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Evaluation of 16S rRNA gene sequencing for
species and strain-level microbiome analysis
Jethro S. Johnson 1,7*, Daniel J. Spakowicz 1,2,7, Bo-Young Hong1, Lauren M. Petersen1,3,

Patrick Demkowicz 1, Lei Chen1,4, Shana R. Leopold1, Blake M. Hanson1,5, Hanako O. Agresta1, Mark Gerstein6,

Erica Sodergren1 & George M. Weinstock1

The 16S rRNA gene has been a mainstay of sequence-based bacterial analysis for decades.

However, high-throughput sequencing of the full gene has only recently become a realistic

prospect. Here, we use in silico and sequence-based experiments to critically re-evaluate the

potential of the 16S gene to provide taxonomic resolution at species and strain level. We

demonstrate that targeting of 16S variable regions with short-read sequencing platforms

cannot achieve the taxonomic resolution afforded by sequencing the entire (~1500 bp) gene.

We further demonstrate that full-length sequencing platforms are sufficiently accurate to

resolve subtle nucleotide substitutions (but not insertions/deletions) that exist between

intragenomic copies of the 16S gene. In consequence, we argue that modern analysis

approaches must necessarily account for intragenomic variation between 16S gene copies. In

particular, we demonstrate that appropriate treatment of full-length 16S intragenomic copy

variants has the potential to provide taxonomic resolution of bacterial communities at species

and strain level.
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S
ince the advent of high-throughput sequencing, PCR-
amplified 16S sequences have typically been clustered
based on similarity to generate operational taxonomic units

(OTUs) and representative OTU sequences compared with refer-
ence databases to infer likely taxonomy. Although convenient and
powerful, such usage of 16S has necessitated certain assumptions,
e.g., the now historic assumption that sequences of > 95% identity
represent the same genus, whereas sequences of > 97% identity
represent the same species1.

16S sequences have also been exploited using low-throughput
methods to distinguish strains (sometimes called subspecies)
based on polymorphisms within the gene. Single-nucleotide
polymorphisms (SNPs) have been used to track strains of clinical
relevance or, when they are stably linked to other parts of the
bacterial haplotype, to predict phenotypic characteristics2. Thus,
accurate and complete 16S sequences are of high utility in many
applications. Until recently, however, accurate, full-length 16S
sequences have been beyond the scope of high-throughput
sequencing platforms.

Availability of third-generation technologies means that high-
throughput sequencing of the full 16S gene is becoming com-
monplace. Circular consensus sequencing (CCS)3,4, combined
with sophisticated denoising algorithms5–8 to remove PCR and
sequencing error, mean it is now possible to discriminate between
millions of sequence reads that differ by as little as one nucleotide
across the entire gene. Together, these technological and meth-
odological advances mean that for the first time it is becoming
possible to exploit the full discriminatory potential of 16S in a
high-throughput manner.

Here, we demonstrate that, in the face of such changes, his-
torical assumptions need to be revisited. Using an in-silico dataset
of sequences taken from public databases we show that com-
monly targeted 16S sub-regions, such as V4, are unable to match
the taxonomic accuracy achieved when sequencing the full 16S
gene. Using long-read sequencing of mock and in-vivo commu-
nities, we demonstrate that it is possible to accurately resolve the
divergent copies of the 16S gene that exist within the same gen-
ome. Finally, we demonstrate that such intragenomic 16S gene
copy variants are highly prevalent in taxa isolated from the
human gut microbiome, suggesting they may be used to improve
discrimination between species and even strains in 16S gene-
based microbiome studies.

Results
The full 16S gene provides better taxonomic resolution. The
~1500 bp 16S rRNA gene comprises nine variable regions inter-
spersed throughout the highly conserved 16S sequence (Fig. 1a).
Sequencing the entire gene was originally accomplished by Sanger
sequencing. This required cloning genes, generating, and assem-
bling two to three reads per clone, and producing limited sam-
pling depth at high cost and effort. Currently, however, the vast
majority of studies sequence only part of the gene, because the
widely used Illumina sequencing platform (higher throughput,
lower cost, reduced effort compared with Sanger) produces short
sequences ( ≤ 300 bases). Different sub-regions of the gene are
therefore targeted, ranging from single variable regions, such as
V4 or V6, to three variable regions, such as V1–V3 or V3–V5
(used in the Human Microbiome Project in conjunction with the
454 sequencing platform9).

We argue that targeting sub-regions represents a historical
compromise, due to technology restrictions10. Today, both
PacBio and Oxford Nanopore sequencing platforms are capable
of routinely producing reads in excess of 1500 bp and high-
throughput sequencing of the full 16S gene is becoming
increasingly prevalent. We therefore suggest that the justification

for this compromise needs to be revisited and we performed a
simple in-silico experiment to demonstrate the advantage of full-
length 16S sequencing over the targeting of sub-regions.

We downloaded a set of non-redundant (i.e., > 1% different),
full-length 16S sequences from a public database (Greengenes).
Taking advantage of the fact that a substantial proportion of these
sequences incorporated PCR primer-binding sites, we trimmed
them to generate in-silico amplicons for different sub-regions,
based on the location of PCR primers commonly used in
microbiome studies (Fig. 1a and Supplementary Tables 1–2).
Assuming each sequence in our downloaded database represented
a unique species, we then used a common classification approach
(the Ribosome Database Project (RDP) classifier11) to calculate
the frequency with which in-silico amplicons for each sub-region
could provide accurate, species-level taxonomic classification
(using the original database as a reference). In a second
experiment, we also clustered our in-silico amplicons to generate
OTUs at different, commonly used, sequence similarity thresh-
olds (97%, 98%, 99%).

