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Abstract In this article a neural network architecture is presented that is able to build a soft 

segmentation of a two-dimensional input. This network architecture is applied to 

position evaluation in the game of Go. It is trained using self-play and temporal 

difference learning combined with a rich two-dimensional reinforcement signal. 

Two experiments are performed, one using the raw board position as input, the 

other one doing some simple preprocessing of the board. The second network is 

able to achieve playing strength comparable to a 13-kyu <;Jo program. 
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1. Evaluating Go Positions 

Writing a program that plays the game of Go is a notoriously hard problem. 

Despite many efforts the best programs stiH play at a weak to medium amateur 

level of about 8 kyu (Schaeffer, 2001 ). This is not only due to the large branching 

factor but also to the fact that the evaluation of Go positions is difficult. State­

of-the-art programs rely on a knowledge intensive approach. They use large 

databases of patterns, rule-based systems, and hand-tuned heuristics (Bouzy 

and Cazenave, 2001). 

1.1 Simplification by Segmentation 

The evaluation of a Go position can be simplified by segmenting the position 

into parts. This works well in positions with independent subgames where 

playing one subgame does not affect the value of other subgames. A typical 

example are Go endgame positions to which combinatorial game theory bas 

been applied successfully (Miiller and Gasser, 1996). Positions without a clear 

segmentation are more difficult: in particular, middle-game positions with many 

possible continuations each leading to different follow-up segmentations, and 

positions with multiple nearby tactica! fights. Many Go programs use some 

influence-based segmentation of positions (Chen, 2002). 
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Cognitive studies on human Go players have shown that humans perceive Go 

positions not as a set of hierarchical structured patterns with clear boundaries 

but rather as a set of overlapping clusters (Reitman, 1976). 

1.2 Neural Networks 

Neural networks have been used for evaluating full-board Go positions. 

Schraudolph, Dayan, and Sejnowski (1994) used temporal-difference learning 

(Sutton, 1988) to train a neural network to evaluate Go positions. They showed 

that it is important to use a rich reinforcement signal and a sparsely connected 

network architecture that reflects the local character and translational invariance 

of the pattern-recognition task. This was accomplished by using 5 x 5 receptive 

fields with weight sharing. 

However, essential features of a Go position depend on whether two points 

on the board are connected by one colour or will become connected later. U sing 

fixed-size receptive fields makes the recognition of long distance connections 

impossible. The most basic cases are blocks. Blocks are sets of adjacent stones 

of the same colour; they can take an arbitrary shape on the board. Moreover, 

they can only be captured as a unit. 

The Go program NEURoGo (version 2) used receptive fi,elds that dynam­

ically adapt their size to fit around blocks (Enzenberger, 1996). This was 

achieved by transforming the Go position into a graph with ali stones of a block 

merged into a single node. While NEURoGo's performance was improved 

greatly compared to a network using fixed-size receptive fields, it was still im­

possible for the network to represent higher-level objects like groups. Groups 

are a set of loosely connected blocks that might become connected later. This 

was the motivation for the development of a new network architecture with 

better abilities for segmenting the board. 

2. Architecture using Soft Segmentation 

This section presents a neural-network architecture that is able to process a 

Go position by building a soft segmentation of the position. This architecture 

is now used in version 3 of NEURoGo. 

The neural network uses a feedforward backpropagation architecture. The 

neurons have a sigmoid activation function, .with activation values between O 

and 1 and a bias weight. The soft segmentation of a position is represented as 

two connectivity maps, one for each colour. Bach connectivity map assigns a 

connectivity strength between O and 1 to each pair of points on the board. See 

Figure 1 for an overview of the network architecture. 

The next section describes the reinforcement signal that is used for learning, 

followed by a description of the layers in the network and the connections 

between them. 



Evaluation in Go by a Neural Network Using Soft Segmentation 99 

hidden layer 

Receplive fields 

Figure 1. Network architecture. 

2.1 Reinforcement Signal 

The final position of a Go game contains much fichef inforrhation than mefely 

the global scofe. The netwofk uses single-point eyes, connections, and live 

points which are defined as follows. 

• A single-point eye is an empty point with ali adjacent points occupied by 

stones of the same block Of by stones of two blocks of the same colour 

that share anothef single-point eye. 

• A paif of points is connected by one colouf if thefe is a path between 

them containing only stones of that colour Of single-point eyes. 

• A point is said to be alive if it is connected to two single-point eyes. 

