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Abstract: One of the primary tasks undertaken by autonomous vehicles (AVs) is object detection,
which comes ahead of object tracking, trajectory estimation, and collision avoidance. Vulnerable
road objects (e.g., pedestrians, cyclists, etc.) pose a greater challenge to the reliability of object
detection operations due to their continuously changing behavior. The majority of commercially
available AVs, and research into them, depends on employing expensive sensors. However, this
hinders the development of further research on the operations of AVs. In this paper, therefore, we
focus on the use of a lower-cost single-beam LiDAR in addition to a monocular camera to achieve
multiple 3D vulnerable object detection in real driving scenarios, all the while maintaining real-time
performance. This research also addresses the problems faced during object detection, such as
the complex interaction between objects where occlusion and truncation occur, and the dynamic
changes in the perspective and scale of bounding boxes. The video-processing module works upon a
deep-learning detector (YOLOv3), while the LiDAR measurements are pre-processed and grouped
into clusters. The output of the proposed system is objects classification and localization by having
bounding boxes accompanied by a third depth dimension acquired by the LiDAR. Real-time tests
show that the system can efficiently detect the 3D location of vulnerable objects in real-time scenarios.

Keywords: autonomous driving; multiple object detection; 2D LiDAR; sensor fusion

1. Introduction

Autonomous vehicles (AVs) have been considered a major research subject in recent
years due to their multiple benefits. The average driver in England spends 235 h driving
every year [1]; therefore, AVs offer passengers extra free time during their journeys. They
also offer mobility to those who cannot drive, they reduce emissions and congestion, and
they have the potential to enhance road safety [1–4]. Since the early 1990s, AVs have been
the focus of attention in many research fields. Thus, several highly automated driver
assistance capabilities have reached mass production.

In addition to the advantages of AVs, there are some challenges facing their widespread
use, such as: legal terms, cybersecurity, traffic management strategies, moral and ethical
challenges, and operational challenges [5,6].

The National Highway reports that 76% of all accidents are based solely on human
error, while 94% involve human error [1]. Furthermore, in 2019, 25,080 motor vehicle
fatalities were recorded by the Department of Transport in the United Kingdom [6]. The
autonomous driving operation can be summarized in the following steps [7–9]:

• Self-localization.
• Environment recognition.
• Motion prediction.
• Decision Making.
• Trajectory generation.
• Ego-vehicle control.
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1.1. Automation Levels

Due to the differences in terminology used to describe autonomous driving, the Society
of Automotive Engineers (SAE) has established a ranking for autonomous driving [10],
which ranges from Level 0 (no automation) to Level 5 (automation under any Operational
Design Domain). Until now, the market has not yet witnessed Level 5 AVs; however, there
are concept cars, such as the Mercedes Benz S-Class, the VW Sedric, the Rinspeed Snap,
etc., which are expected to be available by 2030. Ahangar et al. have explored the technical
evolution in autonomous cars in [6].

1.2. Autonomous Vehicles’ Sensory Systems

Environment perception is achieved using the appropriate exteroceptive sensory sys-
tem. Examples of exteroceptive sensors include: monocular and stereo-cameras, short- and
long-range RADARs, ultrasonic sensors, and LiDARs, which is short for Light Detection
and Ranging.

Many survey papers have discussed different AVs’ sensory technologies [5–8,11–19].
In this paper, the proposed approach is based on performing sensor fusion between a 2D
LiDAR and a monocular camera to achieve real-time object detection, classification, and 3D
localization of objects in complex scenarios where objects are interacting and overlapping.

1.3. Related Work

In this subsection, we discuss the efficacy of images and point clouds when used in
isolation and when integrated together in AVs in order to achieve object detection.

1.3.1. Images Acquired by Cameras

Cameras are considered the primary vision sensor used for object detection for two
reasons: they are one of the cheapest sensors that can be used on AVs, and they can acquire
rich texture information. However, monocular cameras suffer from the lack of a third
dimension for the detection of objects.