We found that sub-regions differed substantially in the extent
to which they could confidently discriminate between the full-
length 16S sequences used to represent species (Fig. 1b). The V4
region performed worst, with 56% of in-silico amplicons failing to
confidently match their sequence of origin at this taxonomic level.
By contrast, when a full-length sequence with all variable regions
was used, it was possible to classify nearly all sequences as the
correct species (Supplementary Fig. 1a). Altering databases and
classification confidence thresholds affected the proportion of in-
silico amplicons that could be accurately matched, but did not
influence prevailing trends (Supplementary Fig. 1a, b).

Second, different sub-regions showed bias in the bacterial taxa
they were able to identify (Fig. 1c). For example, the V1–V2
region performed poorly at classifying sequences belonging to the
phylum Proteobacteria, whereas the V3–V5 region performed
poorly at classifying sequences belonging to the phylum
Actinobacteria (Supplementary Fig. 2). Similar trends were seen
at the genus level for taxa of potential medical relevance.
Although the full V1–V9 region consistently produced the best
results, the V6–V9 region was notably the best sub-region for
classifying sequences belonging to the genera Clostridium and
Staphylococcus, the V3–V5 region produced good results for
Klebsiella, and the V1–V3 region produced good results for
Escherichia/Shigella (Supplementary Fig. 2 and Source Data).

Finally, the choice of sub-region dramatically affected the
number of OTUs formed when clustering in-silico amplicons to
create OTUs. When clustering at 99% sequence identity, all sub-
regions failed to recreate the number of distinct sequences present
in the original database; however, the V4 region again performed
worst (Fig. 1d). Notably, the relative number of OTUs produced
by each sub-region was not consistent at different identity
thresholds (97%, 98%, 99%, Supplementary Fig. 3), indicating
that the behavior of clustering algorithms may be difficult to
predict when the amount of information contained within a
sequenced region is highly variable.

In conclusion, targeting sub-regions represents a historical
compromise that was sufficient for identification of taxa at the
genus level or above. However, our simple in-silico experiment
demonstrates that it is not valid to assume that ever finer
clustering of these sub-regions will result in the improved
taxonomic resolution necessary to reflect species. Although some
sub-regions (e.g., V1–V3) provide a reasonable approximation of
16S diversity, most do not capture sufficient sequence variation to
discriminate between closely related taxa. We also note that
discriminating polymorphisms may be restricted to specific
variable regions; thus, certain sub-regions will be better suited
for discriminating closely related members of certain taxa.
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16S gene copy variants reflect strain-level variation. Clustering
of 16S sequences into OTUs has historically served two purposes.
First, it has removed minor artifactual sequence variants due to
PCR amplification and sequencing errors when collapsing
sequences into groups. Second, it has collapsed legitimate
sequence variants that exist between closely related bacterial taxa.
Although the latter may not always be desirable, it stands to
reason that you cannot distinguish between bacterial taxa whose
16S sequences vary at a rate that is lower than the error
encountered on a particular sequencing platform.

Recently, advances in CCS have dramatically improved error
rates of long-read sequencing platforms. At the same time,
computational methods have made it possible to distinguish

between legitimate vs. artifactual sequence variation. These
technological and methodological advances mean researchers
now have the potential to perform high-throughput sequencing
that can accurately detect single-nucleotide variants across the
entire 16S gene.

Although it is tempting to assume that single-nucleotide
variants may represent distinct, closely related taxa, we caution
against this overly simplistic interpretation due to the fact that
many bacterial genomes contain multiple polymorphic copies of
the 16S gene12–14. We performed PacBio CCS sequencing of a
36 species bacterial mock community (Supplementary Table 3
and Supplementary Fig. 4) to demonstrate (i) that the 16S
sequence of many bacteria varies between operons within the
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Fig. 1 In-silico comparison of 16S rRNA variable regions. a Shannon entropy across the 16S gene based on the alignment of a single representative sequence

for each known species present in the Greengenes database. Sequences were aligned against a single reference 16S gene for Escherichia coli K-12 MG1655

(NCBI Gene ID 947777). Gray panels depict variable regions defined by commonly used primer-binding sites (Supplementary Table 1). Variable regions

considered in this study are shown as red lines (bottom). b Proportion of sequences for each variable region that could not be identified to species level

when classifying each sequence against the reference database from which it was derived at a confidence threshold of 80% (RDP classifier). c Trees based

on taxonomy of sequences present in the in-silico database. The same tree is provided for each variable region. The color of each branch reflects the

proportion of sequences within each clade that could not be identified to species level. d The number of OTUs created when clustering sequences for each

variable region at 99% sequence similarity. Dashed line indicates the number of unique sequences (>1% different) in the original database. Source data are

provided as a Source Data file
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same genome and (ii) that high-throughput sequencing is
sufficiently accurate to resolve these intragenomic differences.

We aligned PacBio full-length 16S sequences to a reference
database containing a single representative 16S sequence for each
member of our mock community and used the alignment
statistics to evaluate the accuracy of this sequencing approach.
Comparing the number of passes used to generate a CCS with the
occurrence of single-nucleotide substitutions, insertions and
deletions indicated that ten passes could minimize these
combined errors to a minimum frequency of < 1.0% (although
it was notable that the minimum achievable error varied between
sequencing runs; Supplementary Fig. 5). However, we did observe
a coincidence of deletion errors with the location homopolymer
runs in our reference sequences (Supplementary Fig. 6), which
was not nucleotide-specific and was exacerbated by the length of
the sequenced homopolymer (Supplementary Fig. 7). We
subsequently validated deletions within the Escherichia coli 16S
gene using Illumina whole genome shotgun (WGS) sequencing,
which demonstrated that only one of the deletions occurring in
PacBio sequences was genuine (Supplementary Fig. 8).

