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Abstract. Subgroup discovery aims at finding subsets of a population whose
class distribution is significantly different from the overall distribution. It has
previously predominantly been investigated in a two-class context. This paper in-
vestigates multi-class subgroup discovery methods. We consider six evaluation
measures for multi-class subgroups, four of them new, and study their theoreti-
cal properties. We extend the two-class subgroup discovery algorithm CN2-SD
to incorporate the new evaluation measures and a new weighting scheme inspired
by AdaBoost. We demonstrate the usefulness of multi-class subgroup discov-
ery experimentally, using discovered subgroups as features for a decision tree
learner. Not only is the number of leaves of the decision tree reduced with a fac-
tor between 8 and 16 on average, but significant improvements in accuracy and
AUC are achieved with particular evaluation measures and settings. Similar per-
formance improvements can be observed when using naive Bayes.

1 Introduction

Rule induction is a common form of machine learning and data mining often used in
classification and association rule learning. Classification rule learning is a predictive
task aimed at constructing a set of rules, based on training examples and their observed
features, to predict the class of unseen future examples. Association rule learning, on
the other hand, is a form of descriptive induction aimed at the discovery of individual
rules that express interesting patterns in data.

In classification rule learning a target concept is pre-defined and so the search heuris-
tic is usually some form of accuracy. On the other hand, in descriptive rule learning no
target concept is given and the heuristic function evaluates measures of interestingness
and unusualness in the data, e.g. support and confidence. Subgroup discovery can be
seen as being halfway between predictive and descriptive rule learning, as there is a
target concept but the goal of subgroup discovery is not necessarily to achieve high
accuracy. Rather, the target concept helps us to achieve a trade-off between accuracy
and interestingness. In [1] this trade-off was achieved using weighted relative accuracy,
but their CN2-SD algorithm is restricted to two classes. In this paper we extend the ap-
proach to more than two classes, and perform an extensive study of different measures
for multi-class subgroup discovery. To the best of our knowledge, multi-class subgroup
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discovery was previously only studied by Klösgen [2, 3], who proposed two of the
multi-class measures we study in this paper but did not compare them experimentally.

Our goal in this paper is to investigate methods that allow multi-class subgroup dis-
covery. Our main contribution is a systematic study of possible heuristics for multi-
class subgroup discovery, including theoretical analysis and experimental evaluation.
We show that a careful choice of heuristic and learning setting results in the discov-
ery of significant subgroups, in a reasonable amount of time, that have high predictive
power and can be used to build classification models that are an order of magnitude
smaller.

The paper is organized as follows. In Section 2 we introduce the general framework
of rule learning for subgroup discovery and describe CN2-SD as well as improvements
leading to our CN2-MSD rule learner. Section 3 introduces and analyses six multi-class
subgroup evaluation measures. An empirical evaluation of multi-class subgroup discov-
ery for feature construction over 20 UCI data sets is presented in Section 4. Section 5
considers related work, and we discuss possible future work and conclude the paper in
Section 6.

2 Rule Learning for Subgroup Discovery

Let T be a training set of examples labelled by n classes C1, . . . ,Cn. We denote the total
number of examples in the training set by E and the number of examples belonging to
class Ci by Ei. The number of examples in T covered by a subgroup b is denoted by e,
and the number of examples belonging to Ci and covered by b is denoted by ei. This
notation is summarised in Table 1; all evaluation measures considered in this paper are
based on numbers in such a contingency table.

A heuristic is defined as an n-dimensional function R
n → R such that h(e1, ...,en)

represents the quality of subgroup b, where ei are as in Table 1. We will often abbrevi-
ate this to h(b) if no confusion can arise. We will use the terms heuristic and evaluation
measure interchangeably in the rest of the paper. Following [4], we will use the follow-
ing definition for comparing the different heuristics.

Definition 1 (Compatibility and Antagonism [4] ). Two heuristic functions h1 and h2

are compatible iff for all subgroups b1, b2: h1(b1) > h1(b2) ⇐⇒ h2(b1) > h2(b2). h1

and h2 are antagonistic iff for all subgroups b1, b2: h1(b1) > h1(b2) ⇐⇒ h2(b1) <
h2(b2). h1 and h2 are equivalent (h1 ∼ h2) if they are either compatible or antagonistic.

Table 1. Notational conventions for the frequencies in a multi-class contingency table tabulating
examples covered or not covered by a given subgroup b

Subgroup b Complement b̄
Class 1 e1 E1−e1 E1

... ... ... ...
Class n en En−en En

e E−e E
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The intuition is that equivalent heuristics order the search space in the same way, even if
they differ in numerical value. For instance, h(x) ∼ E

n h(x), since E and n are constants
for a given data set. However, h(x) �∼ E

E−e h(x), since e depends on the subgroup.
CN2 is a rule induction algorithm that can be applied to propositional data sets for

inducing classification rules [5, 6]. A propositional data set can be thought of as a sin-
gle database table with rows representing examples and columns representing features.
CN2 consists of two main algorithms: the search algorithm that performs beam search1

in order to find a single rule and the covering algorithm that repeatedly executes the
search for rules until all examples are covered. The search algorithm searches the rule
space top-down, evaluating the quality of rules using precision (the relative frequency
of positives among the examples covered). A rule takes the form of (head ← body)
where the body is a conjunction of body literals and the head is a single head literal
indicating a class. A literal takes the form of (feature Op value) where Op can be one
of the following three operators: >, < or =.

