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Abstract

The Human Microbiome Project will establish a reference data set for analysis of the microbiome of healthy adults by
surveying multiple body sites from 300 people and generating data from over 12,000 samples. To characterize these
samples, the participating sequencing centers evaluated and adopted 16S rDNA community profiling protocols for ABI 3730
and 454 FLX Titanium sequencing. In the course of establishing protocols, we examined the performance and error
characteristics of each technology, and the relationship of sequence error to the utility of 16S rDNA regions for
classification- and OTU-based analysis of community structure. The data production protocols used for this work are those
used by the participating centers to produce 16S rDNA sequence for the Human Microbiome Project. Thus, these results can
be informative for interpreting the large body of clinical 16S rDNA data produced for this project.
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Introduction

The human body is host to an abundant and complex

diversity of microbial life [1–7]. With estimates of the total

species that inhabit an individual ranging well into the

thousands [8], it is evident that we understand only a small

component of the human microbiome. There is growing

recognition, however, that resident microbial communities

influence human nutrition, development and disease [9]. For

example, dysbiosis of the microbiome has been implicated in

many phenomena, including obesity, inflammatory bowel

diseases [10,11], dermatitis and atopic diseases [12,13], bacterial

vaginosis and pre-term birth [14,15].

The NIH Roadmap Human Microbiome Project (HMP) has

undertaken a large-scale, culture-independent census of the

microbiota of healthy adults that will describe the members of

human-associated communities and establish the extent to which

these communities, or their constituents, are shared between

individuals and body sites [16]. The HMP is publicly releasing

sequence from approximately 12,000 samples that survey 15

(male) and 18 (female) body sites from 300 healthy adults [17].

For the HMP, the prolonged period over which the samples

were collected and sequenced, and the participation of multiple

sequencing centers, created an unprecedented need for standard-

ization and benchmarking of 16S rDNA (16S) profiling methods.

In the course of preparing for the data production phase of the

project, the sequencing centers generated abundant sequence data

from a synthetic microbial community, as well as from a set of

clinical samples from several body regions. Data generated from

the MC were invaluable for the development of ChimeraSlayer, a

tool for detecting chimeric 16S rRNA reads [18] and are intended

to be a useful resource for continued development and assessment

of analysis tools. Here, these data enabled standardization and

cross-validation of the data production methods used by the HMP

consortium and, more significantly, enabled investigation into the

performance characteristics of the sequencing technologies used

and the influence of sequence errors on the interpretation of 16S

rDNA community profiling.

Results

When the HMP project was initiated, ABI 3730 and 454 FLX

Titanium platforms were both in use at the participating centers.

Thus, the analysis herein frequently compares both data types.

In the process of establishing molecular and analytic workflows,

the centers constructed a synthetic, or ‘mock’ community (MC)

composed of 21 archaeal/bacterial species representing 18

genera (Materials and Methods). All MC members have finished

reference genomes and represent a range of %GC content and

phylogenetic diversity. This MC provided a defined standard to

benchmark the accuracy of our data with respect to community

composition. In addition, comparison of our 16S data to the

reference sequences allowed us to directly assess sequence

quality. All centers sequenced the MC in duplicate (3730) or in

triplicate (454). Multiple amplicons were targeted for sequenc-

ing, spanning different regions of the 16S rDNA (Fig. 1). The

protocols used to produce data and the number of reads

represented in the results below are provided in the supporting

information (Tables S1, S2, S3, S4, S5 and Protocol S1 and

Protocol S2).
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Community Composition: BLAST Versus Naı̈ve Bayesian
Classification
We first examined the observed relative abundance of each

community member by using BLAST to compare all reads against a

reference set of 16S sequences that was derived from deeply

sequenced 16S clone libraries prepared from each organism in the

MC and which captured the sequence diversity at all 16S loci. We

were able to reliably detect all MC members in all data sets except

for the sole archaeal member, Methanobrevibacter (Fig. 2A); this was

anticipated, since primers that target bacterial 16S sequences

diverge from the sequences found within Domain Achaea (Fig. 3D).

We reexamined the MC data using a naive Bayesian

classification-based regime appropriate for samples of unknown

community composition (Materials and Methods). For this

analysis, reads that were greater than 200 nucleotides in length

and classified with 80% confidence to a genus using the RDP

classifier [19] were assigned a genus-level taxonomic identifier and

binned based on this assignment (Fig. 2B). The relative community

composition reported by the classification analysis agreed well with

the BLAST-based analysis (Fig. 2C), However, in our BLAST-

and classification-based analyses of the MC data, 4.2% of the total

reads generated across many samples did not match any input MC

16S (Fig. 2A and 2B). Also, for some data sets, there was a subset

of reads that classified to organisms that were not part of the MC

(Fig. 2B and 3B). This observation is considered in greater detail

below.