Satisfied that CCS sequencing can produce 16S reads with a
low frequency of substitution errors, we next reasoned that a
proportion of the substitution errors within accurately aligned
reads should reflect variation attributable to 16S polymorphisms
within a species’ genome12. For example, reads aligned to the E.
coli strain K-12 substr. MG1655 showed a substitution profile,
which mirrored exactly that predicted by aligning all seven of the
16S sequences known to be present in this genome15 (Fig. 2a, c).
We were further able to validate the stoichiometry of these
nucleotide substitutions by quantifying variation in comparably
aligned Illumina WGS reads (Fig. 2b) and demonstrate that a
similar substitution profile was reproducible across multiple

sequencing runs (Supplementary Fig. 9). Alignments to other
reference sequences in our mock community showed a similar
trend of abundant substitutions localized to specific base
positions along the 16S gene, although we note that the signal-
to-noise ratio increased significantly when the 16S gene in
question had fewer than 100 aligned reads (Supplementary
Fig. 10).

The observation that long-read sequencing can identify 16S
polymorphisms within the same genome has important implica-
tions. First, it demonstrates that it is not valid to assume that
high-throughput sequence reads differing by one or few
nucleotides represent a distinct taxa6,16. Within a single genome,
two or more 16S sequences may be identical, whereas others may
be unique. Correspondingly, some homologous 16S loci may
retain identical sequence between two closely related strains,
whereas others may have diverged at one or few nucleotide
positions. In this context, any community-level or taxonomic
interpretation of 16S data should ideally account for the fact that
the relative abundance of 16S sequences arising from very closely
related taxa will reflect a linear combination of (i) the frequency
with which each unique sequence is represented across genomes
and (ii) the relative abundance of the genomes for each taxon.

Second, although intragenomic 16S sequence variation com-
plicates community-level analysis, it also has the potential to
increase the power of the 16S gene to discriminate between
closely related taxa, because it enables sequence-based compar-
ison to extend across multiple divergent loci. For example,
sufficient nucleotide variation exists to distinguish E. coli strain
K-12 MG1655 from the enterohemorrhagic strain O157 Sakai
(Fig. 2c, d). Thus, we argue that, when appropriately accounted
for, multiple polymorphic 16S copies are not an inconvenience to
be overlooked, rather they will enable the 16S gene to be used in
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Fig. 2 Polymorphisms in E. coli 16S rRNA gene sequences. a The position and frequency of substitutions appearing in E. coli strain K-12 MG1655 V1–V9

amplicons generated from our mock community and sequenced on the PacBio RS II platform. b The position and frequency of substitutions in reads generated

from genomic sequencing of the isolated E. coli strain K-12 MG1655 on the Illumina MiSeq platform. Magnified regions show respective positions in the

alignment of all seven 16S genes present in the E. coli K-12 MG1655 reference genome. The 16S sequence from the rrnD operon (**) is used as the reference for

all SNP phasing. c The predicted nucleotide substitution profile of E. coli K-12 MG1655 based on aligning the seven 16S gene sequences present in the reference

genome. d The predicted substitution profile of E. coliO157 Sakai based on aligning the seven 16S gene sequences present in the reference genome. Gray panels

depict variable regions defined by commonly used primer-binding sites (Supplementary Table 1). Dashed lines indicate the expected proportion of nucleotide

substitutions, given there are seven 16S gene copies within each genome. Source data are provided as a Source Data file
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strain-level microbiome analysis. We also note that the power of
intragenomic 16S sequence variation to discriminate closely
related taxa is likely to diminish when partial 16S sequences are
used. For example, SNPs distinguishing the E. coli strains K-12
MG1655 (Fig. 2c) from O157 Sakai (Fig. 2d) are found in variable
regions V1, V2, V6, and V9.

16S polymorphisms can be resolved in vivo. Microbiome
communities are often complex, existing in diverse biochemical
environments (e.g., stool, saliva, sputum, etc.) and containing
many hundreds of unique taxa whose relative abundance spans a
broad dynamic range. This complexity is not well represented in
either in-silico or mock community experiments. We therefore
performed an additional experiment to demonstrate that
sequencing of the full 16S gene while accounting for intragenomic
16S SNPs can resolve closely related bacterial taxa in vivo.

We carried out PacBio CCS sequencing of the V1–V9 region for
four human stool samples collected from healthy adult volunteers.
For comparison, we sequenced the V1–V3 region using the
Illumina MiSeq and, to provide a benchmark for species-level
taxonomic quantification, we performed metagenomic WGS
(mWGS) sequencing using the Illumina NextSeq. To evaluate
the extent to which each of these sequencing approaches can
resolve closely related taxa, we focused on the genus Bacteroides.
In addition to being abundant in the human gut, this genus is
highly diverse, containing multiple species that can exert both
good and bad effects on human health17. It has also been used
previously as a model taxon for demonstrating the utility of the
16S gene for high-resolution taxonomic analysis18.

