
Evaluation of a Business Continuity Plan using Process Algebra

and Modal Logic

Wolfgang BOEHMER, Christoph BRANDT and Jan Friso GROOTE

Department of Computer Science, Security Engineering Group, Technische Universität Darmstadt, Germany and

Computer Science and Communications Research Unit, University of Luxembourg and

Department of Mathematics and Computer Science, Eindhoven University of Technology

September 22, 2009

Abstract

Since (1996) Knight and Pretty published their study about the impact of catastrophes on share-
holder value, the need for a business continuity management system (BCMS) became clear. Once
a BCMS is in place, the corresponding risks can be insured against. The BS 25999 certificate can
serve as proof of implementation. It requires defined business continuity plans (BCP). However,
processes based on BCPs are rarely tested. Therefore, little knowledge is available to confirm
their proper functioning and their non-functional properties.

This paper addresses the verification of BCPs. We show how to model, simulate and verify
normal business processes and business processes that are based on a BCP. As a formal method,
we use process algebra and modal logic to explain the semantics of conceptual business process
models. Our study places emphasis on questions regarding the potential capacity and duration of
a process based on a BCP as well as those of an organizational security policy. By doing this, we
are able to demonstrate that ex-ante evaluation is not only possible but also effective.

1 Introduction

The problem statement is about interruptions of the central value chain (CVC) a company is running
as well as their handling. Such interruptions can be caused by catastrophies or other major and rare
incidents. We assume, that a company is only able to survive a certain amount of time without its
CVC. A business continuity management system (BCMS) requires that a business continuity plan
(BCP) is put in place. There are different BCPs for different kinds of incidents that caused an
interruption. The underlying idea is that a BCP keeps the company alive while it is recovering by the
help of a disaster recovery plan (DRP). Because incidents do not occur often, there is little proven
knowledge about the proper functioning of a BCP. Only some rare, non-representive evidence out of
real BCP-excercises is available. In order to understand that a BCP will operate well in case of a
disaster, a priori analysis techniques are required. Today’s best practices do not provide solutions for
this.

In this paper we want to experiment with formal techniques to describe a BCP and to analyse various
aspects of it. More concretely we look at the process algebraic specification language mCRL2 [10]
to describe the behaviour and use modal logic and visualisation techniques [19] to get insight into
it. For this purpose we introduce a small exemplary business process and a business continuity plan,
formalize and analyze them. In particular, the business continuity plan has various options which we
want to compare.

The first question, we like to discuss, is whether the BCP is able to backup a predefined amount
of business cases in a certain time span compared to the amount the CVC usually handles. We also

1

2 BUSINESS CONTINUITY MANAGMENT SYSTEM (BCMS) 2

want to know whether early filtering of not so valuable customers will improve throughput.
The second question is about certain organizational security policies. So, we ask ourselves a typical

security property, namely in which cases the four-eyes principle holds. The four-eyes principle says
that essential business decisions must be approved by two separate individuals in an organisation. The
second property is a lifeness property. We want to know whether all customers are served properly
and completely under all circumstances.

The third question came upon us, when looking at the visual representation of the behaviour of the
systems. We observed very particular behavioural patterns. Inspired by this we want to know which
decisions in the business process cause these behavioural patterns. One of these questions, formulated
in terms of the business process, relates to the quite different end-times at which customers will have
been served. We want to know which activities in the business process are responsible for these
end-times.

At a higher level, the contribution of this paper consists of a new semantical interpretation of the
formal semantics of a CVC and a BCP in advanced process algebra, a simulation of their behavior
to determine their capacity, the application of new visualisation techniques and a proof that fully
automated model checking using modal logic of safety and liveness properties can readily be done.

The paper is organized as follows: First, we introduce the context of a Business Continuity Man-
agement System (BCMS) that is handling the BCP and DRP of the central value chain of a company.
Second, we present a loan granting process (LGP) as an example of a critical business process. Third,
we demonstrate how to use mCRL2, an advanced process algebra with a sophisticated modal logic
for model checking. Fourth, we discuss how to define the formal semantics of the LGP and show
state space exploration and simulation results regarding the performance capacities of the process.
We further present model checking results to show compliance with an organizational security policy
(segregation of duty) that can be proven automatically. Sixth, we reference some related work and
summarize our conclusions as well as prospective future work.