CN2 can apply a significance test to each rule being learned. If there is a regularity
unlikely to have occurred by chance, then the rule is regarded as significant. Further-
more, a minimum evaluation threshold can be used as a stopping criterion. When a rule
achieves an evaluation value lower than this threshold, the search is pruned.

CN2 can induce rules in two forms: ordered list of rules and unordered set of rules.
In the former, the search algorithm finds the best rule in the current set of training ex-
amples. The rule predicts the class with the highest frequency among the examples it
covers. All examples covered by the newly induced rule are removed before starting
another search iteration. The rule search is repeated until all the examples are cov-
ered. In the unordered setting, the main algorithm is iterated for each class in turn.
For each induced rule, only covered examples belonging to the class being learned are
removed.

CN2-SD is an extension of CN2 particularly geared towards subgroup discovery [1].
In subgroup discovery, one wants to find independent rules that may overlap. To that
end, CN2-SD implements two major changes compared to CN2: replacing precision as
a search heuristic with weighted relative accuracy or WRAcc (see Definition 2 in the
next section), and the use of a weighted covering algorithm. While in the original cov-
ering algorithm examples are removed once they are covered by a rule, in the weighted
covering algorithm examples are never removed but their weight is decreased accord-
ing to one of two schemes: additive or multiplicative. Let wt(x) denote the weight of
example x after being covered by t rules: in the additive method we have wt(x) = 1

1+t
while in the multiplicative method wt(x) = γt ,0 < γ < 1.

The use of a weighting scheme, particularly the multiplicative weights, is related
to the use of weights in AdaBoost [7], where an example x at time t is re-weighted
according to wt(x) = wt−1(x)e−αt p; here, wt−1(x) is the current weight, αt = 1

2 ln 1−εt
εt

with εt < 0.5 representing the error of the current hypothesis, and p is either 1 or −1
reflecting a correct or an incorrect prediction respectively. To obtain an update rule that
is independent of the current hypothesis we set p = 1 and εt = Emin, the size of the

1 In beam search, the k most promising candidate hypotheses are considered instead of all pos-
sible candidate hypotheses for efficiency reasons.
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minority class, which gives wt(x) = wt−1(x)
√

Emin
E−Emin

. We therefore extended CN2-SD

with an option to set the γ parameter for multiplicative weights to
√

Emin
E−Emin

.

Another improvement in CN2-MSD, our version of CN2-SD for more than two
classes, is the use of inequality with nominal values. Like CN2, CN2-SD uses only
equality when constructing a new literal for a nominal feature, e.g. feature = val,
whereas CN2-MSD also considers literals of the form feature �= val. Experiments sug-
gest that the use of inequality slightly improves AUC as well as the accuracy.

3 Heuristics for Multi-class Subgroup Discovery

In this section we investigate possible heuristics for multi-class subgroup discovery. We
start with considering multi-class versions of weighted relative accuracy in Section 3.1,
followed by a consideration of other measures that are inherently multi-class in Sec-
tion 3.2. In Section 3.3 we consider the question whether a subgroup or its complement
is the more interesting one.

3.1 Multi-class Versions of Weighted Relative Accuracy

Weighted relative accuracy was defined in a binary classification context [8]: here, we
adapt it such that a given class Ci is taken as positive and all other classes together as
the negative class. The idea is that the rule accuracy (which is actually the precision
ei
e ) should be taken relative to the accuracy obtained by always guessing Ci ( Ei

E ), and
weighted by the rule’s coverage ( e

E ).

Definition 2 (Weighted Relative Accuracy [8]). The weighted relative accuracy of

subgroup b for class Ci is defined as WRAcci(b) = e
E

(
ei
e − Ei

E

)
= ei

E − e
E

Ei
E .

Previous research [9, 10, 11, 12] has investigated methods of multi-class classification.
The methods usually decompose a multi-class problem into several binary problems
either by considering all pairwise combinations of classes (one-vs-one) or considering
each class against the union of the other classes (one-vs-rest). One model is trained for
each binary problem and, according to the chosen method, the classification for an un-
seen example is determined based on a competition of these binary models. It has been
shown by [12, 10] that it is computationally expensive to perform the classification in
such a manner because it requires O(n) comparisons for each example to be classified.
We are interested in obtaining a single final model, thus avoiding the computational
costs of multiple binary comparisons during the classification phase.

The first idea might be to simply average W RAcci over all classes. However, this will
fail due to the following simple result.

Lemma 1. ∑n
i=1 WRAcci(b) = 0.

Proof. ∑n
i=1 W RAcci(b) = ∑n

i=1
e
E

(
ei
e − Ei

E

)
= e

E

[
∑n

i=1
ei
e −∑n

i=1
Ei
E

]
= e

E [1−1] = 0.

This justifies the use of the absolute value in the following definition.
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Definition 3 (Multi-class WRAcc). The (one-vs-rest) multi-class weighted relative ac-
curacy is defined as MW RAcc(b) = 1

n ∑n
i=1 |WRAcci(b)|.

Clearly, in a two-class setting, MWRAcc(b) = |WRAcci(b)| for i = 1,2.
Rather than taking an unweighted average, we may want to take a weighted average

using the class prior.

Definition 4 (Weighted Multi-class WRAcc). The (one-vs-rest) weighted multi-class
weighted relative accuracy is defined as WMW RAcc(b) = ∑n

i=1
Ei
E |WRAcci(b)|.