When we calculated Bacteroides abundance at the genus level,
V1–V9 sequencing and V1–V3 sequencing produced comparable
results. Both approaches identified two individuals with low
Bacteroides relative abundance (~10–25%) and two individuals
with high Bacteroides relative abundance (~40–60%; Fig. 3a).
However, species-level quantification via mWGS sequencing
revealed far greater diversity, with a different Bacteroides species
dominant in the gut of each individual (Fig. 3b and Supplementary
Data 1). When clustering OTUs at 99% identity, both V1–V9 and
V1–V3 sequencing were able to reflect this species-level variation
(Fig. 3b), with the notable exception that V1–V3 sequencing did
not detect Bacteroides intestinalis, which was abundant in one of
the four human gut microbiome samples. Based on these results we
conclude that, when used in conjunction with an appropriate
identity threshold (e.g., 99%), OTU-based approaches have the
potential to resolve species-level diversity observed in the human
gut. We further note that, although full-length 16S sequencing may
be optimal for species-level analysis, highly informative variable
regions (e.g., V1–V3) may also be adequate for this purpose.

Taking advantage of the fact that Bacteroides vulgatus was
present at high relative abundance in two of our human gut
microbiome samples, we next asked whether intragenomic
variation between 16S gene copies could be detected in vivo.
We aligned every full-length sequence classified as belonging to
our B. vulgatus V1–V9 OTUs (Fig. 3b and Supplementary Data 1)
to a single representative B. vulgatus 16S gene sequence. We then
compared the resulting nucleotide substitution profiles (Fig. 3c)
with profiles predicted from two reference genomes present in the
NCBI RefSeq database19 (Fig. 3d).
The majority of nucleotide variation present in our in vivo

generated B. vulgatus OTU reflected true variation attributable to
intragenomic polymorphisms. In contrast, variation likely due to
sequencing errors appeared low and well below the minimal
~14% frequency that would be expected if there were a single B.
vulgatus strain in each sample with seven 16S gene copies in its
genome (Fig. 3c, dashed lines).

Although we did not know the true number of B. vulgatus
strains present in each in-vivo sample, it was notable that both
nucleotide substitution profiles bore closer resemblance to strain
ATCC 8482 than mpk. Variation also existed at specific loci that
could potentially indicate meaningful differences between the
in vivo and ATCC 8482 reference genomes. For example, a single
polymorphism was detected in the V5 region of ATCC 8482,
which was present in three 16S copies (43%). In the first in-vivo
sample (Scott) this polymorphism was present in 84% of reads,
whereas in the second (IronHorse) it was present in 69% of reads.
These numbers correspond closely to the numbers expected if a
polymorphism were present six and five out of seven 16S genes,
respectively.

In conclusion, we show that full-length 16S sequencing of the
human gut microbiome can accurately resolve single-nucleotide
substitutions that reflect intragenomic variation between 16S gene
copies. The presence of such variation indicates that 16S
sequences must be clustered to reflect meaningful taxonomic
units. Using OTUs clustered at 99% identity, we show that full-
length 16S has the potential to provide species and even strain-
level taxonomic resolution. Analysis of microbial communities at
these taxonomic levels promises to provide a very different
perspective to the one afforded by genus-level abundance
estimates.

Intragenomic 16S polymorphisms are highly prevalent. Having
demonstrated that it is possible to resolve intragenomic copy
variants in vivo, we next sought to establish the extent to which
such copy variants appear in taxa commonly found within the
human gut microbiome. We further sought to establish whether
such profiles can routinely be used to distinguish between strains
of the same species.

We cultured 381 taxa from the gut microbiome of the healthy
individuals depicted in Fig. 3, as well as from other individuals
participating in the same original study20 (Supplementary Data 2).
We subsequently performed full-length 16S gene sequencing on
isolates and aligned sequenced reads to identify nucleotide
substitutions characteristic of intragenomic 16S gene copy variants.

Taxonomic classification of isolates identified 58 putative
species (Supplementary Data 2), while clustering a single
representative sequence for each isolate at 99% similarity resulted
in 61 OTUs (with between 1 and 73 isolates assigned to each
OTU). In total, 349 of 381 sequenced isolates (54 of 61 OTUs)
had one or more SNP, indicating the presence of 16S gene
polymorphisms, and 205 unique SNP profiles were identified
when accounting for potential sequencing error (Fig. 4a and
Supplementary Data 2).

Notably, comparing SNP profiles for isolates assigned to the
same OTU frequently revealed differences in the frequency of
SNPs that were suggestive of differences in intragenomic 16S gene
copies between closely related taxa. Examples of different
substitution profiles are shown for three taxa (Fig. 4b–d), which
are suggestive of strain-level variation comparable to that we
demonstrated in principle for E. coli (Fig. 2b).

In conclusion, we show that many of the culturable members
of the human gut microbiome frequently possess 16S gene
polymorphisms, which, when properly accounted for, have the
potential to resolve strains of the same species.

Discussion
Here, we have presented the results of four experiments that
collectively demonstrate the taxonomic resolution achievable in
the current 16S gene-based microbiome studies. In particular, we
have focused on whether sequencing the full 16S gene while
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accounting for 16S gene copy variants makes the detection of
bacterial species and strains a realistic prospect.

High-throughput sequencing of the full 16S gene with suffi-
cient accuracy to discriminate between copy variants has until
recently been constrained by a lack of available sequencing
technologies. The advent of long-read approaches on Nanopore4

and PacBio3 platforms has changed this. Several previous studies
have provided detailed evaluation of PacBio CCS for targeted
amplicon sequencing21–24, and some have demonstrated this
approach is capable of improving discrimination between bac-
terial species present in microbial communities24,25.