2 Business Continuity Managment System (BCMS)

A business continuity management is a holistic management process that identifies potential impact
that threaten an organization and provides a framework for building resilience and capability for an
effective response that safeguards the interests of its key stakeholders, reputation, brand and value
creating activities [27]. The fundamental idea of a BCMS is based on the fact that the Business
Continuity Management (BCM) is meant to manage kinds of rare business risks with a huge impact
on a company. The BCMS is capable of responding adequately in extreme situations (catastrophic
events) with pre-defined plans (BCP).

So, a company that wants to safeguard their critical value chain, should focus on securing revenues by
taking adequate risk countermeasures. Since 2007, the BS 25999-2:2007 [28], published by the British
Standard Institution (BSI), is available. It is an industry-wide recognized best-practice method that
governs the creation of a BCMS. It encompasses a BCP and a DRP (Disaster Recovery Plan). In
addition to that, the continuity processes should be compliant with organizational security policies
(e.g. segregation of duty). We will show how these qualities can be analyzed ex-ante by the help of
formal methods.

2.1 Concrete Example

A simple real-world example is used here to illustrate the concept of a management-system. A person
who wants to manage his or her weight by the help of a management-system focusses on the consumed
and burned calories. A possible objective can be to balance these values. Figure 1 illustrates the idea
of a balanced system.

2 BUSINESS CONTINUITY MANAGMENT SYSTEM (BCMS) 3

loss in weight(calories)(Plan Phase) gain in weight(calories) (Check Phase)

W
e
ig

h
t M

a
n
a
g
e
m

e
n
t

Act

Do

dream weight

Figure 1: Weight management system and ups and down as a seesaw

Another objective can be to reduce the weight of a person. In this case there must be more calories
burned than consumed. The measuring instrument is the weighing machine. In the next section we
will argue how this approach can be mapped to the concept of a Business Continuity Management
System.

2.2 Basic idea of a BCMS according BS25999

The standard requires the implementation of a management system in accordance with the PDCA
cycle (Plan-Do-Check-Act), as well as those already required in the standards ISO 27001 and ISO
20000 and other standards. The aim of the PDCA cycle is the idea of imperfection, and follows a
continuous improvement process. In the check-phase it is examined whether the plan is still in line
with the objectives. If not, the corrections are resolved in the Act-period.

Figure 2 sketches the operational view on a PDCA cycle regarding an underlying BCMS. A BCMS
is a framework that helps to keep the balance between the risks (potential disasters and impacts on
the critical business process) and the available countermeasures (business continuity processes and
business recovery processes) respecting the MTPD as a real-world side constraint.

The timespan available for the BCP to deliver a minimum business revenue is defined as the max-
imum tolerable period of disruption (MTPD). The continuation of the value chain at an acceptable
level for a defined period (∆t) is ensured.

BCM is a reactive process that becomes active only after the occurrence of the disaster. In this
context, the maximum allowable down time MTPD, which starts running after the occurrence of the
disaster, increases considerably in importance. The MTPD is determined using the length of time the
critical activities of the value chain require to being working again after the occurrence of a disaster, so
the company can survive (see figure 3). This period of time (∆Tmax = t3−t0) is an ultimate boundary
for a company and decides the company’s survival. If this ultimate limit is exceeded, the company is
irretrievably lost (see curve (2), figure 3). The relation between critical activities and the value chain is
determined by the Business Impact Analysis (BIA). Within the BIA, the dependent critical resources
(key stake holders, key products, key services) and their importance to the critical activities (core
processes of the value chain) are analyzed. A BCMS includes the vital business processes. Recovering
only the working infrastructure, e.g. replacing a failed IT infrastructure by an emergency one, will
not meet a BCMS, as the IBM report clearly pointed out [12]. We will discuss the business process
capacity (BPC) of the CVC and different variants of continuity processes.

