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Abstract

Polygenic profiling has been proposed for elite endurance performance, using an additive

model determining the proportion of optimal alleles in endurance athletes. To investigate

this model’s utility for elite triathletes, we genotyped seven polymorphisms previously asso-

ciated with an endurance polygenic profile (ACE Ins/Del, ACTN3 Arg577Ter, AMPD1

Gln12Ter, CKMM 1170bp/985+185bp, HFE His63Asp,GDF8 Lys153Arg and PPARGC1A

Gly482Ser) in a cohort of 196 elite athletes who participated in the 2008 Kona Ironman

championship triathlon. Mean performance time (PT) was not significantly different in indi-

vidual marker analysis. Age, sex, and continent of origin had a significant influence on PT

and were adjusted for. Only the AMPD1 endurance-optimal Gln allele was found to be sig-

nificantly associated with an improvement in PT (model p = 5.79 x 10−17, AMPD1 genotype

p = 0.01). Individual genotypes were combined into a total genotype score (TGS); TGS dis-

tribution ranged from 28.6 to 92.9, concordant with prior studies in endurance athletes

(mean±SD: 60.75±12.95). TGS distribution was shifted toward higher TGS in the top 10%

of athletes, though the mean TGS was not significantly different (p = 0.164) and not signifi-

cantly associated with PT even when adjusted for age, sex, and origin. Receiver operating

characteristic curve analysis determined that TGS alone could not significantly predict ath-

lete finishing time with discriminating sensitivity and specificity for three outcomes (less

than median PT, less than mean PT, or in the top 10%), though models with the age, sex,

continent of origin, and either TGS or AMPD1 genotype could. These results suggest three

things: that more sophisticated genetic models may be necessary to accurately predict ath-

lete finishing time in endurance events; that non-genetic factors such as training are hugely

influential and should be included in genetic analyses to prevent confounding; and that

large collaborations may be necessary to obtain sufficient sample sizes for powerful and

complex analyses of endurance performance.
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Introduction

The ability of sport scientists to predict which athletes amongst an elite group will become

world-class is limited because the interactions between biological factors, training, recovery

and competitive performance are not fully understood [1]. Human physical performance

depends on environmental factors such as physical training, nutrition and technological sup-

port, as well as on genetic factors such as blood lactate threshold, maximal oxygen uptake

(VO2max), glucose/lipid metabolism, and muscular strength [2]. Over 150 DNA polymor-

phisms have been associated with some form of human physical performance [3]. Many of

these studies have only investigated individual polymorphisms or genes; however, despite the

number of genes being investigated and associated with elite endurance performance, the

achievement of elite endurance performance by a relatively small number of athletes is more

than likely influenced by a combination of favourable genetic alleles.

Recent studies [4–7] have proposed or utilised polygenic profiles for elite athletic perfor-

mance, using a model originally outlined by Williams and Folland (2008) for optimal endur-

ance performance [3]. While Williams and Folland’s original model contained 23 genetic

polymorphisms associated with endurance performance, later models focused on smaller num-

bers of more strongly associated polymorphisms for endurance (seven to ten) [4, 5]. In order

for comparability between models with different numbers of polymorphisms, the total geno-

type score (TGS) calculated generally represents the percentage of ‘optimal’ alleles for a partic-

ular phenotype. These models have been tested with other phenotypes such as success in a

sporting field (in terms of the number of medals won or ranking in World and/or National

Championships) [7, 8] and models with alternative polymorphisms have been proposed for

speed/power performance [6, 9], mitochondrial biogenesis specific endurance models [10], and

even disease/health risk models [11]. While sporting success has been previously evaluated in

terms of numbers of medals won [7] or ranking in different world championship events [8], no

current study has examined athlete performance within a single sporting event. However,

while associations of polygenic profile polymorphisms have been well established in endurance

versus power athletes, or athletes versus non-athletes, the influence of these polymorphisms on

performance success within a single race event has not yet been assessed.

In this study we therefore investigate the utility of the seven-marker optimal endurance model

[5] to distinguish more successful athletes (faster performance time) from less successful athletes

(slower performance time) in a cohort of 196 elite endurance athletes who participated in the

2008 Kona IronmanWorld Championship triathlon. This cohort was initially collected in 2008

and the association of ACTN3 Arg577Ter polymorphism analysed in this cohort in a prior study

[12]. These race participants represent athletes with an extremely high level of endurance ability

and present a valuable opportunity to investigate genetic endurance polymorphisms in relation to

elite endurance athlete race performance. Despite the fact that participants can be classified into

‘faster’ and ‘slower’ groups based on their performance in the 2008 Kona Ironman, all qualifying

athletes can be considered among the elite of worldwide endurance triathletes as the event is con-

sidered one of the most extreme endurance events in the world due to the strict qualifying require-

ments and the severe environmental conditions encountered during the ‘ultra’ distance race.

This study investigated whether the seven polymorphisms strongly associated with an

endurance polygenic profile as described in Ruiz et al. 2009 [5]—ACE Ins/Del, ACTN3 Arg577-

Ter, AMPD1 Gln12Ter, CKMM 1170 bp/985+185bp, HFEHis63Asp, GDF8 Lys153Arg and

PPARGC1A Gly482Ser—were individually associated with performance time (both unadjusted

and adjusted for significant demographic variables) or whether the combined influence of

these polymorphisms as a total genotype score (TGS) could distinguish ‘faster’ from ‘slower’

performance time of the Ironman athletes. Each of the genes included in Ruiz et al.’s profile is
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a strong candidate for involvement in endurance performance and has been found to be associ-

ated previously with improvements in physical ability. The functions of these seven genes and

the impact of the profile polymorphisms on gene function are outlined below.