We can also define a one-vs-one version.

Definition 5 (One-vs-One Multi-class WRAcc). The one-vs-one multi-class weighted
relative accuracy is defined as follows:

MW RAcc1vs1(b) =
1

n(n−1)

n

∑
i=1

n

∑
j=1; j �=i

|WRAcci j(b)|

where W RAcci j(b) = ei+e j
Ei+E j

(
ei

ei+e j
− Ei

Ei+E j

)
.

Note that, while WRAcci(b̄) = −WRAcci(b), for the multi-class versions defined here
we have MW RAcc(b̄) = MW RAcc(b) and similar for the other measures.

We can further understand the similarities and differences between these heuristics
by reducing them to simpler equivalent forms.

Theorem 1. MWRAcc∼ ∑n
i=1 |eiE− eEi|.

Proof. MW RAcc = 1
n ∑n

i=1 | e
E

(
ei
e − Ei

E

)
|= 1

nE2 ∑n
i=1 |eiE− eEi| ∼ ∑n

i=1 |eiE− eEi|.

Theorem 2. WMW RAcc∼ ∑n
i=1 Ei|eiE− eEi|.

Proof. WMW RAcc = ∑n
i=1

Ei
E | e

E

(
ei
e − Ei

E

)
|= 1

E3 ∑n
i=1 Ei|eiE−eEi|∼∑n

i=1 Ei|eiE−eEi|.

Theorem 3. MWRAcc1vs1 ∼ ∑n
i=1 ∑n

j=i+1
|eiE j−e jEi|
(Ei+E j)2 .

Proof. Notice that WRAcci j(b) =−WRAcc ji(b). Then,

MW RAcc1vs1 =
1

n(n−1)

n

∑
i=1

n

∑
j=1; j �=i

|W RAcci j|= 2
n(n−1)

n

∑
i=1

n

∑
j=i+1

|WRAcci j|

∼
n

∑
i=1

n

∑
j=i+1

ei + e j

Ei + E j
| ei

ei + e j
− Ei

Ei + E j
|

=
n

∑
i=1

n

∑
j=i+1

|ei (Ei + E j)−Ei (ei + e j) |
(Ei + E j)2 =

n

∑
i=1

n

∑
j=i+1

|eiE j− e jEi|
(Ei + E j)2

Thus, the key term in each of these heuristics is of the form |eiE− eEi| for one-vs-rest
measures and |eiE j− e jEi| for one-vs-one measures, possibly with weights depending
on the size of the classes.
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3.2 Other Multi-class Subgroup Evaluation Measures

In this section we consider other ways of evaluating the frequencies observed in an
n-by-2 contingency table.

One possibility is to consider two random variables: B is a binary variable indicating
whether or not a random example is in the subgroup, and L is an n-ary variable indi-
cating which class applies to that example. Given a contingency table, the marginal and
joint entropies of these random variables are then as follows:

H(L) = −
n

∑
i=1

Ei

E
log

Ei

E

H(B) = − e
E

log
e
E
− E− e

E
log

E− e
E

H(L,B) = −
n

∑
i=1

(
ei

E
log

ei

E
+

Ei− ei

E
log

Ei− ei

E

)

We can then define their mutual information in the usual way: MI(L,B) = H(L) +
H(B)−H(L,B). Mutual information tells us how much knowledge about one variable
would be increased by knowing the value of the other. The higher the mutual infor-
mation, the more interesting the distribution of classes amongst the subgroup and its
complement is.

Definition 6 (Mutual Information). The mutual information score of a subgroup b is
defined as follows:

MI(b) =
n

∑
i=1

(
ei

E
log

ei

E
+

Ei− ei

E
log

Ei− ei

E

)

−
n

∑
i=1

Ei

E
log

Ei

E
− e

E
log

e
E
− E− e

E
log

E− e
E

Alternatively, we can use the Chi-squared test to decide whether L and B are statistically
independent. Assuming that the data in Table 1 represents the observed frequencies, the
expected values under the null hypothesis of independence of columns and rows can
be calculated from the marginal frequencies. E.g., the expected value of ei is eEi

E . The
Chi-squared statistic is then the sum of the squared differences between observed and
expected frequencies divided by the expected frequencies.

Definition 7 (Chi-Squared). The Chi-squared score of a subgroup b is defined as fol-
lows:

Chi2(b) =
n

∑
i=1

(
[ei− Eie

E ]2
Eie
E

+
[(Ei− ei)− Ei(E−e)

E ]2

Ei(E−e)
E

)

Chi-squared has a wide range of uses including feature selection [13].
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Finally, we consider a decision tree splitting criterion based on the Gini index. Con-
sider calculating the utility of a binary split in a multi-class context. A splitting criterion
calculates the decrease in impurity when going from parent to children. The impurity of
the children is calculated as the weighted average of their individual impurities, using
the relative frequency of examples covered by the child as weight. The Gini index cal-
culates the impurity of a node as 1

n ∑n
i=1 pi (1− pi), where pi is the relative frequency of

examples of class Ci.

Definition 8 (Gini-split). The Gini-split score of a subgroup b is defined as follows:

GS(b) =
1
n

n

∑
i=1

Ei (E−Ei)
E2 − 1

n

n

∑
i=1

e
E

ei (e− ei)
e2

− 1
n

n

∑
i=1

E− e
E

(Ei− ei)((E−Ei)− (e− ei))

(E− e)2

Theorem 4. Chi2 = ∑n
i=1

[eiE−eEi]2
eEi(E−e) .