Although our study necessarily addresses important technical
details, its goal is to explore the full potential of the 16S gene for

discriminating bacterial taxa rather than re-evaluate a parti-
cular sequencing technology. In addressing this goal, however,
we highlighted the prevalence of sequencing errors in PacBio
CCS reads as a factor that limits the ability to resolve highly
similar sequences. A particular problem was deletion errors
coincident with homopolymer runs in the target sequence.
Although random sequencing errors may be overcome by
increased sequencing depths, such systematic errors may occur
at a given frequency and hence may not be improved by greater
sequencing effort. Future work would benefit from explicitly
determining how recent advances in sequencing platforms,
chemistries, and computational approaches can improve these
errors.
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stool samples with high B. vulgatus relative abundance (IronHorse and Scott). d Nucleotide substitution profiles predicted from the reference genomes of

two different B. vulgatus strains ATCC 848239 and mpk40. In both c and d, nucleotide substitutions were identified relative to a single reference 16S gene

for B. vulgatus ATCC 8482 (NCBI Gene ID 5304800). Gray panels depict variable regions defined by commonly used primer-binding sites (Supplementary

Table 1). Dashed lines indicate the expected proportion of nucleotide substitutions, given there are seven 16S gene copies within each genome. Source data

are provided as a Source Data file
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Given the emphasis of our study, we chose to overcome such
platform-specific errors by focusing on substitutions and ignoring
the contribution of insertions and deletions to intragenomic 16S
gene copy polymorphisms. The presence of a single deletion in
one of the seven E. coli strain K-12 substr. MG1655 16S genes
demonstrates that this is an imperfect approach. However, we
argue that the contribution of insertions/deletions to intrage-
nomic polymorphisms is likely to be small relative to the con-
tribution of substitutions12. Therefore, current limitations that
may be specific to the sequencing approach used do not invalidate
our investigation of full-length 16S gene sequencing as a viable
method for discriminating between species and strains. In the
ensuing discussion, we address several important conclusions
from this investigation.

First, we conclude that sequencing the entire 16S gene
provides real and significant advantages over sequencing
commonly targeted variable regions. Although the 16S gene
will never provide a perfect representation of bacterial species
diversity26, none of the variable regions covered by partial 16S
sequencing were able to recapture the diversity represented
when sequencing the full ~1500 bp gene. Assuming our in-
silico experimental dataset provided a reasonable approxima-
tion of bacterial species, we conclude that most variable regions
are sufficient to identify genera, but they are unlikely to ever
adequately discriminate between species. In consequence,
irrespective of the resolution at which they are clustered,
variable regions will likely underrepresent the true species
richness of a microbiome sample.
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Fig. 4 Intragenomic 16S gene polymorphisms in human gut microbiome isolates. a Location of SNPs present in the 16S genes of individually cultured

bacterial isolates. SNP locations were identified through phasing full-length 16S gene sequences generated for each individual isolate. X-axis denotes

position along the 16S gene. Y-axis denotes individual isolates clustered based on their inferred phylogeny. Dark blue region indicates the location of a

polymorphism. For clarity, a maximum of five isolates belonging to the same species are shown. For details of nucleotide substitution profiles for all

sequenced isolates, see Supplementary Data 2. b–d Examples of nucleotide substitution profiles showing strain-level differences between isolates identified

as belonging to three bacterial species: b Shigella flexneri; c Bifidobacterium longum; d Collinsella aerofaciens. For each species, two isolate nucleotide

substitution profiles are shown; however, additional examples can be found in Supplementary Data 2. Isolates were identified as belonging to the same

species if their representative sequences were assigned to the same OTU when clustering at 99% sequence identity. Taxonomic identification was

performed using BLAST to align representative sequences to the NCBI 16S BLAST database (see Methods). Gray panels depict variable regions defined by

commonly used primer-binding sites (Supplementary Table 1). Dashed lines indicate the expected proportion of nucleotide substitutions, given the number

of 16S gene copies predicted for each genome. Source data are provided as a Source Data file
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Second, we argue that intragenomic variation in the 16S gene
should not be ignored. In particular, we caution against the
conclusion that quantifying exact sequence variants (ESVs) is
preferential to more traditional OTU-based approaches16. This
conclusion assumes that ESVs represent a more meaningful
taxonomic unit than OTUs. Given that the majority of bacterial
isolates we sequenced contained multiple, variant copies of the
16S gene within their genome, this assumption may not always be
correct. The potential for 16S copy variants to bias estimates of
bacterial diversity is well established27, and we and others25 have
shown the number of unique sequences detected in a mock
community is far greater than the number of species known to be
present.

We note that, similar to OTUs, ESVs do not need to accurately
represent individual taxa, to be useful and informative18. How-
ever, our results show that quantifying ESVs will likely over-
estimate species richness, just as OTUs based on variable regions
may underestimate it. As a means of quantifying individual taxa,
ESVs may also be limited, due to the fact that multiple unique
sequences originating from the same genome are not necessarily
present at the same relative abundance (e.g., E. coli has seven 16S
gene copies, of which six are unique for strain K-12 MG1655,
whereas four are unique for O157 Sakai). Although these caveats
do not preclude the use of ESVs as useful indicators of either
taxonomy or diversity, they must necessarily be accounted for
when interpreting results.