However, 3D object detection can be achieved by applying extrapolation of the de-
tected 2D bounding boxes by reprojection constraints or regression models; nevertheless,
the accuracy of depth calculations is low.

The stereo camera, on the other hand, a more expensive alternative, provides dis-
tance calculations but with higher computational requirements. Multiple monocular
cameras have been used in [20] to achieve multi-object tracking. Additionally, in [21,22],
various algorithms were developed to perform object detection and localization. So far,
though, results have suffered from relatively low accuracy in depth estimation, especially
at longer ranges.

1.3.2. Point Clouds Acquired by LiDARs

LiDAR uses the Time of Flight (ToF) principle to detect the distance between the
sensor and the detected objects. The maximum working detectable distance of LiDARs
is 200 m [23]. LiDARs can withstand different weather and lighting conditions. Different
LiDAR types project a different number of laser beams. Two-dimensional LiDARs project a
single beam on a rotating mirror, while 3D LiDARs use multiple laser diodes that rotate
at a very high speed; the higher the number of laser diodes, the more measurements can
be acquired and the more accurate the perception task becomes [24]. Multiple 2D LiDARs
(single beam) have been used in vehicle detection [25] and pedestrian detection [26,27]
by applying pattern recognition techniques; however, this limits the detection to limited
object classes.

Multi-beam LiDARs, on the other hand, are used for 3D object detection [28,29].
Examples of 2D LiDARs are: LRS-1000, LMS-291, and UTM-30LX, while examples of
multi-beam LiDARs are IBEO LUX, Velodyne, and Quanergy. Three-dimensional LiDARs
are more computationally extensive and suffer from higher costs.

There are three main methods for achieving 3D detection using point clouds [11]:
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• Projection of a point cloud into a 2D plane in order to apply 2D detection frameworks
to acquire 3D localization on projected images.

• Volumetric methods by voxelization [30,31]. However, 3D convolutional operations
are computationally expensive.

• The use of PointNets [32–34] by applying raw point clouds directly to predict 3D
bounding boxes. This method is also computationally expensive and increases run-
ning time.

1.3.3. Sensor Fusion

Using a single type of sensor has proven to be insufficient and unreliable; sensor
fusion is therefore mandatory in order to overcome these limitations. As a result of using
multiple sensors, sensor fusion enhances the reliability and accuracy of measurements and
reduces their uncertainty [5].

Many papers have applied sensor fusion to multi-beam LiDARs and cameras to
achieve obstacle detection and avoidance. LiDAR was responsible for detecting the ac-
curate position of objects, while the camera would detect its features and classification.
Responding to the object detection problem, Han et al. [35] developed a framework that
applied decision-level sensor fusion techniques on a Velodyne 64-beam LiDAR with RGB
camera in order to improve the detection of dim objects such as pedestrians and cyclists.
Additionally, a 3D object detector that processes in a Bird’s Eye View (BEV) is outlined
in [36]; it fuses image features by learning to project them into the BEV space. Some ap-
proaches have targeted the detection of specific object classes: pedestrian pattern matching
and recognition [37], vehicle detection [38], and passive beacon detection [39]. However,
all of these papers either used expensive 3D LiDARs which acquire extensive amounts
of data, or they suffered from limitations on the classes of detected objects. Table 1 lists
the most popular and recent 3D object detection networks and frameworks along with
their limitations.

Although LiDAR-based 3D detections have attracted many researchers, point clouds
still lack the texture information that enables them to classify objects. Moreover, point
clouds suffer from sparsity and decreased density when detecting distant objects. In this
paper, therefore, a 2D LiDAR and a monocular camera are fused together in order to
achieve real-time dynamic object detection for AVs. This research acts as a foundation for
the employment of 2D LiDARs on AVs as a lower cost substitute for 3D LiDARs. It also
addresses the challenge of the presence of multiple overlapping moving objects in the same
scene with real-time constraints.