Proof. Chi2 = ∑n
i=1

[ei− eEi
E ]2

eEi
E

+ [(Ei−ei)− Ei(E−e)
E ]2

Ei(E−e)
E

= 1
E ∑n

i=1
[eiE−eEi]2

eEi
+ [EiE−eiE−EiE+eEi]2

Ei(E−e)

= 1
E ∑n

i=1[eiE− eEi]2
(

1
eEi

+ 1
Ei(E−e)

)
= 1

E ∑n
i=1[eiE− eEi]2

Ei(E−e+e)
eE2

i (E−e)
= ∑n

i=1
[eiE−eEi]2
eEi(E−e) .

Theorem 5. GS∼ ∑n
i=1

[eEi−eiE]2

e(E−e) .

Proof. GS = 1
n ∑n

i=1
Ei(E−Ei)

E2 − e
E

ei(e−ei)
e2 − E−e

E
(Ei−ei)[(E−Ei)−(e−ei)]

(E−e)2 = 1
nE ∑n

i=1
Ei(E−Ei)

E

− ei(e−ei)
e − (Ei−ei)[(E−Ei)−(e−ei)]

E−e = 1
nE2 ∑n

i=1
[eEi−eiE]2

e(E−e) ∼ ∑n
i=1

[eEi−eiE]2
e(E−e) .

If the i-th term in Chi2 is xi, the i-th term in GS is equivalent to Eixi. We can therefore
consider GS to be a class-weighted version of Chi2. This shows that, in general, Chi2 �∼
GS, thereby negatively answering an open question in [4]. They proved the equivalence
in the binary case, and conjectured that this would extend to more than two classes.

Theorem 6 (Equivalence of binary Chi-squared and Gini-split [4]). For n = 2
classes, Chi2 ∼GS.

Proof. First of all, e1E− eE1 = e1 (E1 + E2)− (e1 + e2)E1 = e1E2− e2E1. By symme-
try, e2E−eE2 = e2E1−e1E2. Therefore, [e1E−eE1]2 = [e2E−eE2]2 = [e1E2−e2E1]2.

It follows that Chi2 =
(

1
E1

+ 1
E2

)
[e1E2−e2E1]2

e(E−e) = E
E1E2

[e1E2−e2E1]2

e(E−e) . On the other hand,

GS = 1
2E2

2[e1E2−e2E1]2

e(E−e) = E1E2
E3 Chi2.

It is interesting to note that our proof of Theorem 6 is much more succinct than the one
given in [4]. It appears the multi-class notation is beneficial here.

Measures similar to Chi2 and GS were used previously in the Explora system [2, 3].
Explora is an interactive knowledge discovery system that incorporates several search
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strategies, refinement methods and evaluation functions. If we distinguish Klösgen’s
definitions by a subscript Kl, we can show the equivalence between our Chi2 and GS
measures and Klösgen’s as follows:

GSKl(b) =
e
E

E−e
E

n

∑
i=1

(
ei

e
− Ei

E

)2

=
e

E− e

n

∑
i=1

(
e2

i

e2 +
E2

i

E2 −
2eiEi

eE

)

=
e

E2 (E− e)

n

∑
i=1

e2E2
i + e2

i E2−2eieEi

e2 =
1

E2

n

∑
i=1

[eEi− eiE]2

e(E− e)
=

1
n

GS(b)

Chi2Kl(b) =
1

E2

n

∑
i=1

[eEi−eiE]2

e(E−e)
Ei
E

=
1
E

n

∑
i=1

[eEi− eiE]2

eEi (E− e)
=

1
E

Chi2(b)

Although our definitions of Chi2 and GS are not equal to Klösgen’s definitions they are
indeed equivalent, hence Chi2 ∼Chi2Kl and GS ∼ GSKl .

3.3 Sign of a Subgroup

In two-class subgroup discovery a subgroup correlates positively with one class if
and only if its complement correlates negatively with the other class. This can eas-
ily be established by, e.g., the sign of WRAcci(b); we generally restrict attention to
the subgroup that has positive weighted relative accuracy for the designated positive
class. For the multi-class case we propose a criterion for determining whether a sub-
group or its complement is the more interesting one based on conditional entropy.
We have H(L|B = b) = ∑n

i=1
ei
e log ei

e , the entropy of the left column of the contin-
gency table; and similarly H(L|B = b̄) = ∑n

i=1
Ei−ei
E−e log Ei−ei

E−e . The sign of the sub-
group is then sign(H(L|B = b̄)−H(L|B = b)). If the amount of uncertainty remain-
ing about L assuming B = b is smaller than when assuming B = b̄, then the sign of
H(L|B = b̄)−H(L|B = b) is positive, favouring b over b̄.

4 Empirical Evaluation

We performed extensive experiments to test the behaviour of the six subgroup evalua-
tion measures defined in the previous section, as well as the usefulness of multi-class
subgroup discovery for feature generation in a classification context. We used 20 UCI
data sets [14], which are listed in Table 2. Numerical attributes with more than 100 dis-
tinct values have been discretised. Our implementation of CN2-MSD is an adaptation
of the CN2-SD implementation provided by the authors of [1], which was implemented
in Java as part of the Weka data mining workbench [15]. Six different settings have been
applied as follows:

– setting 0: unweighted covering;
– setting 1: multiplicative weights, γ = .25;
– setting 2: multiplicative weights, γ = .5;
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Table 2. UCI data sets used for the experiments. CMC stands for Contraceptive Method Choice
while WPBC stands for Wisconsin Prognostic Breast Cancer.