Figure 1. Overview amplicons and reads generated for both the 3730 and 454 sequencing. On a schematic representation of the 16S
rDNA gene, the known variable regions and the primers used in this study are indicated. Positions and numbering are based on the Escherichia coli
reference sequence. The amplicons generated by each primer set are marked in red, and sequencing directions and expected lengths are indicated in
orange for 3730 and green for 454.
doi:10.1371/journal.pone.0039315.g001

Figure 2. Minor differences in classifiability as measured by the RDP Classifier and a BLASTn-based approach. The left panel shows
classification based on BLASTn against reference sequences of the MC members. A sequence is classified if it has.95% global sequence identity with
one of the reference sequences and .90% of read is contained in the alignable region. Results are shown as a heatmap depicting the frequency
values, using a binary logarithm scale. The middle heatmap illustrates frequency values of taxa identified using the RDP classification tool, applying an
80% confidence cutoff. Right panel shows the difference between RDP and BLASTn based classification, with a heatmap representing the ratio of
observed genus-level frequency data (RDP) over expected genus-level frequency (BLASTn) for each of the MC members using a binary logarithm
scale.
doi:10.1371/journal.pone.0039315.g002
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Community Composition: Quantitative Accuracy
We then sought to establish the quantitative accuracy of the

observed community compositions across each technology. While

preparing this analysis, we observed concerning disparities

between the calculated expected abundances of the members of

the MC previously described [18] and the results we were

obtaining. We could not confidently establish that the calculated

expected abundances were correct. We elected to be circumspect

and obtain an independent estimation of the MC composition. To

do so, total DNA from the MC was sequenced using a whole

genome shotgun (WGS) approach. WGS methods mechanically

shear genomic fragments for sequencing and, therefore, would not

be subject to sequence-targeted amplification biases. The abun-

dance of each organism was determined from a count of WGS

sequence reads mapped to each reference genome (Materials and

Methods). The relative abundance, as determined by WGS was

used here as the reference MC composition.

Data from all MC members, across all experiments, both 3730

and 454, exhibited 1.4-fold difference from expected and only

1.07-fold (Figure 3) when results from Methanobrevibacter were

excluded from the analysis. We also observed that 454-generated

data were slightly more accurate than data generated using 3730

(1.035-fold versus 1.27-fold) and that 454 data generated using the

V3–V5 primers were statistically significantly more accurate

relative to data generated using the other two primer pairs (0.8-

fold for V3–V5 compared to 1.14-fold for both V1–V3 and V6–

V9; p,0.01 in all cases).

While overall accuracy was generally very good, there were

notable differences from expected compositions among members

of the MC. There were differences in MC representation that

correlated with sequencing center or with window (Fig. 3A). For

example, Acinetobacter was consistently underrepresented by win-

dow V1–V3 across all centers, while Deinococcus was underrepre-

sented by only one center. We were unable to identify factors

accounting for differences between centers. Staphylococcus was

represented accurately among all experiments, regardless of

window, platform or center [0.23-fold]. At the other extreme,

the abundance of Helicobacter was greatly underrepresented across

Figure 3. Mock community-based accuracy of community representation compared across technology and 16S window. The MC was
sequenced by different centers on both 3730 and 454 platforms. Each sequencing trial is represented as a column. For 3730 sequencing of the V1–V9
window, amplicons derived from a common amplification protocol were sequenced with short capillaries (1), long capillaries (2), and three reads per
clone (3). 454 sequencing was performed by four centers (A, B, C, and D) with three 16S windows (V1–V3, V3–V5, and V6–V9). (A) The observed genus-
level frequency data over expected genus-level frequency ratio for each of the MC members is shown as a heatmap using a binary logarithm scale.
The expected frequency ratio is based on the whole genome coverages inferred from mapped Illumina WGS reads to the MC reference genome
sequences. Genera with observed frequencies differing more than four-fold from expected are marked with + or – for over- or under-representation,
respectively. (B) The fraction of misclassified (0.1% of the total combined data set) and unclassified (4.6% of the total combined data set) sequences
displayed as a frequency heatmap. The frequency values are depicted as a binary logarithm scale.
doi:10.1371/journal.pone.0039315.g003