ACE Ins/Del (rs4340)

The ACE 287bp Ins/Del polymorphism (I/D; rs4340) is located in intron 16 of the gene angio-

tensin converting enzyme (ACE), which is heavily involved in the cardiovascular system, in

particular with blood pressure regulation. The ACE gene encodes a zinc metallo-carboxypepti-

dase that converts the inactive angiotensin I peptide into the potent vasoconstrictor angioten-

sin II [13, 14], which is the end product of the renin-angiotensin system (RAS) for the

regulation of blood pressure. It also contributes to the regulation of blood pressure through the

kinin-kallikrein system by degradation of bradykinin, a strong vasodilator [14], and is also

thought to be important for muscle development due to the fact that angiotension II stimulates

growth of endothelial, cardiac, and smooth muscle cells [5, 15]. The presence of the 287bp

insertion (I allele) in the ACE gene is associated with lower levels of ACE activity in serum and

tissues, with the II genotype carriers having about half the activity level of DD carriers, while

ID carriers have intermediate levels [14]. The higher level of ACE activity for D allele carriers

results in an increase in both angiotensin II and an increase in the metabolism of bradykinin,

which, in addition to blood pressure regulation, has a significant impact on metabolic processes

including uptake of glucose [15]. The D allele has also been shown to be associated with

increased left ventricular hypertrophy [14] and some studies show an association with

increased grip strength [9], indicating that the DD genotype may possibly be more beneficial

for power sports or strength-trained athletes. Conversely, the II genotype has been found to be

strongly associated with various types of endurance athletes [14, 15], and is one of the most

strongly replicated associations in endurance athletes.

ACTN3 R577X (rs1815739)

The ACTN3 gene encodes α-actinin-3, which is a tissue-specific actin-binding protein

expressed in skeletal muscle fibers to assist in anchoring actin filaments of the sarcomere dur-

ing muscle contractions. Although both α-actinin-3 and highly similar protein α-actinin-2 are

both expressed in muscle, α-actinin-3 is only expressed in type II (fast-twitch, anaerobic/glyco-

lytic) muscle fibers, which have an increased contraction speed and contraction force com-

pared to type I (slow-twitch, oxidative) fibers [12]. The ACTN3 Arg577Ter nonsense mutation

(R577X; rs1815739) results in a truncated and non-functional protein which subsequently

results in α-actinin-3 deficiency, and has been shown in knockout mouse models to decrease

muscle strength and contraction force due to a decrease in the size of type II fibers. Presence of

the R allele is therefore thought to improve strength and speed of contraction and has been

shown to be significantly more common in sprinting athletes [9]. It has also been shown that

the X allele, which results in the α-actinin-3 deficiency, shifts the type II fibers energy genera-

tion from their usual anaerobic processes to aerobic, oxidative processes, increasing the

fatigue-resistance of the fibers [12]. While this suggests that the X allele may be advantageous

for endurance, at a cost to speed and strength, association studies in endurance athletes have

had mixed results [9]. Nevertheless, this polymorphism has a clear, replicable effect on strength

and speed, and has thus been included in every profile on athletic performance.

AMPD1Q12X (rs17602729)

The AMPD1 Gln12Ter polymorphism (Q12X; rs17602729), also known as the C34T polymor-

phism, is located in the muscle-specific isoform of the AMP deaminase gene (AMPD1), which
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deaminates the adenosine monophosphate (AMP) that accumulates during exercise into ino-

sine monophosphate (IMP) as part of the purine nucleotide cycle [16, 17]. An accumulation of

AMP results in loss of AMP and an increase of adenosine in the tissues, which results in

decreased alertness and lower time to fatigue. AMPD1 thus assists in salvaging adenosine mole-

cules and helping regulate the levels of IMP, AMP, adenosine diphosphate (ADP), and adeno-

sine triphosphate (ATP) in skeletal muscles during exercise [5]. Additionally, the AMPD1

enzyme helps promote the generation of ATP from ADP by the enzyme myokinase by altering

the reaction equilibrium [17], and is therefore extremely important in determining the energy

availability to skeletal muscles during exercise. The substitution of a T nucleotide for a C at

position 34 results in a nonsense mutation whereby a glutamine is converted to a stop codon,

resulting in a truncated non-functional protein, and therefore resulting in AMPD1-deficiency.

The lack of AMPD1 enzyme has been associated with an increased frequency of mild forms of

myopathy post-exercise, with lower time to fatigue and muscle cramping [16], though not all

individuals with AMPD1 deficiency will experience these symptoms [17]. Although the defi-

ciency of AMPD1 was originally expected to predominantly affect short-term exercise, and

although it has been associated with a lower mean anaerobic power and faster decline in power

output [18], the X allele resulting in AMPD1 deficiency has been found to be about half the fre-

quency in endurance athletes compared to controls [17]. It has since been suggested by studies

examining accumulation of IMP and AMP during exercise that at the end of long endurance

events when energy stores are depleted, an accumulation of AMP occurs which is necessarily

converted to IMP by AMPD1 enzyme [17]. The Q allele is thus associated with an advantage

for endurance performance while X allele carriers may be disadvantaged by early AMP accu-

mulation and fatigue.

CKMM 3’ UTR NcoI RFLP (rs8111989)

The gene CKMM contains a NcoI RFLP in the 3’ untranslated region of the gene (3’ UTR NcoI

RFLP, rs8111989), resulting in two alleles named for their fragment lengths, the more common

985+185bp allele and the rarer 1170 bp allele [19], which correspond to a T to C single nucleo-

tide substitution, respectively. The CKMM gene is a muscle-specific form of creatine kinase

(CK) which catalyses the conversion of phospho-creatine (PCr) and ADP into creatine and

ATP, as well as the reverse reaction. This CK/PCr energy buffering system acts as a temporal

buffer for energy by ensuring that ATP can be quickly generated from cellular stores of ADP

when required [5, 19]. It also acts as an energy ‘shuttle’ between subcellular locations. The

activity of CKMM in catalysing the reaction therefore can impact on ATP availability to the

muscle, which may limit performance. In fact, type I (slow twitch, oxidative) muscle fibers

have been reported to show a two-fold lower CK activity compared to type II (fast-twitch, gly-

colytic) muscle fibers [19]. Although the NcoI RFLP is located in the 3’UTR and thus does not

result in a functional change in the CKMM protein, deletion of the CKMM 3’UTR results in a

change to the mRNA cellular localisation signal, which is important for correct CK/PCR shut-

tling [20] and which may possibly result in altered expression levels of CKMM due to mRNA

instability [21]. Though the mechanisms by which this may affect performance are still not

clear, it has been shown through performance studies that the CC genotype (1170bp/1170bp)

results in a lower change in VO2max (ml / kg •min) in response to endurance training, while

the TT genotype results in 1.5- to 3-fold higher change in VO2max [19]. This suggests that the T

allele (985+185bp) may be beneficial for endurance performance [5]. The TT genotype has also

been associated with an increased likelihood of extremely high blood CK levels post-exercise

which may indicate damage to skeletal muscle [21] and therefore may also be involved in exer-

cise tolerance.
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GDF8 K153R (rs1805086)