Dataset Name #exs. # attrs. # cls. Dist.
1 Abalone 4176 9 3 1527, 1342 and 1307
2 Balance-scale 624 5 3 288, 288 and 48
3 Car 1727 7 4 1209, 384, 69 and 65
4 CMC 1472 10 3 628, 511 and 333
5 Contact-lenses 24 5 3 15, 5 and 4
6 Credit 589 16 2 383 and 306
7 Dermatology 365 35 6 112,72, 60, 52, 49 and 20
8 Glass 213 11 6 76, 69, 29, 17, 13 and 9
9 Haberman 305 4 2 224 and 81

10 Hayes-roth 131 5 3 51, 50 and 30
11 House-votes 434 17 2 267 and 167
12 Ionosphere 350 34 2 224 and 126
13 Iris 150 5 3 50, 50 and 50
14 Labor 57 17 2 37 and 20
15 Mushroom 8123 23 2 4208 and 3915
16 Pima-indians 767 9 2 500 and 267
17 Soybean 683 36 19 92, 2 × 91, 88, 2 × 44, 9 × 20, 16, 15, 14 and 8
18 Tic-Tac-Toe 957 10 2 625 and 332
19 WPBC 197 34 2 150 and 47
20 Zoo 100 18 7 40, 20, 13, 10, 8, 5 and 4

Table 3. Average number of subgroups found on 20 UCI data sets using different heuristics and
settings

Setting MW RAcc1vs1 MW RAcc W MWRAcc MI Chi2 GS average
0 5.70 6.25 5.95 6.90 6.80 7.15 6.46
1 9.20 10.05 9.50 14.55 13.55 14.25 11.85
2 11.50 12.15 12.30 20.30 20.65 20.70 16.27
3 16.65 16.40 17.00 26.20 27.90 28.05 22.03
4 14.50 15.30 15.65 30.10 31.00 31.10 22.94
5 10.40 9.60 9.40 15.30 15.55 17.00 12.88

Average 11.33 11.63 11.63 18.89 19.24 19.71

– setting 3: multiplicative weights, γ = .75;
– setting 4: additive weights; and

– setting 5: multiplicative weights, γ =
√

Emin
E−Emin

.

The significance and minimum evaluation threshold parameters were fixed to 0.95 and
0.01, respectively.

The first result concerns the number of subgroups found (as reported in Table 3). It is
clear that the WRAcc-based methods find significantly fewer subgroups than the other
three. Weighted covering clearly helps in finding more subgroups. Additive weights and
multiplicative weights with large γ (i.e., slow decay of the weights) result in the most

subgroups. Setting γ =
√

Emin
E−Emin

gives performance similar to small to medium fixed γ .
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Fig. 1. Accuracies and AUCs of the multi-class subgroup discovery methods compared with the
J48 control learner (bold line). For each setting, performances outside the vertical bar are signifi-
cantly better (bottom) or worse (top) than the control.

In order to evaluate the quality and utility of the induced subgroups, we use them
as features for a decision tree learner. We use the Weka implementation of C4.5 which
is called J48, with default parameters. 10-fold cross-validated accuracy and AUC are
recorded on each data set, for J48 run directly on the original data set (labelled J48
in our result tables) and J48 run using subgroups as features, where the subgroups are
learned using CN2-MSD with one of the six evaluation heuristics (labelled with that
heuristic in the table), and for each of the six settings.

For space reasons we only report averages over all 20 data sets in Tables 4 and 5 (all
subsequent tables can be found in the Appendix). Average accuracies and AUCs have
limited meaning because the values are not necessarily commensurate across data sets,
and so we also report the average rank (1 is best, 7 is worst) of a method across all data
sets. We use the Friedman test on these average ranks (p = 0.10) with Bonferroni-Dunn
post-hoc test to check significance against J48 as a control learner. The Friedman test
records wins and losses in the form of ranks, but ignores the magnitude of these wins
and losses, which is considered more appropriate when comparing multiple classifiers
on multiple data sets; see [16] for more details. A graphical illustration of the post-
hoc test results is given in Fig. 1. For each setting the corresponding critical difference
diagram is shown vertically. So, for instance, in setting 4 both MI and GS perform
significantly better than J48, and in setting 5 MWRAcc1vs1 performs significantly worse
than J48.

Tables 6-8 show the results for number of leaves, number of nodes in the tree and the
model construction times. As can be seen, the average tree has roughly between 8 and
16 times fewer leaves when trained with subgroups as features, compared with standard



Evaluation Measures for Multi-class Subgroup Discovery 45

−1 0 1 2 3 4 5 6 7 8
2

3

4

5

6

7

8

Setting Number

R
an

k

Number of Leaves

MWRAcc 1vs1
MWRAcc
WMWRAcc
MI
Chi−squared
Gini−Split
Decision Tree

−1 0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

Setting Number

R
an

k

Model Construction Time

MWRAcc 1vs1
MWRAcc
WMWRAcc
MI
Chi−squared
Gini−Split
Decision Tree

Fig. 2. Number of leaves and model construction times of the multi-class subgroup discovery
methods compared with the J48 control learner (bold line)
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Fig. 3. Accuracies and AUCs of the multi-class subgroup discovery methods compared with the
naive Bayes control learner (bold line)
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J48, and roughly between 6 and 12 times fewer nodes. This comes, of course, at the
expense of considerable additional execution time. Fig. 2 shows this graphically (the
ranks in Tables 6 and 7 are equal and therefore the two graphs for number of leaves and
number of nodes are identical).