Evaluation of 16S Profiling in Human Metagenomics

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e39315



Figure 4. Deviation from expected in the 16S based Mock Community member representation can partially be explained by primer
mismatch, not by %GC differences. The 20 bacterial organisms of the Mock Community are represented by corresponding genus (n = 18) along
the bottom of the figure, and across the four panels (DNA from Candida albicans was included in this mock community, but not shown here). (A) The
distribution of reads over the 18 genera; The expected frequencies (grey) in the community determined by whole genome shotgun (WGS)
sequencing and classified by mapping to reference genomes using BWA, and the observed frequencies determined by 454 reads (red) or 3730

Evaluation of 16S Profiling in Human Metagenomics
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all experiments [3.48-fold]. In an attempt to explain the variation,

we explored %GC content variation among the MC members and

found no obvious correlation between %GC content of either the

16S or whole-genome sequences that could explain differences in

the accuracy of MC member estimation (Fig. 4C). However, we

did observe that the amplification primers used contained

mismatches to the 16S gene sequence for several of the genera

where lower than expected frequencies were observed (Fig. 4D).

For example, nearly 15% of bases in the V6–V9 forward primer

contained mismatches to Bacteroides and nearly 25% to Helicobacter.

Percentage of primer mismatch bases did not, however, correlate

with all inaccuracies; some genera (e.g., Clostridium) were consis-

tently overrepresented.

Analysis of Unclassified and Misclassified Reads
Further exploration of reads classified as Azomonas, Cronobacter

and Bergeriella (Figs. 2B and 3B) revealed that poor read quality, as

well as inconsistencies within the underlying taxonomic scheme

used in the applied classification regime, resulted in misclassifica-

tion of reads from MC members (Fig. 5). Close phylogenetic

relationships between differently named sequences within the

taxonomic scheme we utilized resulted in misclassification of

Pseudomonas and Neisseria as Azomonas and Bergeriella, respectively

(Figs. 5A and 5B), while prematurely truncated Escherichia reads

were misclassified as Cronobacter (Fig. 5C). We expect phylogenetic

artifacts to diminish as taxonomic schemes continually improve.

We also note that others have recently compared the impact of

selecting alternate taxonomic training sets on classifiability and

abundance estimation [20].

Lack of accurate PCR amplification explained the majority of

the unclassified 16S reads. Approximately 80% of the unclassified

3730 and 454 data (Figs. 2A, 2B and 3B) were flagged as chimeric

sequences. We then compared non-chimeric, unclassified reads to

their parent reference sequences and determined the frequency of

substitutions, insertions and deletions within each read. The error

rate within unclassified MC reads was significantly higher than

that of classified reads. For both platforms, the error rate for

unclassified reads was up to 10-fold higher for 3730, and 2-fold

higher for 454 than for the classified reads (data not shown). These

errors could arise during PCR amplification or during sequencing.

We then examined the cumulative error frequency distribution

and frequency of error types for the six read types we produced

(Figs. 6A and 6B). We also examined error by position within the

reads (Fig. 7). Each platform presented a distinct error type profile.

3730 sequencing tended to generate substitution errors at an

approximate average frequency of 0.2% errors per read; 454

sequencing, on the other hand, generated insertion errors at a

similar frequency. These differences suggested that most sequence

error was generated during sequencing rather than during PCR

amplification. We also observed that sequences derived from the

V1–V3 window contained fewer insertion errors than those from

either V3–V5 or V6–V9 windows. However, we do not claim that

this is a generalizable result. Homopolymeric bases are a known

source of insertion errors in pyrosequencing [21]. The unique

composition of the MC likely accounted for this observation. For

example, the two Staphylococcus species comprised approximately

38% of the expected MC composition and contain homopoly-

meric 6-mers in the V3–V5 window, but not in either the V1–V3

or V6–V9 windows (data not shown). The position of homopol-

ymers within the read may also contribute to the observed

insertion frequencies. Errors tend to occur at the tail end of 454

reads and for sequences derived from paired 3730 reads, errors

tend to occur in the first few bases of the parent reads. Where 3730

sequences were derived from short capillary reads errors are

observed where the overlapping regions are assembled.

Unfortunately, error rates cannot be used to pre-filter inaccu-

rate reads unless the parent reference sequences are known. We

attempted to determine simple read quality characteristics that

could be used to identify inaccurate sequences without relying on

more advanced read filtering or denoising approaches. We point

to other groups actively advancing methods for data filtering

[22,23] and to a comparison of approaches using the mock

community [24]. We focused on two metrics: read length and the

percent of low-quality bases per read. For a fraction of the non-

chimeric, unclassified data there was a general relationship

between sequence quality, length and error rate; erroneous reads

tended to be shorter and had more low-quality bases (data not

shown). These two measures of sequence quality alone, however,

were not predictive of true error rate for 60% of 3730 and 40% of

454 reads that were not classified. Thus, simple filtering metrics

that would remove all erroneous and unclassifiable sequences from

both 3730 and 454 16S data were not apparent.