The GDF8 Lys153Arg polymorphism (K153R; rs1805086) is located in exon 2 of the growth

differentiation factor 8 gene (GDF8), which is more commonly known as myostatin (abbrevia-

tionMSTN). Myostatin functions as a negative regulator of myoblast differentiation into mus-

cle fibers, by signaling to increase p21, resulting in the inhibition of Cdk2 and thus the

hyperphosphorylation of retinoblastoma (Rb), which then promotes cell cycle progression and

thus myoblast proliferation [22, 23]. It is therefore a key factor in the determination of both the

number and size of muscle fibers [22, 23], and myostatin-deficient animals, whether due to

knockout, as in mouse models, or naturally deficient, as in cattle showing the ‘double-muscle’

phenotype, have been well established to exhibit up to three times as much muscle mass as

wildtype [22]. Myostatin deficiency has been demonstrated to result in a similar hypertrophy

of skeletal muscle in rare human cases also [24]; however, the K153R SNP, more common in

humans than recessive homozygous myostatin deficiency, has also been shown to result in sig-

nificant increases in skeletal muscle mass and strength for the RR genotype [23], thought to be

due to alteration in binding affinity resulting in a less effective inhibition of myoblast prolifera-

tion. Its clear importance for the determination of muscle mass and strength make this marker

a strong candidate for any polygenic profile of athletic performance.

HFE H63D (rs1799945)

TheHFEHis63Asp polymorphism (H63D; rs1799945) is located in the hereditary haemochro-

matosis gene (HFE; standing for High Fe) which is a transmembrane protein with a key role in

regulating iron absorption. The HFE protein is thought to regulate the interaction of other key

molecules involved in iron uptake and circulation [25], including transferrin, a plasma protein

that binds absorbed iron for circulation; the transferrin receptor (TfR, encoded by TFRC and

TRF2 genes), a transmembrane glycoprotein facilitating intake of transferrin-bound iron into

cells; ferroportin (FPN1 or SLC40A1), a transmembrane protein located on the basolateral sur-

face of gut cells macrophages, which allows transport of absorbed iron out of cells into circula-

tion; and hepcidin (HAMP), a negative regulator of iron transport that competitively binds

ferroportin, preventing release of iron from cells. HFE primarily interacts with TfR by decreas-

ing the affinity of transferrin for the TfR, thus reducing the uptake of transferring-bound iron

[26, 27] as well as possibly influencing regulation of hepcidin levels, with decreases in hepcidin

levels reducing the negative inhibition of ferroportin and thus increasing export for iron from

gut cells into circulation and tissues [25, 28]. The H63D polymorphism has been shown to

reduce the ability of the HFE protein to bind to its ligand, thereby preventing the inhibition of

transferrin-TfR binding and resulting in increased transport of iron into circulation and cells

[26, 27, 29]. This results in an increased level of iron, as measured by transferrin saturation

(TS, or percentage of TfR bound to transferrin), serum ferritin concentration (SF, the acute-

phase storage molecule for iron) [25, 29], even in the absence of additional mutations in HFE

and the other key iron transport genes TRF2, FPN1, and HAMP [29]. As endurance athletes

require reasonable iron levels to improve their oxygen-carrying capacity, any impairments to

the iron transport mechanisms that result in a decreased level of iron, even if not at anaemic

levels, may result in a poorer aerobic capacity, possibly through oxidative enzyme and respira-

tory protein activity [30]. Alternatively, the H63D polymorphism, by resulting in hyperferriti-

naemia, may have the potential to boost aerobic capacity in athletes, and indeed the D allele

has been found to be at a significantly higher frequency in endurance cyclists and Olympic-

class endurance runners compared to sedentary population controls [31], despite the fact that

some studies have not found a significant impact on VO2max fromHFEmutations [31, 32].

The increased frequency of D allele (specifically heterozygotes) in endurance athletes therefore
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supports its inclusion in a polygenic model; however, due to the fact that a homozygous DD

genotype may increase iron levels adversely, leading to symptoms of iron overload such as iron

deposition in abdominal organs and cardiac tissue [27, 33], the heterozygous HD carrier may

have the better endurance advantage, leading to its optimal weighting in Ruiz et al.’s polygenic

profile [5].

PPARGC1AG482S (rs8192678)

The PPARGC1A Gly482Ser polymorphism (G482S; rs8192678) is located in the peroxisome

proliferator-activated receptor-γ coactivator-1α gene (PPARGC1A), which is a coactivator of

regulatory genes for the oxidative phosphorylation (OXPHOS) pathway for generation of ATP.

As endurance athletes predominantly utilise aerobic energy generation through oxidative phos-

phorylation, requiring higher maximal oxygen uptakes (VO2max) compared to sprint and

power sports, the PPARGC1A gene could potentially impact on energy availability [34]. How-

ever, PPARGC1A is also involved in the activation of other pathways which may also equally

be important for endurance athletes, including stimulating mitochondrial biogenesis through

binding with nuclear respiratory factors NRF-1 and NRF-2 and mitochondrial transcription

factors [34, 35]. PPARGC1A is also involved in glucose and lipid oxidation through its interac-

tion with peroxisome proliferator-activated receptor α (PPARA) [34, 35]. PPARGC1A has also

shown to be important for the transformation of muscle fibers to type I (slow-twitch, high lev-

els of mitochondria) though binding with myocyte enhancer factor 2 (MEF2), which occurs as

a result of the normal response of muscle tissue to endurance training, improving oxidative

capacity and resistance to fatigue [36]. The importance of PPARGC1A is so manifold, through

co-activation of differing pathways which all impact on the oxidative capacity of the skeletal

muscles, that a single episode of extended endurance exercise can result in a 7- to 10-fold

increase in PPARGC1A expression peaking within two hours [34]. The functional polymor-

phism G482S, which is thought to interfere with PPARGC1A binding ability, has been shown

to be strongly associated with performance, with a significantly lower frequency of the S allele

in endurance athletes compared to both sedentary/unfit controls [34, 35] and sprint athletes

[35], highlighting the endurance advantage conferred by the more common G allele. Though

there is some evidence to suggest that the S allele impede mitochondrial biogenesis by decreas-

ing activation of mitochondrial transcription factor TFAM, stronger evidence suggests that the

S allele may interfere with muscle fiber transformation as the mutation is located within the

MEF2-binding site of PPARGC1A and disrupts its binding [36]. This is further supported both

by mouse studies, which show that PPARGC1A overexpression increases type I fiber ratio

while knockout models show a decrease in type I and shift to type IIx and IIb fibers, and a

recent study examining human muscle biopsies, which showed a lower level of post-training

type I fibers in S carriers compared to G carriers, though mitochondrial density and activity,

and intracellular lipid content was not different between different genotype groups [36]. These

data point to a clear advantage of G allele carriers in endurance performance and as such is an

important component of any polygenic athletic profile.