1.4. Paper Organization

The rest of this paper is organized as follows: Section 2 discusses the real-time object
detection module using a monocular camera; Section 3 illustrates how the LiDAR mea-
surements were processed; Section 4 explains the fusion methodology between the video-
processing module and LiDAR measurements; Section 5 shows and discusses the results
obtained from the work; finally, Section 6 presents the paper’s conclusion and discussion.

Table 1. Three-dimensional object detection networks and frameworks.

Paper Modality Limitation

Multi-task multi-sensor fusion for 3D object detection [40] RGB + 3D point cloud Expensive 3D LiDAR
Not real-time

Frustum pointnets for 3D Object Detection from rgb-d data [34] RGB-D 0.12 s per frame
Not real-time

Pointfusion: deep sensor fusion for 3D bounding box
estimation [41] RGB + 3D point cloud 1.3 s per frame

Not real-time

RoarNet: a robust 3D object detection based on regiOn
approximation refinement [42] RGB + 3D point cloud Expensive 3D LiDAR

Not real-time
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Table 1. Cont.

Paper Modality Limitation

A frustum-based probabilistic framework for 3D object detection by
fusion of LiDAR and camera data [43] RGB + 3D point cloud Only for detecting static object

SEG-VoxelNet for 3D vehicle detection from RGB and LiDAR
data [44] RGB + 3D point cloud Only detects vehicles

Not real-time

MVX-Net: multimodal voxelnet for 3D object detection RGB + 3D point cloud Not real-time

3D-cvf: generating joint camera and lidar features using cross-view
spatial feature fusion for 3D object detection RGB + 3D point cloud NVIDIA GTX 1080Ti, inference

time 75 ms per frame (13.33 FPS)

PI-RCNN: an efficient multi-sensor 3D object detector with
point-based attentive cont-conv fusion module RGB + 3D point cloud Not real-time

Image guidance-based 3D vehicle detection in traffic scene RGB + 3D point cloud Only vehicles, 4FPS

Epnet: enhancing point features with image semantics for 3D
object detection. RGB + 3D point cloud Not real-time

2. Real-Time Object Detection
2.1. Deep-Learning-Based Object Detection

Object detection can be defined as the process of detecting, localizing, and identifying
the class of detected objects. Object detection methods output bounding boxes around de-
tected objects, along with an associated predicted class and confidence score [19]. Different
criteria affect the choice of the object detection algorithm, and, as a result, diverse driving
scenarios impose different object detection challenges. For example:

• Variable weather and lighting conditions.
• Reflective objects.
• Diverse object sizes.
• The occlusion and truncation of obstacles.

In autonomous driving, objects that need to be detected are either static or dynamic.
Traffic lights and signs, buildings, bridges, and curbs are considered static objects. Pedes-
trians, cyclists, animals, and vehicles, on the other hand, are considered dynamic objects
due to their continuously varying locations and features. The detection of static objects is
considered a straightforward task, which has been addressed in many previous studies
(examples are shown in [45–48]). In this paper, therefore, we focus on the detection of
vulnerable objects (e.g., dynamic objects) due to the greater levels of danger they pose
during an AV’s driving process.

In this proposed research, a pre-trained deep-learning (DL)-based real-time object
detection network, namely YOLOv3, is employed. YOLOv3 works upon Darknet, which
is a neural network framework created by Joseph Redmon [49]. It is an open-source
framework written by C/CUDA, and serves as the basis for YOLO. The original repository
can be found in [50]. YOLOv3’s object detection network outputs 2D bounding boxes
along with the classification of the detected objects. The model we used is pre-trained
on KITTI [51,52], the largest computer vision evaluation dataset for autonomous driving
scenarios in the world. It contains 7481 frames of training data and 7518 of test data. It has
nine classes of labelled objects which we merged into six classes (Car, Van, Truck, Tram,
Pedestrian, Cyclist).