Classifiability
We explored, first, how different data types, differentiated by

technology or 16S window, impacted our ability to classify data for

the MC and, second, how this compared to clinical samples taken

from four body regions: gut, oral cavity, skin and vagina. In the

process of removing detectable chimeras from all data sets prior to

taxonomic analysis, we observed that the proportion of chimeras

varied markedly between different samples and sequencing

platforms (Table 1). It is known that community composition as

well as amplification template concentration can influence the

frequency of chimera formation in 16S amplification reactions

[18]. Among the body sites tested, the stool and oral communities

had the highest proportion of chimeras overall, while 3730

sequences contained notably fewer chimeras than did the 454 data

(Table 1). There was only a modest difference in chimera rates

detected across the different 16S windows sequenced by 454, with

V1–V3 having the greatest and V6–V9 the lowest chimera

content.

We compared the relative taxonomic ‘‘classifiability’’ of 16S

data from the MC and each clinical sample and, consistent with

what we observed previously, all non-chimeric data from the MC

exhibited .95% genus level classifiability and 100% at the order

level. Among these data, the 3730 sequences and the 454 reads

from V1–V3 exhibited the greatest classifiability and the 454 V6–

V9 reads the lowest (Fig. 8A). In classifying both 3730 and 454

data from clinical samples, we noted a reduced classification

success for data from stool, oral and skin samples relative to that

seen with sequences from the MC, while most data from vaginal

samples were classifiable (Fig. 8B). We examined the data from our

stool samples in greater detail to better understand why only

,80% of these sequences classified at the genus level. We found

that the majority of unclassified sequences fell into two families,

Ruminococcaceae and Lachnospiraceae. Phylogenetic analysis of the

sequences (blue), classified by BLASTn. Error bars indicate standard error from technical replicates. (B) Deviations from expected frequencies as
calculated by subtracting expected % from the observed. (C) The average %GC is shown for all its 16S genes, and for their whole genomes. (d) The
lowest percent mismatch between primer used in production protocols (Protocols S1 and S2) and any 16S gene copy is shown for each organism;
primers are grouped by sequencing technology and 16S window.
doi:10.1371/journal.pone.0039315.g004
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Lachnospiraceae reads indicated that these sequences likely repre-

sented bona fide organisms that were distantly related to the

Lachnospiraceae represented in the 16S reference set used in our

classification regime (Fig. 9). Thus, expansion of the 16S reference

sets, particularly with respect to these families, will likely improve

the performance of classification methods.

Although 3730-derived sequences from our clinical samples

were generally more successfully classified than the shorter 454

reads, the difference was modest for stool, skin and vaginal

samples, corresponding to just a few percent. The exception,

however, was the data from oral samples where the 3730

sequences demonstrated 10% greater classifiability than the

shorter 454 windows. Previously, it was shown that smaller 16S

windows generally negatively impacted classification success

[25]. We observed this most clearly with the vaginal community

(Fig. 10), where the 454-generated sequences belonging to the

family Lactobacillaceae were more difficult to classify at the genus

level compared to those generated using 3730. However, the

number of reads affected was low and, therefore, did not

contribute greatly to differences in our ability to classify data

generated by these two technologies (Fig. 8B). A family of

organisms, Pasteurellaceae, present at low abundance, explained

the difference between the two platforms in the ability to

classify reads generated from the oral community (Figs. 10 and

8B).

Species Richness
Classification-based methods can oversimplify or miss diversity

not represented in the reference taxonomy. Alternatively, evalu-

ation of diversity within a sample by clustering sequences into

operational taxonomic units (OTUs) that are defined by sequence

similarity thresholds can provide greater resolution. We calculated

OTUs at 97% similarity in the MC data in which 21 species were

expected to cluster into 18 OTUs (Figs. 11A and 11B, dashed line).

Initial clustering of 3730 and 454 data yielded diversity estimates

that greatly exceeded the expected (Figs. 11A and 11B, solid black

lines).