Materials and Methods

Study population

Ethical approval was obtained from the Human Research Ethics Committee (HREC) at Griffith

University (Protocol No: MSC/06/05/HREC) and Queensland University of Technology

(Approval number: 1300000499) and written consent was obtained from each participant. The

study population consisted of a previously described [12] cohort of 196 elite endurance triath-

letes, whose selection as an “elite endurance athlete” was based on participation in the 2008
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IronmanWorld Championship triathlon. This event involves a 3.8 km swim, 180 km bike ride,

and 42.2 km marathon on the Kona coast of Hawaii [37]. Questionnaires were administered at

the Kona Ironman event collecting data on a variety of demographic, health, and exercise-

related variables, and approximately 1–2 ml saliva was collected for each participant using

saliva collection kits (OG-250 Oragene Kit, DNA Genotek Inc.). DNA was extracted from

saliva samples as described previously [12] and overall finishing time (referred to henceforth as

performance time, or PT) was obtained from the official Kona 2008 Ironman results [38] for

173 of the 196 recruited participants. Eligibility criteria, methodology, and cohort characteris-

tics are described in detail elsewhere [12].

Briefly, eligibility for the Kona Ironman championship is gained by earning a qualifying

place in yearly qualifying half-Ironman or full-Ironman marathons run at differing locations

worldwide. Approximately three-quarters of the participants were male (N = 143, 73.0%) while

about one-quarter were female (N = 53, 27.0%). Athletes originated from various countries

from around the world, and were grouped according to continent of origin. Although 83.7% of

athletes originated from North America (N = 104) or Europe (N = 60), although a small num-

ber did originate from Oceania (N = 23), South America (N = 6), Asia (N = 2) and Africa

(N = 1). Most participants were between the ages of 30 and 50 (N = 123, 63.3%), with mean

participant age 42.5 ± 11.4 yrs. Further detail on the cohort baseline characteristics and ques-

tionnaire data may be found in Grealy et al., 2013 [12].

Genotyping assays

Genotyping for the seven gene polymorphisms was performed by PCR amplification followed

by various assays, including agarose gel electrophoreses (AGE), restriction fragment length

polymorphism (RFLP) analysis, and high resolution melt (HRM) analysis (see S1 Table for

primer sequences and assay details). Briefly, the ACE I/D polymorphism (287 bp Alu insertion,

rs4340) was genotyped by PCR amplification using a previously published primer set [39]

slightly adapted. The amplicon sizes for the deletion and insertion alleles were 182bp and

470bp respectively, allowing genotype discrimination after separation by AGE. The AMPD1

Q12X polymorphism (C>T, rs17602729) was genotyped by PCR amplification using a previ-

ously published primer set [16] followed by restriction enzyme digestion with HpyCH4IV. The

GDF8 K153R polymorphism (A>G, rs1805086), the HFEH63D polymorphism (C>G,

rs1799945), and the PPARGC1A G482S polymorphism (G>A, rs8192678) were all genotyped

by PCR amplification using primer sets designed for this study, followed by restriction enzyme

digestion with PspOMI, BclI, andMspI respectively. The ACTN3 R577X polymorphism (C>T,

rs1815739) had been genotyped in this cohort previously [12]; data from this study was used

for this multi-gene analysis. The genotyping method in the prior study was PCR amplification

followed by HRM analysis. The CKMMNcoI 3’-untranslated region polymorphism (A>G,

rs8111989) was genotyped by PCR amplification using a HRM primer set designed for this

study, followed by HRM analysis. Positive controls for each genotype were created for each

assay, and were genotyped using both the original assay and an alternative assay method such

as sequencing or RFLP. Both typing methods resulted in 100% concordance of genotypes, for

all assays. Positive controls were subsequently included in all genotyping runs on cohort sam-

ples. Additionally, HRM assays were genotyped in duplicate, with samples re-typed in cases of

disagreement between duplicates.

Statistical analysis

Genotype frequencies were tested for conformation to Hardy-Weinberg Equilibrium (HWE),

and compared to HapMap reference population frequencies using χ2 tests or Fisher’s exact
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tests where appropriate. Performance time (PT) was analysed by one-way ANOVA tests to

determine whether PT differed between genotype groups for individual polymorphisms in this

cohort. PTs were also used to group the athletes into two extreme phenotypes, the top 10% per-

formers (with fastest times) and the bottom 10% performers (with slowest times). Genotype

frequencies in the top and bottom 10% groups were compared using Fisher’s exact tests. The

combined effect of having multiple optimal alleles was assessed using the total genotype score

procedure outlined previously [5]. Briefly, each genotype for a gene is scored as 0, 1, or 2, with

the most optimal genotype for endurance scored as 2. For most of the markers, the scoring sys-

tem by Ruiz et al. assumed an additive effect of an advantageous allele, with homozygotes of

the non-optimal allele assigned a score of 0 and heterozygotes with one copy of the optimal

allele assigned a score of 1. The only marker that did not fit this pattern was theHFEH63D

polymorphism, in which H/D heterozygotes were scored as 2 while the H/H homozygote was

scored as 0 and the D/D homozygote was scored as 1. This was due to the prior finding that

heterozygotes are significantly overrepresented in endurance athletes versus controls [5, 31].

Genotype scores for each gene are summed to a total, divided by the maximum possible score

(14 for 7 genes) and divided by 100 to yield a TGS for every individual. The distribution of

TGS was plotted in the overall cohort and in the 10% fastest and 10% slowest race performers,

and differences in TGS were analysed in these groups by t-test analysis. PT was modeled using

linear regression with stepwise forward selection, to determine whether the TGS or any of the

polymorphisms individually would be a significant factor in performance time, adjusting for

the demographic variables age, sex, and continent of origin (shown to significantly influence

performance time in our cohort previously [12]). Due to the heterogeneity in clinical character-

istics (e.g. age, sex), lifestyle characteristics (e.g. smoking status), and fitness training character-

istics (e.g. estimated number of exercise hours per week), demographic, health, and exercise-

related data obtained from questionnaires (described previously in Grealy et al., 2013) were

also examined for association with PT.