Figure 3 shows a qualitative representation on a money/timeline what happens if a disaster strikes

2 BUSINESS CONTINUITY MANAGMENT SYSTEM (BCMS) 4

BCP & DRParrangements(plan phase) Disaster & BIAgo bankrupt(check phase)

B
C

M
S

act

do

MTPD

Figure 2: Business Continuity Management System (BCMS) and ups and down as a seesaw

at time t0. This shows that immediately after the occurrence of a disaster the calculated turnover
collapses. At time t1 the processes of the BCP (emergency operation) start and create a turnover at
an acceptable level. A little later, at time t2 the recovery processes start and at time t4 the company
is back to its normal levels of operations. The dash dotted line in the figure shows that the costs
after a disaster increase. In the event that no countermeasures (BCP, DRP) are taken, or that the
countermeasures do not work, the costs continue to increase (see curve (2)). The ideal situation is
that the Business Continuity Plan and the Disaster Recovery Plan work so well, that costs are as
depicted in curve (1).

If no action (BCP, DRP) has been taken at the time t3, or has not been started until the time
t3, then the costs will increase until company insolvency is reached (cf. figure 3). The costs are
determined by the obligations of the company. These consist of personnel, technical expenses and the
cost of delivery, performance, or possibly storage costs, etc.

B
C

P
 S

ta
rt

in
g
 p

o
in

t

D
R

P
 S

ta
rt

in
g
 p

o
in

t

time (t)

m
o
n
e
y

calculate standing charge

calculate turnover

C
a
ta

s
tr

o
p
h
e

t0 t1 t4

M
T

P
D

b
a
c
k
 t
o
 n

o
rm

a
l

calculate standing
chargeBusiness Continuity based on a BCP

Disaster Recovery based on a DRP

t2 t3

Insolvency
(go bankrupt)

calculate advanced standing charge

calculate turnover

(2)

(1)

Figure 3: Illustration of aspects of a catastrophe (t0) and the reaction (t1, ..., t4)

It is in the self interest of a company to keep the BCPs and DRPs operational. Usually, this is

3 LOAN GRANTING BUSINESS PROCESS 5

tested on a regular basis by simulating that something goes astray within the ordinary business process.
Because these tests are expensive, they are not executed very often and generally only address certain
aspects of the recovery plans. Therefore, this testing only provides a rather haphazard prediction of
the effectiveness of such plans if a true disaster strikes.

But the continuation of business is so important that deeper analyses are required. In the literature,
there are generally two different methods available to measure the performance.

• On the one hand, the performance can be measured on the maturity of processes, such as Spice
(ISO/IEC 15504) or CMMI.

• On the other hand, the performance an be measured on the basis of appropriate indicators
(KPI). Proposals for the handling of key indicators are found in the literature [2, 23].

It is however difficult to come to a reliable assessment of such indicators. Assessments based on
simulated business failures and tests with BCPs and DRPs do not take place sufficiently often to
obtain reliable figures. The inevitable alternative is the application of good judgement and educated
guessing.

In order to improve the quality of the analysis of BCPs and DRPs one should model these and the
ordinary business process such that they can be simulated. The first ideas of how to do this have
been presented in [5]. If the business continuity processes are in place and capacity and throughput
volumes are known, this can be modeled using process algebra and abstract data. With modal logic
safety and liveness properties can then be reviewed. These ideas will be pursued in the next sections.

3 Loan Granting Business Process

We like to discuss a simplified version of a loan granting process (LGP) that can be found in an
arbitrary bank. First, we present the normal business situation. Second, we discuss the business
continuity situation.

3.1 The Normal Business Situation

In a normal business situation (NBS) a LGP consists of a couple of procedures: First, a processing
clerk (PC) identifies the customer (C) in front of him. We assume, that this activity will take about 30
min (T=30). In our formal model we will make reference to this activity by F1 (A=F1). Second, the
PC accepts the supporting documents from C (A=F2, T=10). According to our process model (see
figure 4 and figure 5), these activities can run sequentially or simultaneously. Third, the PC stores
the data about C into the database DB1 (A=F3a, T=5). Fourth, the creditworthiness of C is checked
by the PC making a request to an external credit office (A=F3, T=60). As a result of this request
C can be accepted (E2a) or rejected (E2b). Fifth, the post processing clerk (PPC) determines the
rating for C (A=F4, T=15) by using data from DB1 and support from a rating application. Sixth,
the PPC and the supervisor (S) create an optimized contract (A=F5, T=20). To do this, they access
the price engine application and the output management application (OMA). Seventh, the manager
(M) prints the contract (A=F6, T=5). The result is an unsigned contract. Finally, C and M both
sign the contract (A=F7, T=30).