2.2. Overlapping Detection

In order to use the 2D LiDAR accurately in diverse and challenging driving environ-
ments, and taking into consideration the presence of multiple different objects that could
be overlapping and interacting with each other, an overlapping detection algorithm was
necessary in order to detect which objects were overlapping with each other and form-
ing clusters of objects. This algorithm will come into use during the LiDAR and camera
integration step below.
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In order to perform the overlapping detection, two attributes were added to each
detected object: the first one holds the pixel ranges which are overlapping with other
detected objects POL, and the second one holds the IDs of other objects that are sharing the
pixels (POL) with the current object.

3. LiDAR Data Processing
3.1. Hokuyo UTM-30LX

The LiDAR used in this research is the Hokuyo UTM-30LX (shown in Figure 1). It
is a 2D radial LiDAR that measures 1081 distance points in a range from −135◦ to 135◦,
where orientation 0◦ corresponds to the front of the LiDAR. The following represent its
other specifications [53]:

• Range: 30 m.
• 270◦ scanning angle.
• 0.25◦ angular resolution.
• Light source: Laser semiconductor 870 nm, Laser class 1.
• Supply voltage: 12 VDC ± 10%.
• Supply current: a maximum of 1 A, normal is 0.7 A.
• Power consumption: less than 8 W.

Figure 1. Hokuyo UTM 30LX.

3.2. Conversion of Radial Measurements into Perpendicular Measurements

LiDAR works by measuring the distances in an angular rotational pattern; hence, the
measurements acquired are radial, as shown in Figure 2. In order to normalize the LiDAR
measurements, these radial measurements must therefore be converted into perpendicular
measurements (as shown in Equation (1)).

⊥ distance = cos(Angle) × radial distance (1)

Figure 2. Hokuyo UTM 30LX angular range.
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3.3. Linearization and Smoothing

Data acquired by the LiDAR for objects bounded by the bounding boxes cannot be
considered a straightforward distance to be added as a third dimension of the detected
objects. This is due to many factors; for example, the uneven surfaces of the detected
objects, the sensors’ uncertainty, and the continuous overlapping and truncation of objects.
Therefore, data acquired by the LiDAR are smoothed and linearized to give a better
understanding of the surrounding objects.

LiDAR measurements are known to have a Gaussian noise distribution with a variance
of±3 cm. Therefore, a filter with a Gaussian impulse response function is a good candidate
for noise suppression. Objects’ surfaces in real scenarios include both flat and rough
surfaces or edges. Due to the sparsity of LiDAR measurements of distant objects, it is
also assumed that the empty-depth pixels contain the same or similar measurements that
also need to be restructured. Object edges are observed as a discontinuity in the LiDAR
measurements, while flat surfaces have smoothly varying values. Thus, it is natural that the
reconstruction of the depth measurements uses a form of edge-preserving filter. In order to
maintain performance in real-time, a median filter was used to perform the filtering and
preservation of edged features.

3.4. Grouping of LiDAR Measurements into Clusters with Unique IDs

Different studies have addressed the problem of object segmentation on LiDAR
point clouds [25,28,29,54,55]; however, they either used 3D point clouds or assumed
that the world consists of separate objects that are not physically overlapping with each
other. In this paper, we address the challenge of having multiple dynamic and interact-
ing/overlapping objects.

After filtering LiDAR measurements, clustering is performed by grouping similar
neighboring data readings and assigning a unique ID for each of them along with an
average distance value. The two main variables in this step are:

• Minimum cluster size: in order to avoid the creation of numerous unneeded mini-
clusters that may represent objects’ subregions, different cluster sizes were tested. The
smaller the size of clusters, the more false clusters were created.

• Setting a threshold to the difference which sets the edge between consecutive clusters.