Receiver operating characteristic (ROC) area under the curve (AUC) analyses were con-

ducted to determine whether models with demographic and genetic variables could predict: (1)

whether athlete performance time would be less than the median time; (2) whether athlete per-

formance time would be less than the mean time; and (3) whether athletes would fall into the

top 10% of performance times. Models included TGS only, demographic variables only, TGS

and demographic variables, individual genes and demographic variables. The ROC curve is

defined as a plot of test sensitivity or true positive rate (TPR) as the y coordinate versus its spec-

ificity or false positive rate (FPR) as the x coordinate. It is an effective method to evaluate the

quality or the performance of an diagnostic test [40]. The clinical performance of a laboratory

test can be described in terms of diagnostic accuracy, or the ability to correctly classify subjects

into clinically relevant sub-groups [41]. The most common way to quantify the diagnostic

accuracy of a laboratory test is to measure the area under the ROC plot or AUC. The AUC

value range between 1.0 (perfect separation of the test values of the two groups) and 0.5 (no

apparent distributional difference between the two groups of test values) [40, 41]. All statistical

analyses were conducted using the SPSS software (IBM SPSS v. 20.0 for Windows; IBM Corpo-

ration, Somers, NY) with an α level of 0.05.

Results

Genotyping success rate ranged from 99–100% for all markers except HFE (97.4% of samples

successfully genotyped). The genotype distributions for all markers was found to conform with

Hardy-Weinberg Equilibrium (HWE) in the overall cohort and in the subgroups of the 10%

fastest and 10% slowest race performers (p> 0.05) for all groups and markers; see S2 Table.
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Genotype frequencies for all Ironman athletes are shown in Table 1; these concorded well with

reference frequencies derived from the HapMap CEU population (Utah residents with ancestry

from Northern and Western Europe) [42] and were not significantly different for any marker

except ACE rs4340. No data was available for ACE rs4340 in HapMap CEU population; data

shown in Table 1 is drawn from Keavney et al. 2000, which is a UK study involving 5934 Cau-

casian myocardial infarction controls [43]. The Ironman cohort had a significantly higher fre-

quency of the D/D genotype compared to this study (Ironman 42.3% D/D compared to 27.6%;

χ2 p = 1.68 x10-6). Genotype distribution was not significantly different in males and females,

athletes from different continents, or athletes of different ages (see S3, S4 and S5 Tables); thus

further analyses were undertaken without stratification by these groups. Genotype frequencies

in the 10% fastest and 10% slowest race performers are also shown in Table 1 and Fig 1; these

were not significantly different for any marker, though this is most likely due to a lack of power

as n = 17 for each group. There were non-significant trends observed in genotype distribution

in top and bottom performers (see S1 Fig), particularly ACE, with a higher frequency of the I/I

Table 1. Genotype frequency data in the Ironman athletes and the HapMap CEU reference population [42].

Genotype frequency, n
(%)

Genotype frequency, n (%)

Gene rsID Markera Genotype HapMap
CEU

All
athletes

χ
2 p Top

10%
Bottom
10%

Exact
pc

ACE rs4340 D/I D/D 1637b (27.6%) 83 (42.3%) 1.68
×10−6

5 (29.4%) 7 (41.2%) 0.278

I/D 2980b (50.2%) 92 (46.9%) 9 (52.9%) 10 (58.8%)

I/I 1317b (22.2%) 21 (10.7%) 3 (17.6%) 0 (0.0%)

ACTN3 rs1815739 R577X R/R 22 (19.5%) 52 (26.5%) 0.29 5 (29.4%) 5 (29.4%) 1.000

R/X 66 (58.4%) 98 (50.0%) 7 (41.2%) 8 (47.1%)

X/X 25 (22.1%) 46 (23.5%) 5 (29.4%) 4 (23.5%)

AMPD1 rs17602729 Q12X Q/Q 86 (76.1%) 149 (76.4%) 0.54c 15 (88.2%) 12 (70.6%) 0.398

Q/X 24 (21.2%) 44 (22.6%) 2 (11.8%) 4 (23.5%)

X/X 3 (2.7%) 2 (1.0%) 0 (0%) 1 (5.9%)

CKMM rs8111989 3’ UTR NcoI
RFLP

A/A 58 (51.3%) 93 (47.4%) 0.32 9 (52.9%) 10 (58.8%) 0.156

A/G 49 (43.4%) 83 (42.3%) 8 (47.1%) 4 (23.5%)

G/G 6 (5.3%) 20 (10.2%) 0 (0.0%) 3 (17.6%)

GDF8 rs1805086 K153R K/K 58 (96.7%) 186 (95.4%) 1.00c 17 (100.0%) 16 (94.1%) 1.000

K/R 2 (3.3%) 9 (4.6%) 0 (0.0%) 1 (5.9%)

R/R 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

HFE rs1799945 H63D H/H 36 (64.3%) 138 (72.3%) 0.34c 13 (76.5%) 12 (75.0%) 1.000

H/D 20 (35.7%) 51 (26.7%) 4 (23.5%) 4 (25.0%)

D/D 0 (0.0%) 2 (1.0%) 0 (0.0%) 0 (0.0%)

PPARGC1A rs8192678 G482S G/G 51 (45.1%) 74 (37.9%) 0.42 8 (47.1%) 7 (41.2%) 0.811

G/S 45 (39.8%) 84 (43.1%) 7 (41.2%) 6 (35.3%)

S/S 17 (15.1%) 37 (19.0%) 2 (11.8%) 4 (23.5%)

aNumber of successfully genotyped samples per marker: ACE = 196 (100%); ACTN3 = 196 (100%); AMPD1 = 195 (99.5%); CKMM = 196 (100%); GDF8

= 195 (99.5%); HFE = 191 (97.4%); PPARGC1A = 195 (99.5%).
bNo available data for ACE rs4340 in HapMap CEU population; data shown from Keavney et al. (2000) UK study involving 5934 Caucasian myocardial

infarction controls [43].
cWhere a small number of observations prevented use of χ2, Fisher’s exact test was used.

doi:10.1371/journal.pone.0145171.t001
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genotype in the top 10% performers (17.6% compared to 0.0%); for AMPD1, with a higher fre-

quency of the Q/Q genotype in the top 10% performers (88.2% compared to 70.6%); and for

CKMM, with a lower frequency of the G/G genotype in the top 10% performers (0.0% com-

pared to 17.6%).