3.2 The Business Continuity Situation

In a business continuity situation (BCS) a LGP consists of a couple of slightly different procedures. We
assume here, that the business continuity process will take care of the fact that the business critical IT
systems are not available. The overall purpose it to make a minimum business functionality available.

3 LOAN GRANTING BUSINESS PROCESS 6

getC ID

F1

getC MasterData

F2

C arrived

E0

data collected

E1a (ID)

store data in DB 1

F3a

Customer Data, Tax
ID, Pasport No.,
Name / Address
D1

C

O5

PC

O1

C

O5

PC

O1

PC

O1

DB 1

M1

data stored

E1 (ID)

check

creditworthiness

F3

customer

accepted

E2a (ID)

customer

rejected

E2b (ID)

evaluate rating

F4

product

choosen

E3 (ID)

PC

O1

PPC

O2

external credit

office

M2

internal rating

application

M3

Customer,
Collaterals, Type,
Value
D2

Rating Report,
Overall Result,
Context Information
D3

DB 1

M1

Split-1

Merge-1

Split-2

Figure 4: Normal Business Process – Part 1

4 PROCESS ALGEBRA: MCRL2 7

Process Sending to . . . Receiving from . . . Time
E0 Split1 C, ETC 0
Split1 F1, F2 E0 0
F1 Merge1, PC, C Split1, PC, C 30
F2 Merge1, PC, C Split1, PC, C 10
Merge1 E1a F1, F2 0
E1a F3a Merge1 0
F3a E1, PC E1a, PC 5
E1 F3 F3a 0
F3 Split2, PC E1, PC 60
Split2 E2a, E2b F3 0
E2a F4 Split2 0
F4 E3, PPC E2, PPC 15
E3 F5 F4 0
F5 E4, S, PPC E3, S, PPC 20
E4 F6 F5 0
F6 E5, M E4, M 5
E5 F7 F6 0
F7 E6, M, C E5, M, C 30
E6 C, ETC F7 0

Table 1: Partial Process Algebra View on the Normal Process

3.2.1 Variant A.1 and A.2

The first two variants of the business continuity process we like to present are defined as follows:
A PC identifies C (A=F1, T=30) first. Second, PC collects the supporting documents from C

(A=F2, T=10). These two activities can be done sequentially or in parallel. Third, PC makes a
decision if the customer is accepted or rejected (A=F4a, T=60). If C is rejected he drops out of the
process. Fourth, either PC creates a standard contract for C (variant A.1) or M does (variant A.2;
A=F5a, T=90). Finally, C and M sign the contract (A=F7, T=30).

3.2.2 Variant B

The third variant of the business continuity process contains an additional first step. During this
step the PC determines the business value of C to make the decision if the customer is picked for
the business continuity process or returned. The rationale behind this decision is to process only
customers with a high business value for the bank to meet the minimum business objectives in the
continuity case.

In detail, PC checks the business value of C (A=F0, T=60). Afterwards the process continues
as already described in variant A.1 by identifying the customer (A=F1, T=30) and collecting the
supporting documents (A=F2, T=10).

4 Process Algebra: mCRL2

We like to introduce mCRL2 [8] as a suitable formal platform to define the semantics of event driven
process chains [24] used to model critical business processes.

mCRL2 is a process algebra encompassing data and time, provided with a modal logic. It is therefore
helpful to specify and analyse a broad range of sytems. As presented in [8], the process algebraic

4 PROCESS ALGEBRA: MCRL2 8

product

choosen

E3 (ID)

create optimized

contract

F5

contract

created

E4 (ID)

print contract

F6

sign contract

F7

contract

printed

E5 (ID)

contract

signed

 E6 (ID)

PPC

O2

S

O3

M

O4

C

O5

M

O4

pricing engine

M4

unsigned form

D5

signed form

D6

output management
system

M5

Product Bundle,
Name / ID, Price, /
Detail, Changes
D3

Figure 5: Normal Business Process – Part 2

structure helps to formally specify the communication between subcomponents of a system without
touching the rest of it. Therefore, component-based and hierarchical systems are well supported.