4. Camera and LiDAR Fusion
4.1. Sensor Placement

The vehicle’s ground clearance (i.e., ride height) must be considered during the
placement of sensors: it is the shortest distance between a flat-level surface and the lowest
part of a vehicle, other than those parts designed to be in contact with the ground such as
tires and SIS. Eighty-two different vehicles (including SUVs) were surveyed in order to
estimate the average ground clearance of vehicles in the UK so as to place the LiDAR at a
height that was between the maximum ground clearance and the minimum vehicle height.
It was concluded that the LiDAR’s optimal height was 559 mm away from the ground.
In the proposed setup, the camera and the LiDAR should have a common horizontal
center point.

4.2. Mapping between Image and LiDAR Coordinates

The output from the video-processing module consists of:

• Two-dimensional bounding boxes drawn over image pixels.
• Object classes.

In order to apply complementary sensor fusion between pixels (bounding boxes)
and LiDAR measurements, a mapping between image pixels and real-world angular
coordinates is necessary. As we are using a 2D LiDAR, we are only concerned with the
horizontal plane (x-axis), as the LiDAR has a constant vertical value.



Sensors 2022, 22, 1663 7 of 13

Based on the camera pinhole mode shown in Figure 3, a function was developed in
order to convert image pixels into angular rotations. Inputs to this function are:

• A pixel x-coordinate (xPixel).
• Width of the frame (FrameWidth).
• Horizontal field of view of the camera (HFOV).

Figure 3. Conversion of pixel values into real-world angular coordinates.

Assuming a straight line is drawn between the camera and the center of the image (`),
two right-angled triangles can be drawn:

1. The hypotenuse goes from the camera to the edge of the image and has an angle (θ)
formed between the hypotenuse and (`).

2. The hypotenuse goes from the camera to (xPixel) and has an angle (φ) formed between
its hypotenuse and (`).

In this setup, the angle (φ) is required to be calculated. The following is the trigono-
metric calculation that is used to determine (φ):

b = FrameWidth/2 (2)

θ = HFOV/2 (3)

x = xPixel-Frame Center (4)

tan(θ) = b/` (5)

tan(φ) = x/` (6)

Making use of the common (`) in both Equations (5) and (6), we solve both for
(`), namely:

` = b/tan(θ) = x/tan(φ) (7)

Φ = tan−1 ((x tan(θ))/b) (8)

This process is performed on the left and right x-coordinates of each bounding
box in order to convert the bounding boxes’ horizontal pixel values into real-world
angular coordinates.

4.3. Complementary Camera and LiDAR Fusion

The direct fusion between the video and LiDAR data is a straightforward task that
outputs a horizontal line of pixels with an associated distance measurement. However,
the target of this process is to associate a depth measurement with the 2D bounding
boxes. Therefore, when fusion is performed between bounding boxes and LiDAR measure-
ments, the result is bounding boxes with an associated distance measurement. This task
involves one main challenge: objects are normally overlapping with each other; therefore,
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the bounding boxes are not separate from each other, and pixels bounded by bounding
boxes may include LiDAR measurements corresponding to multiple objects. Figure 4 is
a block diagram that illustrates the fusion process between the video and LiDAR data-
processing modules.

Figure 4. Block diagram for the system.

In this step, sensor fusion is performed between the bounding boxes generated by
the video-processing module and the clusters generated by the LiDAR data-processing
module. There are multiple instances of overlapping between objects:

• No overlapping.
• Object ‘x’ is fully in front of object ‘y’ (object ‘x’ is smaller than object ‘y’) (as shown in

Figure 5a).
• Object ‘x’ is partially in front of object ‘y’ (as shown in Figure 5b).
• Object ‘x’ is partially behind object ‘y’ (as shown in Figure 5c).

Figure 5. Different overlapping scenarios. (a) Object ‘x’ is fully in front of object ‘y’; (b) Object ‘x’ is
partially in front of object ‘y’; (c) Object ‘x’ is partially behind object ‘y’.

In this operation, the algorithm analyzes the LiDAR clusters associated with the
bounding boxes of each detected object. The flowchart for this operation is shown in
Figure 6. This operation will complement the real-time object detection step made by the
video-processing module because the bounding boxes are generally bigger than the true
boundaries of the detected objects.
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Figure 6. Flowchart for calculating the correct depth measurements for detected objects during
overlapping objects.