Finally, we report accuracy and AUC results using naive Bayes as the learner (Fig. 3).
The results are similar as for J48, although differences between evaluation measures are
less pronounced. Tables 9-11 show the average accuracies, AUCs and model construc-
tion times of the multi-class subgroup discovery methods compared with naive Bayes
as a control classifier.

Our conclusions from these experiments are that the multi-class subgroup evaluation
measures considered in this paper can be divided into two groups. The WRAcc-based
measures result on average in much fewer subgroups (although the model construction
time is not significantly reduced). If the subgroups are used for prediction, the additional
subgroups learned by MI and particularly Chi2 and GS result in additional predictive
power compared to the base learner. A consistently good performer is GS in combi-
nation with multiplicative weights, γ = 0.25 (setting 1) or additive weights (setting 4).
Given that setting 4 is an order of magnitude slower, we finally settle on setting 1 as our
recommendation. This combination achieves significantly higher predictive power than
the base learners, building trees that on average have 11 times fewer leaves.

5 Related Work

As discussed earlier, CN2-MSD is an upgrade of the CN2-SD rule learner [1] which
learns two-class subgroups and was in turn based on the CN2 inductive rule learner
[5, 6]. More details about CN2 and CN2-SD were given in Section 2. Our three multi-
class Weighted Relative Accuracy versions are multi-class adaptations of the two-class
Weighted Relative Accuracy that originated in [8] and was incorporated in CN2-SD.

Mutual information is used to measure dependencies between random variables. Mu-
tual information is appropriate for assessing the information content of features in com-
plex classification tasks. It has been used for feature selection [17, 18]. The difference
between the usage of MI in [17, 18] and CN2-MSD is that CN2-MSD uses MI to eval-
uate a combination of one or more features, rather than comparing single features. MI
as used in [18] also differs from our approach in that it selects features that maximise
the MI with respect to a single class but not all the classes. In addition, CN2-MSD only
assesses the constructed feature and its complement while this is not the case in the
other two approaches due to having different goals.

Chi-squared has been used widely as a statistical significance test in various con-
texts including classification and rule learning. Chi-squared was found useful for fea-
ture selection [13]. The original CN2-SD uses a Chi-squared significance test to filter
a nominated subgroup in case it yields a value lower than a certain minimum value.2

CN2-MSD implements the Chi-squared as a heuristic function similarly to the Explora
system [2].

Gini-split is well-known in decision tree learning as a splitting criterion based on the
Gini index that evaluates the decrease in impurity when going from parent to

2 The minimum significance value is set by the user.
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children. Gini-split is traditionally used in the divide and conquer (DAQ) paradigm
where the learning algorithm divides the entire training set recursively according to a
new selected literal. An example can not be covered by more than one rule or leaf in
the final model. CN2-MSD, however, uses Gini-split in the separate and conquer (SAC)
paradigm as it implements a sequential covering algorithm (and its weighted version).
In SAC, single or multiple rules are learned iteratively and the examples covered by
the learned rules are removed from the training set before proceeding to the next it-
eration until no examples are left or a stopping criterion met. In covering algorithms,
a subset of the training examples (or weighted training examples) is used to construct
rules iteratively. An example could be covered by more than one rule or leaf in the final
model. Induction systems that implement SAC are less conservative in their learning
model than the ones that implement DAC due to their ability to explore a larger search
space [19].

Explora is an interactive knowledge discovery system for databases [2, 3]. Explora
was designed to support analysts in finding new knowledge about a domain. It can be
used for predictive learning as well as descriptive learning. Explora is a complex system
that incorporates various search strategies (exhaustive or heuristic), refinement methods
and evaluation functions for binary and multi-class prediction. Explora can also work
with relational data. It can be viewed as a generic pattern discovery system in relational
data mining.

Another system related to CN2-MSD is called PRIM [20]. PRIM finds subregions
of the instance space within which the value of the (continuous) output variable is con-
siderably larger or smaller than its average value over the entire space. PRIM searches
for these subregions by top-down specialisation followed by a bottom-up generalisation
on the induced subgroups. Further criteria are needed to ensure capturing subgroups of
reasonable size. One of the advantages of using WRAcc is that it captures the the gen-
erality of the subgroup e

E and its relative accuracy ei
e − Ei

E in a single score. While CN2
uses a greedy refinement strategy on partial candidate hypotheses, PRIM examines all
possible solutions which makes it unsuitable for large datasets.

The work of [4] provided us with the basis for the theoretical analysis of multi-class
subgroup evaluation measures. Two-class Weighted Relative Accuracy, Chi-squared
and Gini-split were discussed and analysed in [4] and their ROC isometrics visually and
analytically compared. Unfortunately, a full n-class ROC analysis requires n(n− 1)/2
dimensions, and so it is hard – if not impossible – to visualise multi-class evaluation
measures through their ROC isometrics.