4.1 The Process Language

The primary notion in the mCRL2 process language [8] is an action, which represents an elementary
activity or a communication of some systems.

Multiactions enable the specification of actions that are executed together. As a consequence, these
multiactions allow the separation of parallelism and communication. When two actions can execute
at the same time, a multiaction with those actions is the result. Communication can then be applied
to these multiactions to make certain actions communicate with each other.

4.2 The Data Language

The mCRL2 data language [8] is a functional language based on higher-order abstract data types,
extended with concrete data types: standard data types and sorts constructed from a number of type
formers. It can be used to parameterize processes and actions. Because the data-language is higher
order, functions are first-class citizens and can therefore be used just as easily as other data [10,11].

4.3 The Modal µ-Calculus

By adding explicit minimal and maximal fixed point operators to Hennessy-Milner logic, the modal
µ-calculus [11] is obtained. Modal formulas are extended with data, similar to processes. So, modal
variables can have arguments, actions can carry data arguments as well as time stamps and existential
and universal quantification is possible.

4 PROCESS ALGEBRA: MCRL2 9

getC ID

F1

getC MasterData

F2

C arrived

E0

data collected

E1a (ID)

Customer Data, Tax
ID, Pasport No.,
Name / Address
D1

C

O5

PC

O1

C

O5

PC

O1

Customer, Content,
Type, Value
D2

accept customer

F4a

customer

accepted

E2a (ID)

customer

rejected

E2b (ID)

PC

O1

create standard

contract

F5a

form filled

E4a (ID)

sign contract

F7

contract

signed

 E6 (ID)

C

O5

M

O4

signed form

D6

unsigned form

D5

M

O3

PC

O1

XOR

Split-1

Split-2

Merge-1

Figure 6: Business Continuity Process – Variant A.1 and A.2

4 PROCESS ALGEBRA: MCRL2 10

getC ID

F1

getC MasterData

F2

C arrived

E0a

data collected

E1a (ID)

Customer Data, Tax
ID, Pasport No.,
Name / Address
D1

C

O5

PC

O1

C

O5

PC

O1

Customer, Content,
Type, Value
D2

check business

value

F0

C

O5

PC

O1

customer

picked

E0 (ID)

customer

returned

E0b (ID)

Split-0

Split-1

Merge-1

Figure 7: Business Continuity Process – Variant B, Part 1

data collected

E1a (ID)

accept customer

F4a

customer

accepted

E2a (ID)

customer

rejected

E2b (ID)

PC

O1

create standard

contract

F5a

form filled

E4a (ID)

M

O3

sign contract

F7

contract

signed

 E6 (ID)

C

O5

M

O4

signed form

D6

unsigned form

D5

Split-2

Figure 8: Business Continuity Process – Variant B, Part 2

4 PROCESS ALGEBRA: MCRL2 11

Process Sending to . . . Receiving from . . . Time
E0 Split1 C, ETC 0
Split1 F1, F2 E0 0
F1 Merge1, PC, C Split1, PC, C 30
F2 Merge1, PC, C Split1, PC, C 10
Merge1 E1a F1, F2 0
E1a F4a Merge1 0
F4a Split2, PC E1a, PC 60
Split2 E2a, E2b F4a 0
E2a F5a Split2 0
E2b C, ETC Split2 0
F5a alt1 E4a, PC E2a, PC 90
F5a alt2 E4a, M E2a, M 90
E4a F7 F5a 0
F7 E6, M, C E4a, M, C 30
E6 C, ETC F7 0

Table 2: Partial Process Algebra View on the Emergency Process

4.4 Example: Dining Philosophers

The use of mCRL2 can easily be demonstrated by modeling the dining philosopher problem (DPP) [6].
In the following case the DPP consists of three philosophers and three forks that are shared. Each
philosopher has a plate. Forks are placed on the left and right side of every plate. The dishes that
are served require two forks to be eaten.

