <-1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, >4.5 (Tajima and Sanechika, 1998)

8 Block can be captured in a ladder if opponent moves first

9 Block can be captured in a ladder if its colour moves first

10 ... 13 Number ofliberties ofblockis 1, 2, 3, >3

14 ... 18 Number of stones ofblock is 1, 2, 3, 4, >4

Table 1. Preprocessed input.

4.2 Results

The training took several weeks of CPU time on an Athlon XP 1800. Figure

4 shows the results of the test games against GNuGo. The network using the

raw board input achieves an average score of about -25 points after 40,000

games. The network using the preprocessed input achieves an average score of

about -5 points after 10,000 games.

Figures 5 and 6 show an example position with the evaluation output and

the connectivity map for a point of the network using the preprocessed input.

The network considers the left white group to be safe (0.2 is equivalent to

80% probability to become ali ve) but the centre group at F4 is unsafe (40%

probability to become alive). The reason can be seen in the connectivity map

for F4 in Figure 6: The probability for White to connect F4 to B4 is only 40%.

106

Q)
o
()
11)

Q)

Cl
(Il
Q)

~

11)

t:
"§ -o
Q)

~ -t:
Q)

e
Q)

a..

10

o

-1 o

-20

-30

-40

-50

-60

-70

-------------------------------------·············· ----- -------- . ·········· ············l-·······-->~~------~---····--~----,--f-··············

.-1·-«)c-Ii ~kc'~
. ,)C'.<L .. ······

··T-
--y- --~,"-·····

i ,,
:,'

/ . '
----~~:;v······

..

T;l/ +•...................................... f ..•...

M. Enzenberger

·· ···Rawboard -
Preprocessed board ----M----·

-80 L-~~~~~--~~~~--~~~~~--~~~~

1 00 1 000 1 0000 1 00000 1 9+06

55

50

45

40

35

30

25

20

15

10

5

o
100 1000

Games played

Raw board
Preprocessed board

10000

Games played

100000

------M----·

1e+06

Figure 4. Average score and wins against G NUGo. The error of the average score is estimated

tobe ±5 points and the error of the percentage of wins ±10% (see subsection 3.2).

Evaluation in Go by a Neural Network Using Soft Segmentation 107

A 8 c o E F G H J A 8 c o E F G H J

9 9 9 9

8 8 8 8

7 7 7 7

6 6 6 6

5 5 5 5

4 4 4

3 3 3 3

2 2 2 2

A c o E A 8 E F G H J

Figure 5. Example position (last move

White E2). The numbers show the evalua

tion output of the network using preprocessed

in put.

Figure 6. Example position (last move

White E2). The numbers show the connec

tivity map of the network using preprocessed

input for White from the point F4.

A complete game of the network versus GNuGo is shown in Figure 7.

G NUGo played Black in this game. The game was played with the network

using preprocessed input after the training was finished. The network does a

good job in keeping the black stones separated (with o ne mistake at move White

36) and wins by 8.5 points.

4

3

2

1

A B C D E F G H J

A B C O E F G H J

9

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

A B C O E F G H J

9

8

7

6

5
1---+--l:tr., 4

3

~~!/2

Figure 7. Example game of the network using preprocessed input versus GNuGo (here

playing Black). White wins by 8.5 points.

108 M. Enzenberger

5. Conclusion

It was shown that the presented neural-network architecture can be success

fully used for evaluating Go positions. Considering that the best Go programs

currently play ata level around 8 kyu, the good performance against a 13 kyu

program is promising. In particular, the approach addresses a weakness that

current Go programs have in handling complicated tactica! situations with many

nearby weak groups. However, it is clear that a static evaluation cannot handle

ali kinds of positions. Thus, it will be necessary to add more local tactica!

search results to the input, and/or use the network as an evaluation function in

a global search.

The most current version of NEUROGo uses the described architecture with

more neurons in the hidden layers and more sophisticated inp~t features. This

increases the average score against G NuGo 3.0.0 to about +2 points and the

percentage of wins to about 50%.

References

Bouzy, B. and Cazenave, T. (2001). Computer Go: an AI oriented survey. Artificial Intelligence,

132(1):39-103.

Chen, Z. (2002). Semi-empirical quantitative theory of Go. ICGA Journal,' 25(4):211-218.

Enzenberger, M. (1996). The integration of a priori knowledge into a Go playing neural network.

http://www.markus-enzenberger.de/neurogo.html.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

6:721-741.

GNuGo (2001). GnuGo Go program. http://www.gnu.org/software/gnugo/.

Miiller, M. and Gasser, R. (1996). Experiments in computer Go endgames. In Nowakowski, R.,

editor, Games of No Chance, volume 29 of MSRI Publications, pages 273-284. Cambridge

University Press, New York, NY.

NNGS (2001). No name Go server. http://nngs.cosmic.org.

Reitman, J. (1976). Skilled perception in Go. Cognitive Psychology, 8:336-3?6.

Schaeffer, J. (2001). A gamut of games. AI Magazine, 22(3):29-46.

Schraudolph, N. N., Dayan, P., and Sejnowski, T. J. (1994). Temporal difference learning of

position evaluation in the game of Go. In Advances in Neural Information Processing 6.

Morgan Kaufmann, San Francisco, CA.

Sensei (2003). A glossary of go terms. http://senseis.xmp.net/?GoTerms.

Sutton, R. (1988). Learning to predict by the method oftemporal differences. Machine Learning,

3:9-44.

Tajima, M. and Sanechika, N. (1998). Estimating the possible omission number for groups in

Go by the number of n-th dame. In van den Herik, H. J. and lida, H., editors, Computers and

Games, First International Conference, volume 1558 of Lecture Notes in Computer Science,

pages 265-281. Springer-Verlag, Berlin, Germany.