5. Results
5.1. Real-Time Object Detection

YOLOv3 has been chosen as the real-time object detector along with the KITTI
dataset [51,52]. Our platform is configured with an Intel® Core™ i7-8750H CPU and
an NVIDIA GeForce GTX 1050Ti GPU, which is considered an average-performance GPU.
When YOLOv3 is tested on the KITTI raw dataset, it achieves the results shown in Table 2.
There are object detectors that perform better on the KITTI dataset (ex: Faster R-CCN);
however, due to their slow execution speed, they cannot be used in real-time autonomous
driving scenarios. Further comparisons between YOLOv3 and other deep learning object
detection methods on different datasets are presented in [5,19].

Table 2. Mean Average Precision (MAP) of testing YOLOv3 on the KITTI dataset.

Benchmark Easy Moderate Hard

Car 56% 36.23% 29.55%
Pedestrian 29.98% 22.84% 22.21%

Cyclist 9.09% 9.09% 9.09%

5.2. Processing of LiDAR Measurements

The first step in processing LiDAR measurements is performing median filtering in
order to smooth the measurements while maintaining the edges. Figure 7a shows a sample
of LiDAR measurements of rough surfaces before filtering, and Figure 7b shows the same
measurements after filtering.
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Figure 7. (a) A sample of LiDAR measurements on a rough surface pre-smoothing. (b) Same LiDAR
measurements post-smoothing.

The second step is dividing the LiDAR measurements into groups and assigning each
group a unique ID. Figure 8 shows a sample of LiDAR measurements when two cars were
present (one car is partially in front of the other). The output showed the detection of
four clusters.

Figure 8. A sample of LiDAR measurements when scanning two overlapping objects.

Due to the lack of 2D LiDAR point clouds, all the testing was performed in real-time
driving scenarios, and the performance was manually measured and validated.

5.3. Adding a Third Dimension to Visual Bounding Boxes

The last step was making use of the LiDAR measurements (after filtering and grouping)
in order to add a third dimension (depth) to the 2D bounding boxes generated from the
real-time visual object detector. The system was tested in real-time scenarios, and it was
capable of coping with the real-time constraints by performing in 18 FPS while maintaining
dynamic object detection in addition to adding a depth dimension to the bounding boxes.
The achieved running time of the proposed system is a major advancement compared to
other approaches (refer to Table 1). The system was tested on moving vehicles, pedestrians,
and cyclists in dynamic driving scenarios, while objects were overlapping and interacting
with each other. However, a limitation of the system was the weather conditions, as the
video-processing module is not robust enough for adverse weather conditions such as rain,
snow, and fog.
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6. Discussion
6.1. Conclusions

A monocular vision-based system is inexpensive and can achieve the required accuracy
for obstacle detection in autonomous vehicles, but it only gives a 2D localization of objects.
Therefore, a range-finder sensor should be used. However, 3D LiDARs are expensive
and are hindering the widespread rollout of autonomous driving in both industry and
research. In this study, a 2D LiDAR was adopted to develop a prototype for achieving
reliable real-time multiple object detection in driving scenarios using lower cost sensors.

6.2. Limitations and Future Work

The proposed research encourages the usage of low-cost 2D LiDARs in AVs, which
advance the employment of autonomous driving in more vehicles. One limitation of
the proposed method is that its performance is bound by the performance of the video-
processing module (e.g., YOLOv3); therefore, further work should be conducted towards
improving this, such as applying de-raining techniques. In terms of future work on
the problem of multiple object detection based on the proposed research, the following
approaches could be made:

• The use of multiple cameras in order to cover a wider horizontal field of view without
causing much image distortion.

• Since the KITTI dataset only has daytime driving data, we suggest evaluating the
real-time image-based object detection module on the Waymo Open Dataset.
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