In the following model the sort PhilId contains the philosophers. The nth philosopher is denoted by
pn. The sort ForkId containts the forks (fn denotes the nth fork). The functions lf and rf designate
the respective left and right forks of each philosopher.

The process Phil(pn) models the behavior of the nth philosopher. It first takes the left and right
forks (in any order; possibly at the same time), then eats, subsequently puts both forks back (again
in any order) and finally repeats its own behavior.

The process Fork(fn) defines the behavior of the nth fork. It can perform up(p, fn) for any philoso-
pher, meaning that the fork is being picked by philosopher p. Then it performs down(p, fn), meaning
that the same philosopher puts the fork down and repeats its own behavior.

The system consists of three Phil and Fork processes that run in parallel. Communication between
get and up as well as between put and down is enforced. The resulting communication is look and
free. The communication operator, ΓC(p), allows communication only when possible. The blocking
operator, ∂B(p), ensures that nothing else happens.

The mCRL2 toolset is used to generate the state space to be able to check certain properties of
the system. Additionally, modal formulas in the µ-calculus can express desired (temporal) properties.
These are solved by transforming the system behaviour and formula to a parameterized boolean
equation system that is subsequently solved.

By model checking a dead-lock in the dining philosophers can easily found, yielding to trace
lock(p1,f1) · lock(p2,f2) · lock(p3,f3). The detected dead-lock represents the situation when each
of the philosophers has taken one fork and waits for another one without being able to put the first
one back.

One solution is to cross the arms of one of the philosophers The result is a simple LTS consisting
of 36 states and 104 transitions without any deadlock states.

5 CASE STUDY 12

sort Phi l Id = struct p1 | p2 | p3 ;
ForkId = struct f 1 | f 2 | f 3 ;

map l f , r f : Ph i l Id −> ForkId ;
eqn l f (p1) = f1 ; l f (p2) = f2 ; l f (p3) = f3 ;

r f (p1) = f3 ; r f (p2) = f1 ; r f (p3) = f2 ;
act get , put , down , lock , f r e e : Ph i l Id × ForkId ;

eat : Ph i l Id ;
proc Phi l (p : Ph i l Id)=

(get (p , l f (p)) | get (p , r f (p))) . eat (p) .
(put (p , l f (p)) | put (p , r f (p))) . Phi l (p) ;

Fork (f : ForkId) =
sum p : Phi l up(p , f) . down(p , f) . Fork (f) ;

i n i t block ({ get , put , up , down} ,comm({ get |up −>lock , put |down −> f r e e } ,
Phi l (p1) | Phi l (p2) | Phi l (p3) |
Fork (f1) | Fork (f2) | Fork (f3))) ;

Figure 9: mcrl2 Specification of Dining Philosophers

5 Case Study

In this case study (CS) we will investigate the dynamic behavior of the CVC as well as of A.1, A.2
and B. We present the scenario, some snippets of the mCRL2 specification, the process capacity as
well as a safety and liveness requirement. The full model and all details are given in the appendix.

5.1 The Scenario

Apart from the pure process description, we assume, that there are two process instances running in
parallel with two clerks (PC), one post processing clerk (PPC) for back office work, one supervisor (S)
for controlling jobs and one manager (M) who can sign contracts. In the business continuity situation
there is only one PC that is full-time and one M that is part-time available. We assume that there
are no PPC and S available in that case.

5.2 The Specification

In the mCRL2 specification of E1 (fig. 10), a customer is passing through the proc instance. It first
communicates with F3a, then makes the assumption that some information is stored in a file by c
and communicates with F3 before restarting automatically. According to the specification of F1 a
customer and a clerk are assigned to this task once the split process has fired. Afterwards, the activity
F3 is finished and both are released. The merge process takes over the customer with the time the
customer spent in F1. Afterwards F1 restarts.

In the mCRL2 specification of customer (fig. 11), a customer is first created by the event E0,
it is then assigned and released by different processes. Finally, it drops out of the business process
once it reaches the event E6. PClerks are basically assigned and released by different tasks. Because
we assume that there are two distinct clerks we have two data structures here and two separate
instantiations.