Third, we argue that appropriate clustering of intragenomic
16S gene sequence variation can in fact be a valuable method by
which to provide accurate representation of bacterial species.
Previous studies have reported intragenomic 16S gene poly-
morphisms as a problem that potentially confounds bacterial
species richness estimates25,27. By contrast, we demonstrate that,
when handled correctly, the presence of such polymorphisms in
full-length 16S reads has the potential to aid in taxonomic clas-
sification. Our in-vivo experiment demonstrated that full-length
16S gene sequences clustered at 99% identity provided reasonable
estimates of Bacteroides species relative abundance when com-
pared with mWGS-based quantification. More importantly, these
99% OTUs also appeared to adequately cluster the seven 16S gene
copies present in the B. vulgatus genome. Although we stopped
short of determining how well the 99% identity threshold sepa-
rates intragenomic vs. inter-genomic sequence variation for all
bacterial species, we note that other studies have previously
endorsed similar thresholds for full-length 16S studies26,28.

Finally, by extensive culturing of bacteria present in the human
gut microbiome, we provide support for the observation that
intragenomic 16S gene copy variants are present in a significant
proportion of bacterial taxa12,27. Phasing of 16S gene SNPs pro-
duced highly similar substitution profiles for closely related taxa,
indicating that these profiles provide a robust method for species-
level taxonomic identification. Furthermore, assuming that 99%
sequence similarity is an adequate threshold for clustering
sequences originating from the same genome, differences in SNP
profiles, reflecting polymorphisms in one or more 16S gene copies
reproducibly reflected differences between strains of the same
species.

In conclusion, our results demonstrate that appropriate
handling of high-throughput, full-length 16S sequence data has
the potential to enable accurate classification of individual
organisms at very high taxonomic resolution.

Methods
In-silico comparison of full vs. partial 16S gene sequencing. The in-silico
analysis was carried out separately on two non-redundant public databases:
Greengenes v13.8.9929 and the Human Oral Microbiome Database (HOMD) v1330.
Only the results for the Greengenes database are reported in the main text. For the

HOMD, a single sequence was randomly selected to represent each species present
in the database. As Greengenes does not consistently provide species-level taxo-
nomic classification, all sequences with genus-level classification were selected and
sequences representative of 99% sequence-similarity clusters were used to represent
distinct species. Supplementary Fig. 2a (and Source Data) indicate the relative
extent to which different bacterial taxa were represented within this Greengenes-
derived database.

In-silico amplicons demarcating different sub-regions of the 16S gene were
generated by trimming regions defined by established primer sets (Supplementary
Table 1) using Cutadapt v1.4.231, allowing up to three mismatches within the
primer alignment. Sequences were discarded if one or more variable region
(including V1–V9) could not be identified by the trimming tool, contained N’s, or
if the resulting amplicon was >2 SDs away from the observed mean length for the
respective region. These curation steps retained 15% and 75% of the sequences in
the Greengenes and HOMD databases, respectively (Supplementary Table 2). Full-
length (V1–V9) amplicons were aligned using MUSCLE32 and Shannon entropy
was calculated at each base position along a single E. coli str. K-12 substr. MG1655
(Fig. 1a) 16S gene sequence (NCBI Gene ID 947777). Accordingly, deletions within
other 16S sequences are represented in entropy plots, whereas deletions within the
reference sequence are not.

To determine the taxonomic resolution of afforded by different variable regions,
each in-silico amplicon was classified against the filtered reference database from
which it was generated using the mothur command classify.seqs33 with a range of
minimum confidence thresholds (-cutoff 30–98). To create OTUs, in-silico
amplicon datasets generated for each sub-region were filtered to remove non-
unique sequences and re-ordered to correspond with the sequence order in the
V1–V9 dataset. Each amplicon was assigned a unitary abundance and OTUs were
generated at a variety of similarity thresholds (97%, 98%, and 99%) using the
USEARCH command cluster_otus34, with chimera detection disabled using the
option -uparse_break −999.

Construction of a bacterial mock community. Based on data available from the
Human Microbiome Project and Human Oral Microbiome database, 36 bacterial
strains were selected to represent microbes prevalent in the human body sites
including the airways, gut, oral cavity, skin, and vaginal tract (Supplementary
Table 3). DNA from ten strains was obtained directly from ATCC (www.atcc.org).
The other 26 strains were cultured in appropriate media and environmental con-
ditions until cultures reached late logarithmic phase (Supplementary Table 3)35–38.
Unless otherwise indicated, anaerobes were grown under an atmosphere of 90% N2,
5% H2, and 5% CO2. DNA was isolated by suspending cultures in TE buffer con-
taining 20mgml−1 lysozyme and incubated at 37 °C for 30 min. Subsequently, AL
buffer (Qiagen, Valencia, CA) containing 1.23mgml−1 Proteinase K was added and
samples were incubated at 56 °C overnight. Samples were then incubated at 95 °C
for 5 min and DNA was isolated using a DNeasy Blood and Tissue kit (Qiagen).
DNA was eluted in MD5 solution (MoBio Laboratories, Carlsbad, CA). Isolated
DNA was pooled in a manner that accounted for different numbers of 16S rRNA
gene copies per species. Briefly, the genome size (n) in bp was estimated for each
organism and was used to calculate the mass of DNA (m) per genome using the
formula m= (n) (1.096 × 10−21 g bp−1). Genome mass was then normalized based
on the predicted copy number of the 16S rRNA gene (Supplementary Table 3) and
the appropriate mass of DNA containing the required 16S copy number for each
species was calculated.

Illumina library preparation shotgun sequencing and assembly. WGS
sequencing was performed for 19 members of the mock community that did not
have WGS sequence data publicly available. Libraries were made using the Illumina
TruSeq Nano DNA HT kit according to the manufacturer’s instructions, and were
sequenced on either the Illumina MiSeq or HiSeq platform. Genomes for
sequenced organisms were assembled individually using SPAdes v3.5.039 with post-
processing enabled (–careful).