Chinese scofing rules are used dufing the netwofk tfaining. No pass move is 

allowed until ali points on the board are alive1. Also, it is not allowed to play 

in one's own single-point eyes. 

Single-point eyes and connections can occuf in earlief positions of the game, 

but may not exist in the end position, because those blocks could have been 

captured. Li ve points stay ali ve from the fifst position in which they occuf until 

the end position. 

The netwofk uses single-point eyes, connections and live points as a fein­

fofcement signal. Connections are used only locally within a 3 x 3 window 

centred around each point. 

1 This makes scoring and detection of the end of the game easy, but will lead to wrong play in case of seki 

situations or more complicated single-point eyes (involving more than two blocks). However these cases 

rarely occur in actual games. 
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2.2 Neuron Layers 

Each layer of neurons in the architecture contains one or more neurons for 

each point on the board. There are 7 layers as follows. 

Input layer: This layer contains one or more neurons per point depending on 

the number of (boolean) input features that are used. The activation of 

the neurons is set to O or 1 according to whether a certain input feature 

is present in the Go position at this point. A Go position is always 

transformed such that Black is to move. This makes an additional input 

for indicating what colour is to move unnecessary. 

First hidden layer: This layer contains one or more neurons per point. The 

number of neurons per point is a parameter of the network architecture. 

The layer is connected with receptive fields to the in put '.Iayer. 

Second hidden layer: Like the first hidden layer, this layer contains one or 

more neurons per point. The number of neurons per point is another pa­

rameter of the network architecture. The layer is connected with receptive 

fields to the first hidden layer. 

Simple eyes layer: This layer contains 2 neurons per point, one for each colour. 

The activation is a prediction of whether that colour is able to create a 

single-point eye at this point. The layer is connected with receptive fields 

to the first hidden layer. It receives a reinforcement signal when a simple 

eye is created on the board. 

Local connections layer: This layer contains 18 neurons per point, 9 for each 

colour. The activation is a prediction of whether that colour is able to 

create a connection from this point to each of the 9 points in a 3 x 3 window 

around this point (including self-connection). Neurons corresponding 

to off-board points are unused. The layer is connected with receptive 

fields to the first hidden layer. It receives a reinforcement signal when a 

connection is created on the board. 

Global connectivity layer: This layer contains 2 · n2 neurons per point for 

board size n. The activation is a prediction whether each colour is able 

to create a connection from this point to any point on the board. The 

activation is computed by the connectivity pathfinder (see 2.5) from the 

local connections layer. 

Evaluation layer: This layer contains 1 neuron per point. The activation is 

a prediction whether this point will be alive for Black (activation 1) or 

White (activation 0). The layer is connected to the second hidden layer 

and the simple eyes layer by connectivity-based weight selection (see 

2.6). It receives a reinforcement signal for live points when they are 

created on the board. 
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2.3 Point Types 

Bach neuron corresponds to a point. Different point types are defined. The 

actual weights are chosen from weight sets depending on the point type. 

There are two reasons for using weight sets. They increase the number of free 

parameters without significantly affecting the time for processing a position, 

since only one weight of a set is selected. They also compensate for effects of 

the edge of the board while still making it possible to learn local patterns that 

are mostly invariant with respect to translation. 

The function type(p) assigns a type to each point p. See Figure 2 for the 

point types that were used. 

type(p) 

O Empty comer point 

1 Empty edge point next to comer 

2 Other empty edge point 

3 Empty point diagonal from comer 

4 Other empty point on second line 

5 Empty point on 'line 3 or higher 

6 Black stone 

7 White stone 

Figure 2. Point types: definition and example. 

2.4 Receptive Fields 

The function window (p) assigns to each point p the set of points within a 3 x 3 

square window centred at this point. If a layer is connected with receptive fields 

to a previous layer then each neuron corresponding to a point p is connected to 

all neurons in the previous layer corresponding to the points p' E window(p). 

The spatial relationship of two points p and p' is described by a field index given 

by the function field(p, p') (see Figure 3). 

Consider a layer L with n neurons per point connected to a previous layer 

L' with m neurons per point by receptive fields. Then a neuron corresponding 

to a point p and index i E { 1.. n} is connected to all neurons in the previous 

layer corresponding to points p' E window(p) and index j E { 1.. m} using the 

weights 
LL' 

wi,j,type(p) ,type(p') ,field(p,p') 

The neuron bas a bias weight bf,type(p) · 
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Figure 30 Receptive fieldso Field indices for 2 receptive fields centred at Al and G70 

2.5 Connectivity Pathfinder 

The connectivity pathfinder creates a global connectivity map from the local 

connections layero It assigns a connection value between O and 1 to each pair 

of points for each colouro ' 

Local connections are assumed to be independent. Connection values of 

points outside the local connection window are computed as the product of the 

local connection valueso Only the path resulting in the highest connection value 

is consideredo The current implementation of the pathfinder runs Dijkstra's 

shortest-path algorithm with each point as a starting point. 