Mean performance time (PT) overall was 11 hr 44.4 min ± 1 hr 51.4 min; the fastest finish-

ing time was 9 hr 5.3 min, while the slowest finishing time was 16 hr 55.2 min. Mean PTs and

ANOVA comparisons for each genotype group are shown in Table 2. For each of the genes, the

fastest PT was for: ACE I/I genotype (685 min); ACTN3 R/R genotype (697 min); AMPD1 Q/Q

genotype (704 min); CKMM A/G (695 min); GDF8 K/R genotype (694 min); HFE D/D geno-

type (697 min); and PPARGC1A G/S genotype (704 min). For ACE and AMPD1, the fastest PT

corresponded with the ‘optimal’ genotype for endurance. For CKMM, GDF8, PPARGC1A and

HFE, the less optimal genotype had the fastest PT. Interestingly, for ACTN3, the fastest PT cor-

responded with the genotype optimally associated with speed/power (the R/R genotype), not

endurance. For AMPD1, a trend of increasing mean PT for decreasing number of optimal

alleles was observed; however, mean PT did not significantly differ between genotype groups

for any of the individual polymorphisms in this cohort (p> 0.1).

Though these markers were not shown to be associated with being in the top 10% or signifi-

cantly influence mean performance time individually, the combined effect of multiple optimal

alleles was determined by calculating the TGS as per Ruiz et al. (2009), which is a percentage of

optimal alleles obtained across all seven markers. In the total cohort of Ironman athletes, the

mean ± SD of the TGS was 60.75 ± 12.95 (Fig 2). The TGS ranged from a minimum score of

28.6 to 92.9, with only two athletes having both the lowest and highest scores, and the distribu-

tion was both symmetrical (skewness statistic ± SE: -0.003 ± 0.18) and mesokurtic (kurtosis

statistic ± SE: -0.230 ± 0.35). In the top and bottom 10% performers (Fig 3), the mean ± SD of

the TGS was 65.1 ± 13.09 and 58.9 ± 11.81, respectively (n = 17 for top 10%; n = 16 for bottom

10%). The TGS distribution was also symmetrical and mesokurtic in both the top 10% (skew-

ness statistic ± SE: -0.610 ± 0.55; kurtosis statistic ± SE: -0.734 ±1.06) and bottom 10%

Fig 1. Distribution of genotypes in seven endurance related genes in the top and bottom 10%
performers.

doi:10.1371/journal.pone.0145171.g001
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Table 2. Mean performance time (PT) in minutes within genotype groups.

Gene rsID Genotype n Mean PT (SE PT) F p Levene p

ACE rs4340 D/D 75 704.6 (12.4) 0.655 0.521 0.304

I/D 81 716.9 (13.2)

I/I 17 684.9 (23.1)

ACTN3 rs1815739 R/R 45 696.7 (16.4) 0.509 0.602 0.789

R/X 85 716.7 (12.1)

X/X 43 704.2 (17.2)

AMPD1 rs17602729 Q/Q 132 704.4 (9.5) 1.805 0.168 0.240

Q/X 38 716.9 (18.5)

X/X 2 849.4 (166.4)

CKMM rs8111989 A/A 83 717.3 (13.2) 0.954 0.387 0.144

A/G 73 694.8 (11.2)

G/G 17 723.0 (31.8)

GDF8 rs1805086 K/K 164 709.6 (8.8) 0.148 0.701 0.262

K/R 8 694.0 (32.7)

R/R 0 - -

HFE rs1799945 H/H 119 706.4 (10.3) 0.093 0.911 0.573

H/D 47 714.2 (15.7)

D/D 2 697.2 (50.8)

PPARGC1A rs8192678 G/G 67 711.9 (14.2) 0.126 0.882 0.319

G/S 72 703.9 (12.4)

S/S 33 713.6 (20.7)

doi:10.1371/journal.pone.0145171.t002

Fig 2. Frequency distribution of total genotype score (TGS) in overall Ironman cohort.

doi:10.1371/journal.pone.0145171.g002
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(skewness statistic ± SE: -0.354 ± 0.56; kurtosis statistic ± SE: -0.354 ± 1.09). The distribution

in the top 10% was shifted to the right (towards higher TGS) compared to the bottom 10%.

This difference was more clearly observed when TGS distribution was grouped into 10-unit

intervals (Fig 4). Though mean TGS was smaller by ~6.2 units in the bottom performers com-

pared with the top performers (or approximately one optimal allele fewer on average), this was

not shown to be significant by t-test analysis (t = 1.425, df = 31, p = 0.164).

Performance time (PT) modelling using linear regression showed that clinical characteris-

tics such as being a twin (n = 1), being a smoker (n = 1), and presence of a known disorder

(n = 18) were not significantly associated with changes in PT. Occupational activity level and

preferred exercise type were also shown to not significantly influence PT. There was a signifi-

cant trend of decreasing mean PT with increasing estimated weekly exercise hours, with mean

PT ± SD of 761 ± 126 min for athletes exercising at least 3–8 hrs per week, 701 ± 109 min for

weekly exercise at least 8–12 hrs, and 682 ± 89 min for athletes exercising more than 12 hrs per

week (F = 4.6, p = 0.011). However, this effect was not significant when weekly exercise hours

Fig 3. Frequency distribution of total genotype score (TGS) in top and bottom 10%.

doi:10.1371/journal.pone.0145171.g003
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was included in the PT regression model with other variables (β = -47.7, p = 0.224). Only the

demographic variables of age (β = 4.6, p = 7.782 x 10−12), sex (β = 76.9, p = 2.585 x 10−6), and

continent of origin (β = -20.4, p = 0.008) were statistically significant, accounting for most of

the variance in performance time (35.1%). Regression models of individual markers followed

an additive genetic model adjusted for age, sex, and continent of origin; shown in Table 3. Only

the AMPD1marker was significantly associated with PT (model p = 5.79 x 10−17, AMPD1

genotype p = 0.01). Each AMPD1 null allele (non-optimal for endurance) resulted in an

increase of about 39 minutes in PT, with X/X genotypes having an average increase of 78 min

in PT compared to Q/X genotypes. The model accounted for 37.3% of the variance in PT,

which was a significant improvement (F change = 6.99, p = 0.009) on the next best model of

age, sex, and continent of origin alone (which accounted for 36.8% of the variance in perfor-

mance). The regression model for total genotype score (Table 3) showed that TGS was not sig-

nificantly associated with PT even when adjusted for age, sex, and continent of origin. The

model with TGS accounted for only 34.4% of the variance in PT, which was not an

Fig 4. Frequency distribution of total genotype score (TGS) binned by 10-unit intervals.

doi:10.1371/journal.pone.0145171.g004

Table 3. Regression models for performance time (adjusted for age, sex, continent).