The 3730 sequencer capillary length had a profound effect on

estimates of diversity. Longer capillaries resulted in more

accurate, but still greatly inflated, diversity estimates. Three

454 windows yielded approximately similarly inflated diversity

estimates (Figs. 11A and 11B, black lines). Chimeric sequences

and sequence errors can inflate estimates and standard practice

is to filter read data prior to clustering. We filtered reads using

simple quality criteria and removed chimeras with CSlayer and

Wigeon [18] (see Bioinformatic Methods). For 3730 MC data,

quality filtering excluded 10% of the total reads and subsequent

chimera filtering excluded an additional 5.4% for a total of

15.4% of reads being excluded. For 454, quality filtering

excluded 20.4% of the total reads and subsequent chimera

filtering excluded an additional 16.1% for a total of 36.5% of

reads excluded. After filtering, 18 OTUs were correctly

estimated from 3730 data and estimates from 454 windows

were significantly reduced to within a few fold of expected

(Figs. 11A and 11B, red lines). Thus, based on assessment of a

community of known diversity, both platforms could approxi-

mate true diversity.

Discussion

The scope of the HMP, to profile the microbiome of 300

individuals at numerous body sites over a prolonged period of time

and at multiple research sites, imposed a significant obligation to

define aspects of data production and data quality that contribute

to the consistency, accuracy and utility of the data generated. In

the course of establishing protocols (Protocols S1 and S2), we

evaluated the performance and error characteristics of each

technology, and the relationship of sequence error to the utility of

16S rDNA regions for classification- and OTU-based analysis of

community structure.

Here, we generated data using the conventional, long-read 3730

platform and the shorter-read, higher-throughput 454 platform.

Unlike reference genome sequencing, where assembly of individ-

ual reads produces high-quality consensus sequence, each

individual 454 read or assembled 3730 read pair stands separately

without the benefit of error correction or removal of anomalous

reads by consensus methods. A key facet of the work presented was

using a known control, the MC, which allowed us to directly

characterize the features contributing to erroneous interpretation

of sequence data, and explore simple filters that could in turn be

applied to clinical samples of unknown composition.

The primary goal of the HMP, however, is to compare

communities within different samples and both 3730 and 454

sequencing will suffice for this purpose. The tremendous cost

advantage of 454, because it permits characterization of more

samples at greater read depth, cemented its selection as the

platform of choice for the 16S production phase of the HMP.

Although Illumina sequencing platforms were not a viable option

at the time these data were generated, similar advantages of cost

and depth are currently driving rapid adoption of Illumina-based

approaches. Recent work has reported on the applicability of

Illumina sequencing to 16S rDNA studies [26]. Because, much of

the existing reference-quality data for 16S rDNA were generated

using Sanger sequencing methods, we believe direct comparisons

between next generation platforms and 3730 are useful to assess

the quality of new experimental data and reference standards.

We noted the quality of 3730 data varied. The highest quality

data were generated using longer capillaries, with assembled,

overlapping reads from each end of the near full-length amplicon.

For the shorter reads generated by 454 sequencing, the highest

quality data were generated using the V1–V3 and V3–V5

windows. When applied to the MC, the V6–V9 window

performed poorest, producing the greatest diversity overestima-

tions in the OTU analysis, lower classifiability and higher error

rates. V6–V9 also performed less consistently in inter-center

comparisons. When applied to identical clinical samples, the V1–

V3 and V3–V5 windows produced different representations of the

communities and varied in their sensitivity to different organisms.

For example, V1–V3 failed to adequately amplify members of the

Bifidobacteriaceae family (data not shown). Both windows allow

differentiation of samples from varying body sites and individuals.

It is not clear that either window is fundamentally more accurate

than the other across all potential applications. However, V3–V5

did described our MC more accurately than the other windows.

The use of multiple windows may, collectively, give the most

complete description of a community. However, like others, we

Figure 5. Illustration of how flawed taxonomic schemes and sequence quality can result in incorrect classifications. The phylogenetic
trees were created starting from the full-length reference sequences that were used to train RDP’s taxonomic scheme version 5 for Pseudomonas and
Azomonas (A), and Neisseriaceae (B), respectively. These sequences were clustered into 3% OTUs with mothur and representatives for each OTU were
selected for building a tree with FastTree. The number of sequences belonging to each OTU is indicated in brackets.(C) Scatter density plots of percent
low quality (QV,20) bases per read versus read length is shown for the misclassified reads (red) compared to their correctly classified counterparts
(blue).
doi:10.1371/journal.pone.0039315.g005
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Figure 6. 454 sequences have a higher error rate, mainly resulting from an increased insertion and deletion rate. (A) For all the quality
and chimera filtered 3730 and 454 sequences generated for the MC sample, an alignment-based estimation of errors, including insertions, deletions,
and substitutions was performed. For each of the different sequencing approaches, the cumulative frequency distribution of the percent error per
sequence is shown for assembled 3730 sequences generated with short capillaries (green), long capillaries (red), and three reads per clone (yellow),
and 454 reads spanning the variable regions V1–V3 (light blue), V3–V5 (dark blue), and V6–V9 (fuchsia). A vertical line at 1% was added as a visual aid
for upper limit of an acceptable error threshold. (B) Boxplots show the average percentage of errors per read, per sequence approach and per error
type, including substitutions, insertions, and deletions. Outliers are not shown.
doi:10.1371/journal.pone.0039315.g006
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caution against comingling V6–V9 data with other data types

[27].