2.6 Connectivity-based Weight Selection 

The simple eyes layer and second hidden layer are connected to the evaluation 

layer using connectivity-based weight selectiono 

Every neuron in the evaluation layer is connected to ali nelltons in the pre­

vious layer with weights depending on the connection value between the cor­

responding points predicted by the global connectivity layero For that purpose 

connection values are transformed from the continuous values between O and 

1 into 8 equally sized intervals2 o For each colour c and pair of points p and p' 

the function connection(c,p,p') E {1..08} retums the index of the interval. 

Consider a neuron corresponding to a point pin the evaluation layer Eo The 

neuron has a bias weight bgpe(p) o Let L be one of the previous layers to which 

the evaluation layer is connected by connectivity-based weight selection (the 

simple eyes layer or second hidden layer), with n neurons per point. Then the 

2For efficiency, point~ with a connection value smaller than Ool were ignoredo 
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neuron is connected to all neurons in the previous layer corresponding to points 

p' aud index i E { 1 .. n} using the weights 

EL 
wi,type(p ), type(p') ,connection ( c,p,p') 

for both colours c. 

3. Learning 

The learning is described according to the usual distinction between training 

(subsection 3.1) aud testing (subsection 3.2). 

3.1 Training 

Games for training are produced by self-p1ay. A move is selected by using 1-

ply look-ahead with the sum of all outputs in the evaluation layer as the scoring 

function. 

Although training on larger board sizes provides more reinforcement sig­

nal for each position, the 1-ply look-ahead would slow it down considerably. 

Therefore the experiments were done on a 9 x 9 board. However, the network 

architecture allows retraining the network on increasing board sizes to adapt it 

to the different ratios between edge aud centre points. 

Forbetter exploration ofthe state space, in 15% ofthe moves, instead ofplay­

ing the move with the highest score, Gibbs sampling (Geman aud Geman, 1984) 

over the move scores was used. The (unnormalised) probability of selecting a 

move with score s was 

P(s) = exp(sjT) 

with a temperature T of 4.0. These positions were not trained. 

After each played game, the 1 O most recent games were trained using temporal­

difference learning with >. = O (Sutton, 1988). The games were trained in 

random order going backward from the end position with immediate update of 

the weights after each position. The reason for the small value of >. is that most 

parts of the network see only a porti ou of the board, so that the effective length 

of the game is not the number of moves in the global game, but is the number 

of moves in a part of the board. 

The weights were updated by backpropagation. All neurons in layers that re­

cei ve a reinforcement signal by the temporal difference algorithm were treated 

as output neurons in the backpropagation algorithm. The algorithmically com­

puted connections to aud from the global connectivity layer did not take part in 

the backpropagation algorithm. 
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3.2 Testing 

After the first 100 games and every 5,000 games thereafter, the performance 

was tested by playing 100 games on a 9 x 9 board against the program G NUGo 

version 30000, released in 2001 (GNuGo, 2001)0 On the NNGS Go Server, the 

rating of GNuGo in 2001 was about 13 kyu (NNGS, 2001)0 

To obtain a variety of different games, every move of the network was selected 

by Gibbs sampling over the score with a temperature of Oo33o G NUGo always 

played White, the komi was 5050 Identica! games or games that could be mapped 

to other games by rotation and mirroring were sorted out. 

The error of the mean value of the average score and percentage of wins is 

given by the standard deviation of the values divided by the square root of the 

number of gameso However, this does not take into account partial correlations 

between the gameso To get a more robust estimation of the error it is helpful 

to look at the deviation of the values late in the training processo At this time 

the changes in the weights of network are small, so that no big change in the 

playing strength is expectedo From the reproducibility of the values between 

slightly different networks the error of the average score is estimated to be ±5 

points and the error ofthe percentage ofwins ±10%0 

4. Experiments 

The description of the experiments consists of two parts; the setup (subsection 

4o1) and the results (subsection 4o2)o 

4.1 Setup 

The size of the network was chosen to be 8 neurons per point in the first 

hidden layer and 2 neurons per point in the second hidden layero The learning 

rate for the weight update was 3 o w-4 o The performance of the network was 

compared using two kinds of input. 