Gene N Model R Adjusted R2 Model F Model p Gene β Gene p

ACE 173 0.603 0.348 23.97 1.07 × 10−15 -5.86 0.581

ACTN3 173 0.602 0.347 23.88 1.19 × 10−15 2.89 0.765

AMPD1 172 0.622 0.373 26.38 5.79 × 10−17 38.71 0.010

CKMM 173 0.607 0.353 24.46 5.82 × 10−16 -13.04 0.215

GDF8 172 0.605 0.351 24.12 9.24 × 10−16 -5.47 0.867

HFE 168 0.600 0.345 22.96 4.65 × 10−15 -13.45 0.353

PPARGC1A 172 0.605 0.351 24.11 9.35 × 10−16 0.64 0.946

TGS 168 0.600 0.344 22.86 5.22 × 10−15 -0.42 0.428

doi:10.1371/journal.pone.0145171.t003
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improvement compared to a model with age, sex, and continent of origin alone (35.1%) or

with the model of age, sex, and continent of origin with AMPD1 genotype (37.3%).

Furthermore, ROC AUC analysis determined that TGS alone could not significantly predict

whether an athlete would finish in (a) less than the median PT of 681.33 min (AUC = 0.52,

p = 0.674); (b) less than the mean PT of 708.39 min (AUC = 0.48, p = 0.626); or (c) the top

10% fastest PT i.e. less than 593.7 min (AUC = 0.61, p = 0.132). However, models with the

demographic variables of age, sex, and continent of origin only, demographic variables and

TGS, and demographic variables and AMPD1 genotype were all found to significantly predict

athlete finishing time for all three outcomes (less than median PT, less than mean PT, or in the

top 10%). ROC AUC graphs for all analyses are shown in Fig 5. The model with age, sex, conti-

nent and AMPD1 genotype was found to be the most significant for predicting whether athletes

would finish in less time than both the mean and median (Median AUC = 0.82, p = 8.92 x

10−13, 95%CI = 0.75 to 0.88; Mean AUC = 0.81, p = 4.72 x 10−12, 95%CI = 0.75 to 0.87), while

the model with age, sex, continent and TGS was the most significant model for predicting

whether athletes would finish in the top 10% (AUC = 0.91, p = 3.50 x 10−8, 95%CI = 0.86 to

0.96). However, the model with age, sex, continent, and AMPD1 genotype had similar though

slightly less significant results (AUC = 0.90, p = 4.93 x 10−8, 95%CI = 0.85 to 0.96). Of all the

ROC AUC analyses (Fig 5), the models for predicting top 10% finishers had the highest dis-

crimination of performance in terms of sensitivity and specificity. The point where sensitivity

was maximized (sensitivity = 1.000) while minimizing the false positive rate and thus maximiz-

ing specificity (specificity = 0.742) corresponded to a model value of 672.28. Using the model

equation PT = (4.65 • age) + (79.90 • sex) + (-21.36 • continent) + (-0.42 • TGS) + 552.6, this

would indicate that a North American male aged 35 yrs old would need a TGS of 51 or more in

order to obtain the identified criteria cutoff of 672.28; however, a trade-off among the variables

means that a lower TGS in combination with optimal values for the demographic variables

would be equally likely to finish in the top 10%.

Fig 5. Receiver operating characteristic curves (ROC) determining potential for PT prediction using
four models.

doi:10.1371/journal.pone.0145171.g005
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Discussion

Overall, although expected genotype frequencies corresponded well with expected Caucasian

frequencies from HapMap, none of the individual polymorphisms had significantly different

genotype frequencies in the top and bottom 10% performers. This is perhaps due to power lim-

itations, given that the top and bottom 10% of performers consisted of only seventeen individu-

als in each group for this study. However, none of the individual polymorphisms were found to

significantly impact performance time when unadjusted for confounding demographic vari-

ables. Interestingly, an age-, sex- and continent of origin-adjusted analysis of AMPD1

Gln12Ter genotype showed a significant result, with the endurance-optimal Gln allele decreas-

ing mean performance time.

As previously reported [12], age, sex, and continent of origin were extremely significant pre-

dictors of performance time and were included in all models to control for confounding effects.

This is an extremely important additional step in any genetic analysis of endurance due to the

heterogeneity of athletes performing at elite levels. Some studies have avoided the main con-

founders of ethnicity and sex by analysing subgroups (such as males) only [5]. This approach is

useful for eliminating confounders but necessarily decreases the available pool of athletes for

study and may result in lack of power. Additionally, age is rarely adjusted for in endurance

case-control studies, which may be an important oversight given that age was the most highly

significant variable in our analyses. This is even more important when the range of age of study

participants can vary (as in analyses of professional athletes). Additionally, restricting analysis

by ethnic group may not remove all of the confounding present in country or continent of ori-

gin; we found a significant effect for continent of origin. This is unlikely to be due to confound-

ing from continent-specific genetic effects as only small sample sizes were obtained from South

America, Africa, and Asia, and may instead reflect continent-specific socio-economic factors

relating to training availability or training type.

Indeed, training variables are an additional important factor to account for in such studies,

as different training types and durations can have hugely significant impacts on athlete capabil-

ities. In this study, fitness training characteristics were determined only through estimated

weekly exercise hours (determined by exercise frequency and duration questions). However,

this data alone cannot meaningfully inform the effect of athlete training on performance, as

even low volume exercise may potently increase athlete endurance performance for certain

training types, such as high-intensity interval training (HIT). For instance, muscle mitochon-

drial capacity, resting muscle glycogen, and GLUT4 protein content were all found to be

improved significantly by HIT in a 2010 study, despite the fact that the training was merely six

training sessions of 8–12 x 60 second intervals (with interspersed 75-second recovery periods)

[44]. Furthermore, this study showed significant decreases in time to complete 50kJ and 750kJ

cycling time trials with significant increases in mean power output also[44]. The benefits of

HIT have even been observed for sedentary and middle-aged individuals, which obtains the

health advantages of traditional endurance training with only a small time commitment[45].