PacBio library preparation and sequencing. Sequencing libraries were prepared
by amplifying the V1–V9 region of the 16S rRNA gene using primers 27F and
1492R (Supplementary Table 1), and Accuprime Taq polymerase (Thermo Fisher
Scientific, Waltham, MA). Amplicons were purified using PCR purification kits
(Qiagen, Hilden, Germany) and 1 μg of DNA was used for the SMRTbell 1.0
Template Prep Kit (Pacific Biosciences, Menlo Park, CA). SMRTbell-adapted
sequences were run on the Pacific Biosciences (PacBio) RS II platform using
P6C4v2 chemistry. Output files were processed and assembled into CCS reads
using CCS2 v3.0.1 setting the minimum passes to 3, minimum signal-to-noise ratio
(SNR) to 4, minimum length to 1200, minimum predicted accuracy to 0.9, and the
minimum Z-score to −5. Consensus sequences longer than 1600 bp were
discarded.

Analysis of the bacterial mock community. Reference 16S rRNA gene sequences
matching strains in the mock community were initially downloaded from the RDP
database40. Several reference gene sequences contained ambiguous base calls. Each
sequence was therefore aligned to its respective WGS assembly and the aligned
assembly region extracted to create an improved reference gene set containing a
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single representative 16S rRNA gene sequence for each member of the mock
community.

To determine sequence variation in PacBio CCS data, reads generated from the
mock community were aligned to the mock reference gene set using Cross_match41

with the minimum alignment score (-minscore) set to 750, the substitution penalty
(-penalty) set to −9, and only the best alignment for each read reported (-masklevel
0). Output alignments were parsed to determine the number and location of
insertions, deletions, and substitutions in reads aligning to each reference 16S
rRNA gene sequence.

To determine the frequency and position of expected sequence variation—
attributable to the presence of multiple, divergent copies of the 16S rRNA gene
within a single genome—the seven gene copy variants known to exist in the E. coli
K-12, MG1655 sub-strain (NC_000913.3) were downloaded from RefSeq and
aligned using MUSCLE. To provide a second estimation of expected intra-genome
sequence variation, Illumina WGS sequence reads were aligned to the single E. coli
reference sequence present in the mock community reference database and the
location of insertions, deletions, and substitutions inferred using the SAMtools
pileup command42.

Sampling and sequencing of the human stool microbiome. Stool samples were
collected from four healthy, competitive cyclists enrolled in the study described by
Petersen et al.20. Informed consent was obtained from all human participants and
work was carried out with the oversight of the Jackson Laboratory Internal Review
Board (IRB numbers 1503000013 and 16-JGM-07). Fecal material was self-
collected using polyethylene sample collection containers (Fisher Scientific) and
was placed on freezer packs before shipping to the Jackson Laboratory for Genomic
Medicine. Once received, samples were stored at −80 °C prior to extraction. DNA
was extracted using the PowerSoil DNA Isolation Kit (MO BIO Laboratories, Inc.).
mWGS sequence libraries were prepared as described for the bacterial mock
community and 150-base paired-end reads were generated on the Illumina Next-
Seq platform. Exact duplicate sequences were discarded on the assumption that
they were PCR artifacts and the remaining reads were screened against the human
reference genome (GRCh38) using BMTagger43. Adapters and low-quality bases
were trimmed using Flexbar44.

Amplicon libraries were prepared and sequenced for the V1–V9 region (PacBio
RS II) and V1–V3 region (Illumina MiSeq) as described for the bacterial mock
community.

Quantifying bacteroides in the human stool microbiome. Taxonomic abun-
dance estimates were generated from mWGS data by aligning sequenced reads to
the Real Time Genomics™ (RTG) reference database of bacterial genome assemblies
(v2.0), using the map and species commands within the RTG-core bioinformatics
package (www.realtimegenomics.com/products/rtg-core).

Amplicon sequence data for the V1–V3 and V1–V9 region of the 16S rRNA
gene were pooled and de-replicated using USEARCH (v8.0.1517), before being
clustered into OTUs at either 97% or 99% similarity thresholds using the
-cluster_otus command34. Amplicon sequences from each sample were then
reassigned to each OTU at the same similarity threshold used for clustering in
order to obtain OTU relative abundance estimates. The genus of each OTU was
determined using the RDP classifier v2.211 in conjunction with the Greengenes
database, v13.5 at a confidence threshold of 0.8.

V1–V3 and V1–V9 amplicons belonging to the genus Bacteroides were selected
by directly classifying individual amplicon sequences using the RDP classifier.
Sequences were then clustered into OTUs at either 97% or 99% identity thresholds
using USEARCH. Representative sequences of Bacteroides OTUs generated for
each variable region/identity threshold combination were assigned a putative
species classification by aligning each sequence to the RTG reference database
(v2.0) using the USEARCH local alignment algorithm45, allowing up to 50 top hits
for each aligned sequence.

The suitability of the RTG database as a reference for discriminating different
Bacteroides species was assessed by extracting the 16S rRNA gene sequences for
each Bacteroides genome contained therein. Extracted sequences were globally
aligned using MUSCLE, a maximum-likelihood tree was constructed using
FastTree v246, and visualized using the R package ape47. The resulting tree
(Supplementary Fig. 11) indicated that sequence variation within the 16S gene was
sufficient to resolve most major Bacteroides species contained within this database.

The suitability of either 97% or 99% identity thresholds for clustering V1–V3
and V1–V9 amplicons at the species level was assessed by determining the
frequency with which OTUs for each variable region/identity threshold aligned
optimally to a single species in the RTG reference database (Supplementary
Fig. 12).