We clearly illustrate that sequence artifacts can result in mis-

classification of reads. It was recently demonstrated that identical

chimeric artifacts can be reproduced across independent exper-

iments and were abundant in data from both 3730 and 454

sequencing [18], suggesting that observation of a novel sequence

in multiple samples may not sufficiently confirm the existence of

novel taxa. The MC sequence artifacts we observed impacted the

interpretation of species diversity and created the appearance of

taxa not present. Applied to clinical samples, 454 data could be

classified at approximately the same frequency as 3730 data; the

oral data was an exception, where a higher proportion of the 3730

data was classifiable. Some of the sample-dependent variation in

successful taxonomic classification of these data reflected non-

uniform reliability of the underlying taxonomic scheme applied.

These difficulties will be ameliorated as additional reference

sequences become available and taxonomic schemes receive

continued curation.

Sequencing MC 16S rDNA demonstrated that both 3730- and

454-produced data overestimate species richness to a similar

extent. After filtering sequences with an excessive number of low-

quality bases and chimeric sequences, the near full-length,

assembled 3730 sequences produced data that accurately reflected

species richness while the shorter 454 reads still yielded spurious

OTUs.

The informatic processing of read data is a significant

component of 16S rDNA work. We applied simple filtering

metrics in combination with recently developed chimera detection

algorithms [18]. This approach dramatically reduced the percent-

age of misclassified reads, and significantly lowered or eliminated

spurious OTUs from both 3730 and 454 data. Other groups have

also explored optimization of denoising, filtering and clustering

approaches for pre-processing data [28–31]. In this work, we have

confirmed and complemented many of these observations and

present a large and rich data set, encompassing a highly defined

Figure 7. Error by position profiles indicate hotspots for error. To visualize where sequencing errors were concentrated along the length of
the 16S sequence for each sequencing technology, a root mean square deviation (RMSD) plot was generated for (A) 3730 sequence and (B) 454 read
data. The RMSD plot is a graphical representation of the differences in nucleotide distribution between a reference sequence and the samples of
interest, for each position along the length of the reference. This figure shows the results for Neisseria meningitidis specifically, but is representative of
the profiles observed for the other strains in the MC.
doi:10.1371/journal.pone.0039315.g007

Table 1. Chimera rates in 16S data sets.

Samples % Observed Chimera content

ABI3730 454 FLX Titanium

V1–V9 V1–V3 V3–V5 V6–V9

MC 5.9963.07 14.26610.34 14.7569.45 13.4968.52

gut 7.7166.46 22.9068.56 16.0362.86 17.7663.76

oral 7.2266.35 20.55611.73 10.9864.01 9.1065.02

skin 3.4965.77 11.1561.36 7.5162.49 5.7361.69

vaginal 6.3166.64 12.6066.70 6.6263.51 3.0061.65

*Values are averages 6 STDEV calculated from multiple replicates of MC, and
from replicates of multiple clinical samples originating from different body sites.
doi:10.1371/journal.pone.0039315.t001
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MC, multiple clinical samples from diverse body habitats, and

data generated from multiple centers applying both unique and

consolidated protocols.

The results presented, along with the works of others,

demonstrate that all facets of data production and data processing

can generate artifacts that bias the representation of community .

This presents an opportunity for the research community to

investigate how to better consolidate and advance approaches for

metagenomic studies. As additional sequencing technologies are

applied to community metagenomics, it will be critical to

benchmark and standardize against defined references so that

the research community can leverage the combined data sets

efficiently and effectively to obtain greater insights.

Materials and Methods

Molecular Methods
Mock community composition. The organisms for the

mock community (MC) include a variety of different genera

commonly found on or within the human body. The MC

composition has been described elsewhere [18] and additional

data is available on the HMP Data Analysis and Coordination

Center website (http://www.hmpdacc.org/). Genomic DNA from

each organism was prepared individually and the DNAs were then

mixed, based on 16S rRNA gene copy number, to create the MC.