Thus, explicit recording of training type, as well as training volume, are vitally important for

future analyses of endurance performance.

These findings highlight the importance of including potentially confounding environmen-

tal factors in genetic analyses of athletic performance. This should not be surprising, given that

while endurance endophenotypes have been shown to have high heritabilities (h2 = 40–60%)

and while athletic status itself has also been reported to be highly heritable (h2>50%) [4], non-

genetic environmental factors must still contribute at least half of the variance in endurance

phenotype. This can be due to both shared environment (such as the training provided to

national-level athletes for a specific country) and non-shared environment (individual efforts
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in training sessions, frequency and duration of training sessions, etc.). As genetic analyses

show that each allele must contribute relatively small amounts of variance to the overall pheno-

type compared with environmental factors [46], these types of variables should be consistently

accounted for in order to prevent masking of significant genetic effects, such as we observed

for AMPD1 Gln12Ter.

Another method of preventing polymorphisms with individual small effect from escaping

statistical detection is to analyse their joint effects using the TGS system. This has been used to

successfully show a significant difference in genetic profile ‘favourability’ between endurance

athletes versus non-athlete controls for the seven-gene endurance profile [5] or a ten-gene

endurance profile [4], endurance athletes and non-athlete controls versus power athletes for a

six-gene power profile [6], and endurance athletes versus power athletes and non-athlete con-

trol for a six-gene mitochondrial biogenesis endurance profile [10]. However, although the

TGS distribution for our Ironman athletes (mean 60.75 ± std. dev. 12.95) was comparable to

the distribution of TGS of Spanish non-athletic controls described in Ruiz et al. 2009 (mean

62.43 ± std. dev. 11.45), the TGS distribution in the Ironman athletes was overall lower than

for Spanish endurance athletes (mean 70.22 ± std. dev. 15.58). Similar to the reported results in

Spanish endurance athletes by Ruiz et al. 2009, we observed multiple ‘peaks’ in the distribution

of the endurance athletes. The first peak was observed at a TGS ~43 and was common to both

top and bottom performers; the second peak was observed at a TGS of ~57 for the bottom 10%

but ~64 for the top 10%; a possible third peak was observed for top 10% performers at TGS of

~79. The difference in frequency of higher TGS for top performers compared with lower TGS

for bottom performers was more clearly observed when TGS distribution was grouped into

10-unit intervals. This might suggest that there groupings of optimal alleles, perhaps, the likeli-

hood of an optimal allele for one marker increases the likelihood of having other optimal alleles

(and vice versa). Thus far, this possibility has not been explored in relation to the TGS, as what

all the currently existing TGS models have in common is that they represent the proportion or

percentage of ‘optimal’ alleles for a particular phenotype, and assumes an additive genetic

model of allele favourability for all polymorphism except HFE (where the heterozygote is con-

sidered ‘most optimal’). Furthermore, the TGS follows a simple additive model of athletic

advantage between different polymorphisms, which may not be the case if gene-gene and gene-

environment interactions result in non-additive advantages for certain allele combinations.

Several papers have already reported gene-gene interactions for small combinations of genes

[4, 47, 48]; of particular interest is that performance time of South African Ironman triathletes

was significantly influenced by the interaction of the NOS3 and BDKRB2 genes (individuals

with the NOS3 GG genotype + BDKRB2 19 allele were significantly slower than other combina-

tions) [48]. More sophisticated TGS models taking such interactions into account may be nec-

essary to accurately model genetic advantages for performance; however it is also clear that

currently information on gene-gene interactions and gene-environment interactions for these

genes are lacking [46]. It is also important to realise that any TGS model which accounts for

gene-gene or gene-environment will become additionally complex. The power to perform such

analyses may also be lacking, given that sample size has typically been an issue for elite perfor-

mance studies [46, 49].

These reasons may also partly explain why TGS was not significantly associated with PT in

our cohort even when adjusted for age, sex, and origin and that ROC AUC analysis determined

that TGS alone could not significantly predict whether an athlete would finish in less than the

median or mean or the top 10% fastest PT. Alternatively, the TGS profile for ‘optimal endur-

ance’may not be an appropriate profile for examining event performance as an outcome, even

an endurance event. Additionally, even differing types of endurance events may show different

levels of association with ‘endurance’ genes; while acknowledged as one of the most gruelling
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endurance events in the world, the Ironman championships require a blend of cycling, run-

ning, and swimming skills, which makes them more of a complex phenotype than single-sport

endurance events such as running. Triathlons may thus require different set of ‘optimal alleles’,

emphasising not only endurance-associated genes but perhaps power-associated as well. “Suc-

cess” in any kind of endurance event relies, in addition to endurance capabilities, on speed and

strength to outperform competitors.

Thus, in the TGS profile we employed, the ACTN3 Arg577Ter null allele (X) was coded as

the ‘optimal’ endurance allele and the X/X genotype was given a genotype score of 2, the R/X

genotype given a score of 1, and the R/R genotype given a score of 0. However, the R allele is

highly associated with speed and power [6], and the presence of an R allele may give an endur-

ance event competitor an edge over an athlete with homozygous X/X genotype. In fact, Ruiz

et al.’s 2010 speed/power profile showed three common polymorphisms to the endurance pro-

file (ACE Ins/Del, ACTN3 Arg577Ter, and GDF8 Lys153Arg), albeit with inverse allele coding

[6]. Thus, 3 out of the 14 polymorphisms used in our TGS calculation may in fact be more suit-

able with the power allele coded as the ‘optimal’ allele. An alternative profile for performance

time may need to be investigated in order to determine a model that will predict athlete finish-

ing time with discriminating sensitivity and specificity. Such as model may be useful in assist-

ing with athletic training as well as helping athletes understand what factors underlie their

performance, by allowing athletes to pinpoint factors to work on in order to improve perfor-

mance time, as well as personalize their training to their optimal genetic profile. Before this can

be done, however, more sophisticated genetic models should be investigated to ensure that the

additive model is not masking gene-gene or gene-environment interactions; non-genetic fac-

tors such as training methods and duration should be recorded and included in future genetic

analyses to prevent confounding; and large collaborations should be undertaken to obtain suffi-

cient sample sizes for powerful and complex analyses of endurance performance.
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