6 Conclusions

In this paper we upgraded existing approaches for two-class subgroup discovery to han-
dle more than two classes. We defined six multi-class subgroup evaluation measures and
investigated their properties theoretically and experimentally. While multi-class sub-
group discovery is an interesting task in its own right, located between predictive and
descriptive learning, we have also shown that – if the additional computational cost can
be justified – the learned subgroups lead to additional predictive power. In effect, the
decision trees learned branch on more complex multivariate conditions, and the naive
Bayes classifier relaxes its assumptions of statistical independence.
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In future work we plan to study whether subgroup discovery can be exploited in
other predictive tasks, such as probability estimation and regression. We also aim to
investigate multi-class subgroup discovery in a relational context. Furthermore, we will
focus on reducing the computational overhead of subgroup discovery.
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Appendix: Detailed Experimental Results

Table 4. Accuracies (ranks in brackets) of a decision tree learner using subgroups as features,
averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc W MWRAcc MI Chi2 GS J48
0 75.11 (5.08) 76.95 (4.65) 77.90 (4.28) 77.40 (3.42) 78.24 (3.27) 79.87 (3.00) 81.21 (4.30)
1 76.90 (4.78) 78.40 (4.88) 79.95 (4.55) 78.14 (3.80) 80.47 (3.20) 81.85 (2.63) 81.21 (4.17)
2 76.75 (4.92) 78.80 (4.95) 80.52 (3.92) 80.19 (3.73) 81.37 (3.25) 81.34 (3.10) 81.21 (4.13)
3 77.85 (4.47) 78.95 (4.45) 80.31 (4.55) 80.03 (4.10) 81.08 (3.30) 81.64 (3.00) 81.21 (4.13)
4 76.63 (4.75) 78.83 (4.55) 80.34 (4.45) 80.33 (3.95) 81.33 (3.02) 81.48 (3.02) 81.21 (4.25)
5 75.28 (5.13) 77.70 (4.33) 79.05 (4.28) 78.94 (3.52) 79.42 (3.35) 79.96 (3.23) 81.21 (4.17)

Table 5. AUCs (ranks in brackets) of a decision tree learner using subgroups as features, averaged
over 20 UCI data sets

Setting MW RAcc1vs1 MWRAcc W MWRAcc MI Chi2 GS J48
0 0.83 (4.85) 0.85 (4.15) 0.86 (3.90) 0.86 (3.83) 0.86 (3.70) 0.87 (3.35) 0.84 (4.22)
1 0.86 (4.63) 0.86 (4.60) 0.87 (4.10) 0.87 (4.10) 0.88 (3.05) 0.88 (3.15) 0.84 (4.38)
2 0.85 (4.67) 0.86 (4.67) 0.86 (4.20) 0.88 (3.42) 0.88 (3.45) 0.88 (3.45) 0.84 (4.13)
3 0.86 (4.35) 0.86 (4.42) 0.86 (4.28) 0.86 (4.22) 0.88 (3.42) 0.88 (3.13) 0.84 (4.17)
4 0.85 (4.75) 0.85 (5.05) 0.86 (4.60) 0.87 (3.65) 0.88 (3.00) 0.88 (2.83) 0.84 (4.13)
5 0.85 (4.92) 0.85 (4.33) 0.86 (4.35) 0.87 (3.58) 0.87 (3.42) 0.87 (3.25) 0.84 (4.15)

Table 6. Numbers of leaves (ranks in brackets) of a decision tree learner using subgroups as
features, averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc WMW RAcc MI Chi2 GS J48
0 7.55 (2.95) 8.30 (3.48) 8.05 (3.20) 8.25 (4.10) 9.45 (3.67) 9.40 (4.05) 122.05 (6.55)
1 8.65 (3.30) 10.00 (3.30) 9.15 (3.52) 9.85 (3.52) 9.25 (3.50) 11.00 (4.28) 122.05 (6.58)
2 8.45 (2.77) 9.50 (2.90) 10.45 (3.52) 9.20 (3.80) 11.30 (4.38) 11.35 (4.08) 122.05 (6.55)
3 11.80 (3.25) 11.00 (2.90) 13.05 (3.77) 11.70 (3.63) 11.95 (3.85) 13.00 (4.15) 122.05 (6.45)
4 8.80 (2.80) 10.90 (2.77) 12.40 (3.50) 13.90 (4.25) 12.00 (4.05) 12.75 (4.17) 122.05 (6.45)
5 10.45 (3.23) 8.90 (3.13) 7.70 (3.10) 11.60 (3.88) 11.60 (3.98) 14.55 (4.17) 122.05 (6.53)