V1–V9 amplicon sequences assigned to the single OTU identified as B. vulgatus
(OTU_1; Supplementary Data 1) were detected at high relative abundance in two
human stool microbiome samples (Scott and IronHorse). Sequences from each
sample were therefore extracted and aligned to the single 16S rRNA gene reference
sequence used in the mock community analysis. Sequence alignment was
performed using Cross_match and alignment errors were calculated as
described above.

Isolation and sequencing of bacteria from human stool. Stool samples were
again contributed by competitive cyclists enrolled in the study described by
Petersen et al.20. Ethical oversight and sample collection were as described above.
Bacteria were cultured on a variety of media and under anaerobic conditions,
unless otherwise stated (Supplementary Data 2). Individual colonies were picked
and DNA extracted using the MasterPure™ Gram Positive DNA Purification Kit
(Lucigen). Samples were multiplexed and sequenced on a PacBio RS II. A subset of
multiplexed libraries were sequenced on multiple SMRT cells at varying loading
concentrations (Supplementary Data 2) resulting in different numbers of total
reads. Each repeated run was therefore treated as a technical replicate to determine
(i) the measurement error for the estimation of intragenomic 16S gene SNP fre-
quencies attributable to the sequencing platform and (ii) the relationship between
measurement error and sequencing depth.

Computational analysis of individual isolates. Sequence data for each isolate
were quality filtered and adapters removed as described above. Filtered sequences
were reoriented using the mothur command align.seqs, with the Silva gold database
as a reference and the arguments flip= t, threshold= 0.5. Gaps in alignments were
subsequently removed with the mothur command degap.seqs. Filtered, reoriented
fasta files were then de-replicated using the USEARCH command -derep_ful-
llength and then sorted with -sortbysize, with the argument -minsize 1. The most
abundant unique sequence for each isolate was then extracted (on the assumption
it was the least likely to contain sequencing errors) and was used as a reference
against which to align all reads for that isolate. Sequence alignment was performed
using Cross_match with the arguments -minscore 1200, -masklevel 0, and align-
ment errors (substitutions, insertions, and deletions) calculated as described above.

Due to the prevalence of sequencing errors in processed reads (e.g.,
Supplementary Fig. 10), insertion and deletion errors were ignored when
generating nucleotide substitution profiles. Substitution errors in alignments were
filtered in a multi-step process to separate true intragenomic SNPs from
background error. First, samples with fewer than 200 aligned reads were discarded,
because preliminary investigation indicated they had insufficient signal-to-noise
ratio for the detection of true SNPs. Second, the distribution of the frequency of
substitution errors was calculated across the entire aligned region of the 16S gene.
Base positions where the substitution error frequency was well outside instrument
error (nine interquartile ranges above the upper quartile) were identified as true
SNPs. Finally, samples with SNPs at >3% of base positions were discarded, as this
threshold was empirically determined to exclude impure isolates.

We assessed SNP measurement error (ζw)
48 for a subset of cultured isolates

where replicate sequencing was performed on multiple SMRT cells using varying
input library concentrations (Supplementary Data 2). We also took advantage of
variation in sequencing depth between replicates to determine whether the
measurement error was affected by the number of reads available for SNP phasing.
Across 271 samples, the median ζw was 1.8% (Supplementary Fig. 13a). There was
no obvious relationship between measurement error and sequencing depth for
samples with > 200 reads (Supplementary Fig. 13b).

Taxonomic identification of sequenced isolates. Isolates were assigned a puta-
tive taxonomy using BLAST49. The most abundant unique sequence for each
isolate was searched against the NCBI 16S Microbial database using blastn, with the
argument -max_target_seqs 20. Resulting hits were sorted first by e-value, then
bitscore and the taxonomy of the highest scoring sequence was reported. In
addition, sequences were clustered into OTUs at 99% sequence identity using
USEARCH command -cluster_otus with the arguments -otu_radius_pct 1.0,
-uparse_break −999. The phylogenetic relationship between isolates was deter-
mined by aligning the most abundant unique sequence for each isolate, then
constructing a maximum-likelihood tree using FastTree v2.

To determine the total number of unique nucleotide substitution profiles
generated from sequenced isolates, all isolates identified as belonging to the same
OTU were compared with one another. Two isolates were considered different if
the substitution frequency at one or more SNP loci differed more than 3 SDs above
the mean measurement error (i.e., 6.58%, Supplementary Fig. 13).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequence data that support the findings of this study are available via the NIH Sequence

Read Archive. Sequence data for the mock community are available via BioProject

PRJNA552603. mWGS and V1–V3 amplicon sequence data for human microbiome

samples that were published previously by Petersen et al.20 are available via BioProject

PRJNA305507 (Breezer V1–V3: SRX147975, Scott V1–V3: SRX1479742, IronHorse

V1–V3: SRX1479743, Commencal V1–V3: SRX1479751, Breezer mWGS:

SRX1479791–5, Scott mWGS: SRX1479846–50, IronHorse mWGS: SRX1479811–5,

Commencal mWGS: SRX1479787). V1–V9 amplicon sequence data for human

microbiome samples are available via BioProject PRJNA552603. V1–V9 amplicon

sequence data for bacterial isolates are available via BioProject PRJNA561528. Data
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underlying Figs. 1–4 and Supplementary Figs. 1–13 are provided as Source Data. All

other data are available from the corresponding author upon reasonable request.

Code availability
A copy of the code used for the analyses reported in this manuscript can be found at:

https://github.com/TheJacksonLaboratory/weinstock_full_length_16s.
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