The organisms included were Acinetobacter baumannii ATCC 17978,

Actinomyces odontolyticus ATCC 17982, Bacillus cereus ATCC 10987,

Bacteroides vulgatus ATCC 8482, Clostridium beijerinckii ATCC 51743,

Deinococcus radiodurans DSM 20539 (ATCC 13939), Enterococcus

faecalis ATCC 47077, Escherichia coli ATCC 700926, Helicobacter

pylori ATCC 700392, Lactobacillus gasseri DSM 20243 (ATCC

33323), Listeria monocytogenes ATCC BAA-679, Methanobrevibacter

smithii ATCC 35061, Neisseria meningitidis ATCC BAA-335,

Propionibacterium acnes DSM1 6379, Pseudomonas aeruginosa ATCC

47085, Rhodobacter sphaeroides ATCC 17023, Staphylococcus aureus

ATCC BAA-1718, Staphylococcus epidermidis ATCC 12228, Strepto-

coccus agalactiae ATCC BAA-611, Streptococcus mutans ATCC

700610, and Streptococcus pneumoniae ATCC BAA-334. Candida

albicans ATCC MYA-2876 was included as a negative control but

limited to only 1,000 18S copies (calculated) per ml.

Clinical Samples
Clinical samples were collected non-invasively at Baylor College

of Medicine in Houston, TX and Washington University in St.

Louis, MO. IRB approval for clinical samples used in this study

were granted from Baylor College of Medicine (IRB Approval

#22895) and The Human Research Protection Office of

Washington University in St. Louis (IRB Approval #08-0754).

The collecting institutions obtained written, informed consent

from all participants. DNA from clinical samples was provided to

the sequencing centers. Information describing the collection and

extraction of DNA from clinical samples, documents representing

the consent forms used and supplemental study information is

available on the HMP Data Analysis and Coordination Center

website (http://www.hmpdacc.org/).

Amplification and Cloning of Full-length 16S rRNA Genes
for 3730 Sequencing
Samples were amplified and sequenced according to the ‘‘HMP

3730 16S Protocol Version 1.10 (Protocol S1) using established

primer sequences [32,33]. The protocol is available on the HMP

Data Analysis and Coordination Center website (http://www.

hmpdacc.org/).

Amplification and 454 Sequencing of Targeted 16S rRNA
Gene Variable Regions
Samples were amplified and sequenced according to the ‘‘HMP

454 16S Protocol Version 4.20 (Protocol S2). The protocol is

available on the HMP Data Analysis and Coordination Center

website (http://www.hmpdacc.org/). Amplification primers were

designed with FLX Titanium adapters (A adapter sequence: 59

CCATCTCATCCCTGCGTGTCTCCGACTCAG 39; B adapt-

er sequence: 59 CCTATCCCCTGTGTGCCTTGGCAGTCT-

CAG 39) and a sample barcode sequence where applicable.

Forward primers contained the B adapter and the reverse primers

contained the A adapter. Specific barcoded primer sequences can

be found in Tables S3, S4, S5.

Bioinformatic Methods
Processing and quality filtering of raw sequence

data. Default processing of 3730 16S rRNA sequences:

Sequences derived from a single clone were assembled using

AmosCmp16Spipeline [18], which incorporates filtering to

Figure 8. Taxonomic utility of 16S sequence data varies by
technology, 16S window, and sample type. The fraction of
successfully classified 3730 and 454 sequences obtained from the MC
(A) and clinical samples representing four major body regions (B) is
plotted at different taxonomic levels from genus to phylum.
Classification was performed on quality and chimera-filtered sequences
and considered to be successful if the RDP Classifier result had a
confidence score above 80%. In panel B, 454 results include only
window V3–V5.
doi:10.1371/journal.pone.0039315.g008
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exclude non-16S reads, and trimming of amplification primers

sequences and low-quality ends of reads. Assembled sequences

were removed from the analysis if they were ,1100 nt or if more

than 10% of the bases had a Phred quality score below 20. ‘N’

characters were inserted at the gap position when reads did not

overlap according to the estimated gap size. Sequences were

removed from analysis if the gap size was larger than 1% of the

total assembled length. Prior to analysis, bases with a Phred score

below 20 were replaced with an ‘N’. Variants of the default

processing pipeline that were evaluated include different ap-

proaches for base calling (KB base calling versus Phred), trimming

(LUCY), and assembly.

Default processing of 454 16S rRNA sequences: Sequences

were processed using mothur v.1.6.0 [34]. Sequences were

removed from the analysis if they were ,200 nt or .600 nt),

had a read quality score ,25, contained ambiguous characters,

had a non-exact barcode match, or contained more than four

mismatches to the reverse primer sequence (i.e., 534R, 926R, and

Figure 9. The Lachnospiraceae 16S diversity observed in stool samples is greater than from known reference resources. A
phylogenetic tree constructed with 16S sequences from RDP’s training set (light blue, n = 34), publicly available genomes from human isolates (green,
n = 26), publicly available HMP genomes (dark blue, n = 44), and sequences from aggregate stool samples that could be classified at the genus level
(dark grey, n = 63) and that remained unclassified at the genus level (light grey, n = 408).
doi:10.1371/journal.pone.0039315.g009
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1492R). After assignment of sequences to samples based on

barcode matches, the barcode and primer sequences were

trimmed and reads were oriented such that all sequences begin

with the 5-prime end according to standard sense strand

conventions.