Table 7. Tree sizes (ranks in brackets) of a decision tree learner using subgroups as features,
averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc WMW RAcc MI Chi2 GS J48
0 14.10 (2.95) 15.60 (3.48) 15.10 (3.20) 15.50 (4.10) 17.90 (3.67) 17.80 (4.05) 162.05 (6.55)
1 16.30 (3.30) 19.00 (3.30) 17.30 (3.52) 18.70 (3.52) 17.50 (3.50) 21.00 (4.28) 162.05 (6.58)
2 15.90 (2.77) 18.00 (2.90) 19.90 (3.52) 17.40 (3.80) 21.60 (4.38) 21.70 (4.08) 162.05 (6.55)
3 22.60 (3.25) 21.00 (2.90) 25.10 (3.77) 22.40 (3.63) 22.90 (3.85) 25.00 (4.15) 162.05 (6.45)
4 16.60 (2.80) 20.80 (2.77) 23.80 (3.50) 26.80 (4.25) 23.00 (4.05) 24.50 (4.17) 162.05 (6.45)
5 19.90 (3.23) 16.80 (3.13) 14.40 (3.10) 22.20 (3.88) 22.20 (4.03) 28.10 (4.22) 162.05 (6.42)
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Table 8. Model construction times (ranks in brackets) of a decision tree learner using subgroups
as features, averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc W MWRAcc MI Chi2 GS J48
0 5.93 (3.83) 6.40 (4.88) 6.61 (4.65) 6.33 (3.77) 6.67 (4.60) 6.46 (5.28) 0.23 (1.00)
1 21.73 (3.92) 22.61 (4.13) 20.22 (3.30) 27.80 (4.63) 32.40 (5.30) 33.57 (5.72) 0.23 (1.00)
2 43.00 (3.83) 40.36 (3.50) 42.80 (3.65) 51.36 (5.28) 45.68 (5.28) 41.39 (5.47) 0.23 (1.00)
3 90.32 (3.33) 83.43 (3.25) 89.39 (3.83) 106.30 (5.00) 105.01 (5.97) 104.17 (5.63) 0.23 (1.00)
4 232.41 (3.67) 238.21 (3.08) 232.53 (3.92) 147.71 (5.47) 158.16 (5.42) 167.92 (5.42) 0.23 (1.00)
5 100.99 (4.17) 111.30 (4.15) 105.34 (3.58) 99.43 (5.15) 67.40 (4.85) 70.05 (5.10) 0.23 (1.00)

Table 9. Accuracies (ranks in brackets) of a naive Bayes learner using subgroups as features,
averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc W MWRAcc MI Chi2 GS NB
0 73.76 (4.53) 75.08 (4.30) 75.42 (4.60) 76.31 (3.80) 76.78 (3.60) 78.82 (2.90) 79.86 (4.28)
1 75.74 (5.15) 77.49 (4.75) 79.32 (4.42) 78.39 (3.48) 80.04 (2.98) 81.44 (2.88) 79.86 (4.35)
2 75.39 (4.92) 77.73 (4.58) 79.79 (3.80) 79.37 (3.48) 80.51 (3.27) 79.83 (3.73) 79.86 (4.22)
3 75.63 (4.42) 77.20 (4.38) 79.58 (3.77) 78.85 (3.42) 79.22 (3.83) 79.39 (3.98) 79.86 (4.20)
4 74.98 (4.72) 77.02 (4.47) 79.18 (4.10) 78.24 (3.40) 77.66 (3.88) 78.37 (3.75) 79.86 (3.67)
5 74.99 (4.88) 77.14 (4.28) 78.25 (4.42) 78.47 (3.38) 78.03 (3.73) 79.27 (3.13) 79.86 (4.20)

Table 10. AUCs (ranks in brackets) of a naive Bayes learner using subgroups as features, averaged
over 20 UCI data sets

Setting MW RAcc1vs1 MWRAcc W MWRAcc MI Chi2 GS NB
0 0.83 (5.03) 0.86 (4.42) 0.86 (4.70) 0.87 (3.73) 0.87 (3.60) 0.88 (2.92) 0.88 (3.60)
1 0.87 (4.85) 0.88 (4.90) 0.89 (4.25) 0.89 (3.70) 0.90 (3.17) 0.90 (2.88) 0.88 (4.25)
2 0.87 (4.95) 0.88 (4.83) 0.89 (4.03) 0.90 (3.77) 0.91 (3.08) 0.90 (3.15) 0.88 (4.20)
3 0.88 (4.83) 0.88 (4.70) 0.89 (4.22) 0.89 (3.65) 0.90 (3.25) 0.90 (3.13) 0.88 (4.22)
4 0.87 (4.47) 0.88 (4.92) 0.89 (4.30) 0.90 (3.60) 0.90 (3.40) 0.90 (2.98) 0.88 (4.33)
5 0.86 (5.03) 0.87 (4.40) 0.87 (4.60) 0.89 (3.23) 0.89 (3.55) 0.89 (3.35) 0.88 (3.85)

Table 11. Model construction times (ranks in brackets) of a naive Bayes learner using subgroups
as features, averaged over 20 UCI data sets

Setting MW RAcc1vs1 MW RAcc W MWRAcc MI Chi2 GS NB
0 6.13 (3.92) 6.38 (4.53) 6.53 (3.95) 6.82 (4.45) 6.97 (5.13) 6.27 (5.03) 0.05 (1.00)
1 21.34 (3.85) 21.17 (4.03) 21.62 (4.03) 27.14 (4.33) 30.06 (5.25) 32.01 (5.53) 0.05 (1.00)
2 40.80 (4.08) 41.21 (3.50) 42.54 (3.50) 50.33 (5.25) 44.47 (5.17) 42.89 (5.50) 0.05 (1.00)
3 86.51 (3.42) 84.38 (3.63) 89.06 (3.35) 107.75 (5.00) 104.10 (5.70) 113.92 (5.90) 0.05 (1.00)
4 218.62 (3.35) 228.58 (3.60) 242.22 (4.13) 135.36 (5.22) 163.41 (5.28) 160.14 (5.42) 0.05 (1.00)
5 96.66 (3.90) 97.59 (3.92) 99.19 (4.22) 94.14 (4.92) 69.53 (5.13) 70.79 (4.90) 0.05 (1.00)
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