Raw board: Only 1 neuron per point was used in the input layer with constant 

activation 10 This corresponds to providing the network only with the raw 

Go position as input, because the location of the stones is already used 

implicitly in the selection of the weights from the weight sets according 

to the point typeso 

Preprocessed board: The position was preprocessed and sorne local features 

of the position were used as input for the networko Only simple features 

that can be computed quickly and non-expensive tactica! searches were 

usedo The features included: number of stones and liberties of blocks, 

a weighted sum of higher-grade liberties (PON-estimation for blocks 

without any concept of groups (Tajima and Sanechika, 1998)) and the 

results of simple tactica! searches (ladders (Sensei, 2003))o Also, basic 
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link patterns ( straight 2 and 3 point jump, knight jump, long knight jump) 

were detected. See Table 1 for a detailed listing of the inputs. 

Input for empty points 

0 .. .5 Black has O, 1, 2, 3, 4, >4 liberties if playing here 

6 ... 11 White has O, 1, 2, 3, 4, >4 liberties if playing here 

12 Black can be captured in a ladder ifplaying here 

13 White can be captured in a ladder if playing here 

14 Single-point eye for Black 

15 1 move necessary for single-point eye for Black 

16 2 moves necessary for single-point eye for Black 

17 > 2 moves necessary for single-point eye for Black 

18 Ponnuki shape for Black (Sensei, 2003) 

19 1 move necessary for single-point eye for White 

20 2 moves necessary for single-point eye for White 

21 >2 moves necessary for single-point eye for White 

22 Ponnuki shape for White 

23 Move by Black here puts some white block in atari 

24 Point is part of link pattern for Black 

25 Point is part of link pattern for White 

Input for occupied points 

0 ... 7 PON is <-1.5, -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, >4.5 (Tajima and Sanechika, 1998) 

8 Block can be captured in a ladder if opponent moves first 

9 Block can be captured in a ladder if its colour moves first 

10 ... 13 Number ofliberties ofblockis 1, 2, 3, >3 

14 ... 18 Number of stones ofblock is 1, 2, 3, 4, >4 

Table 1. Preprocessed input. 

4.2 Results 

The training took several weeks of CPU time on an Athlon XP 1800. Figure 

4 shows the results of the test games against GNuGo. The network using the 

raw board input achieves an average score of about -25 points after 40,000 

games. The network using the preprocessed input achieves an average score of 

about -5 points after 10,000 games. 

Figures 5 and 6 show an example position with the evaluation output and 

the connectivity map for a point of the network using the preprocessed input. 

The network considers the left white group to be safe (0.2 is equivalent to 

80% probability to become ali ve) but the centre group at F4 is unsafe ( 40% 

probability to become alive). The reason can be seen in the connectivity map 

for F4 in Figure 6: The probability for White to connect F4 to B4 is only 40%. 
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Figure 4. Average score and wins against G NUGo. The error of the average score is estimated 

tobe ±5 points and the error of the percentage of wins ±10% (see subsection 3.2). 
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Figure 5. Example position (last move 

White E2). The numbers show the evalua­

tion output of the network using preprocessed 

in put. 

Figure 6. Example position (last move 

White E2). The numbers show the connec­

tivity map of the network using preprocessed 

input for White from the point F4. 

A complete game of the network versus GNuGo is shown in Figure 7. 

G NUGo played Black in this game. The game was played with the network 

using preprocessed input after the training was finished. The network does a 

good job in keeping the black stones separated ( with o ne mistake at move White 

36) and wins by 8.5 points. 
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Figure 7. Example game of the network using preprocessed input versus GNuGo (here 

playing Black). White wins by 8.5 points. 
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5. Conclusion 

It was shown that the presented neural-network architecture can be success­

fully used for evaluating Go positions. Considering that the best Go programs 

currently play ata level around 8 kyu, the good performance against a 13 kyu 

program is promising. In particular, the approach addresses a weakness that 

current Go programs have in handling complicated tactica! situations with many 

nearby weak groups. However, it is clear that a static evaluation cannot handle 

ali kinds of positions. Thus, it will be necessary to add more local tactica! 

search results to the input, and/or use the network as an evaluation function in 

a global search. 

The most current version of NEUROGo uses the described architecture with 

more neurons in the hidden layers and more sophisticated inp~t features. This 

increases the average score against G NuGo 3.0.0 to about +2 points and the 

percentage of wins to about 50%. 
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