For detection of chimeric sequences, all 16S rDNA sequences

were aligned using NAST-iEr [18] to obtain a fixed-width

alignment, and subjected to CSlayer and WigeoN [18]. Note that

for all these tools, we used the original implementation made

available at http://microbiomeutil.sourceforge.net/. Sequences

that were flagged as chimeric by either of the two methods were

removed from further analysis.

Taxonomic assignment of 16S sequences/reads. Naı̈ve

Bayesian classification: RDP classifier (v2.2) software was used to

classify the sequences according to the taxonomy proposed by

Garrity et al. [35] and maintained at the Ribosomal Database

Project (RDP 10 database, version 6). We used a cutoff for the

RDP classifier confidence score of 80%.

BLAST-based classification: The identities of the 16S sequences

were determined by creating a BLAST database of the genomes

representing all organisms included in the mock community and

then performing a BLASTn alignment (97% identity and 90%

coverage) of the 16S sequences to the database. These results were

parsed to obtain the top hit for each sequence and the top hits were

counted to obtain the number of sequences matching each genome.

Determination of MC composition from Illumina WGS

sequences. The MC was subjected to WGS sequencing on

the Illumina platform to generate 240,935,824 101-nt reads.

The Burrows-Wheeler Aligner (BWA) [36] was used to align

read fastq files to a fasta file of the bacterial reference genomes

of MC members resulting in 192,543,566 mapped reads. A

sorted BAM and pileup file were created with SAMtools

software suite [37]. For each organism in the MC, breadth

and depth of coverage was determined as follows. Breadth: the

number of reference bases with coverage greater than 0 was

divided by the genome’s size. Depth: the sum of the coverages at

each base was divided by the number of bases covered. All but

one organism had .95% breadth of coverage (S. aureus,

93.74%). The relative depth of coverage was used to derive the

expected composition of the MC.

Figure 10. Classifiability of 16S sequence data is differentially impacted by sequencing technology, taxonomic family and body
region. For each of the HMP body regions, the relationship between the average frequency of a given bacterial family (y-axis) versus the
contribution of these families to the unclassifiability issue (x-axis) is plotted for (B) 3730 and (C) 454. Only window V3–V5 is presented in 454 results.
Classification was performed on quality- and chimera-filtered sequences and classifications assigned only if the RDP Classifier result had a confidence
score above 80%.
doi:10.1371/journal.pone.0039315.g010
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Analysis of variation. PCoA was performed on the frequen-

cies of identified genera, with unclassified reads excluded from the

analysis. The covariance matrix of the data was used to construct

the eigenvectors [38]. For each of the two reported axes, we

performed ANOVA using center, sample, and center-by-sample

effects. Using the sums-of-squares, we estimated the relative

contributions of each covariate (effect), and then, weighting by the

contribution of each axis, obtained the total variation. Spearman’s

rank correlation coefficient was used to assess correlations between

intra-center, inter-center, and inter-sample pairwise similarities.

Species richness estimation. Rarefaction curves were

generated with mothur [34] using the average-neighbor algorithm

to assign sequences into operational taxonomic units with a

distance level of 3%. For the 454 data sets, a random subset of

10,000 reads was selected.

Error profiling. For each of the organisms in the mock

community, the available 16S reads were subjected to AMOScmp

[39] to perform a reference-based multiple sequence alignment

(MSA). From the MSA, the distribution of nucleotides for each

position was tallied and a root mean square deviation (RMSD)

value was computed between each position and the reference 16S

copy using ANDES [40]. A visual comparison of the different 16S

windows and sequencing technologies was plotted on a position-

by-position basis.

Data availability. Data generated for this work can be

accessed at http://www.ncbi.nlm.nih.gov/genomeprj/48489.

The NCBI bioproject ID numbers corresponding to figures

within this work are as follows. Figures 2 & 3=48471 (3730) and

48341 (454), Figure 8A = 48471 (3730) and 48341 (454),

Figure 8B = 34129 (3730) and 48335 (454), Figure 11A

= 48471, Figure 11B = 48341, Table 1= 48471 and 48341. The

NCBI bioproject ID for the WGS data used to quantify the MC is

48341.
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