5.3 Capacity Estimations

By simulation we are able to obtain the latest and average customer serving endtimes for the business
processes. In table 3 we write it down. Customers arrive every 10 minutes. Some of them are eligible
for a loan and others are not (indicated by a †). The endtimes are obtained by highway state space
exploration of width 10.000 [7]. The average times are determined using random simulation.

Our interpretation of table 3 is the following: A.2 is safer, and not so bad at all on average, although
its potential end serving times look bad, compared to A.1. As an alternative for A.1 we consider B,
where the filtering of customers is done initially. We see that this has a mixed effect on the average

5 CASE STUDY 13

proc E1=
sum c : Customer , t : Time . F3a E1 r (c , t) . i n f o rm a t i o n s t o r e d i n f i l e (c , t) .

E1 F3 s (c , t) . E1 ;

map durat ion F1 : Time ;
eqn durat ion F1 =30;

proc F1=
sum c : Customer , t : Time . S p l i t F 1 r (c , t) .
sum e : PClerk , u , u ’ : Time . a s s i g n p c l e r k r (e , t , u , u ’) .
sum v , v ’ : Time . a s s i gn cu s t ome r r (c , u ’ , v , v ’) .
% Perform task
r e l e a s e c u s t ome r s (c , v’+ durat ion F1) . r e l e a s e p c l e r k s (e , v’+ durat ion F1) .
F1 Merge s (c , v’+ durat ion F1) . F1 ;

Figure 10: mCRL2 Specification for E1 and F1

proc Customer (c : Customer)=
sum t : Time . E0 3 (c , t) . Customer (c , t) ;

Customer (c : Customer , t : Time)
= sum t ’ : Time . a s s i gn cu s t ome r s (c , t ’ , t ,max(t , t ’)) .

sum u : Time . r e l e a s e c u s t ome r r (c , u) . Customer (c , u)
+ sum t : Time . E6 r (c , t) . d e l t a ;

sort PClerk=struct pc1 | pc2 ;

proc PClerk (e : PClerk , t : Time)=
sum t ’ : Time . a s s i g n p c l e r k s (e , t ’ , t ,max(t , t ’)) .
sum u : Time . r e l e a s e p c l e r k r (e , u) . PClerk (e , u) ;

proc PClerks=PClerk (pc1 , 0) | | PClerk (pc2 , 0) ;

Figure 11: mCRL2 Specification for Customer and PClerk

6 STATE SPACE VISUALIZATION 14

Process 1† 2 3† 4 5 6† 7 8† 9 10

CVC 570 670 595 665 670 595 670 590 665 675
BCP A.1 1540 1570 1540 1570 1570 1540 1570 1540 1570 1570
BCP A.2 1000 2420 1000 2340 2300 1000 2360 1000 2340 2340
BCP B 60 1770 1650 1770 1770 1650 1770 1650 1770 1770

Process 1† 2 3† 4 5 6† 7 8† 9 10

CVC 283 459 434 473 503 378 522 461 465 536
BCP A.1 729 1151 893 1105 1182 870 981 819 1165 1356
BCP A.2 475 1018 671 1049 1422 756 986 677 1386 1464
BCP B 60 1275 344 1469 1427 632 1347 359 1548 1462

Table 3: Latest and average customer serving endtimes

f o r a l l e : PClerk , c : Customer .
[true ∗ . F1 getC ID (e , c) . true ∗ . F 3 ch e ck c r ed i t wo r th i n e s s (e , c)] f a l s e

Figure 12: mCRL2 Specification of the segregation of duty (4-eye-principle)

througput times, but hardly any on the latest times customers can be in the system. Note that B is a
variant on A.1. Clearly, this allows us to study alternative process models and enables us to develop
an optimal BCP.

5.4 A Safety Property

According to Kindler [14] a safety property expresses informally that something (bad) will not happen.
In our case, we like to prove that the clerk who identifies the customer will never be the one who judges
his or her creditworthiness. Therefore, we can conclude that the segregation of duty (4-eye-principle)
is respected here. The corresponding modal µ-formula that can be checked by the help of the mCRL2
toolsuite is given in figure 12.

5.5 A Liveness Property

In the same way, a liveness property can be informally defined [14]. It expresses that eventually
something (good) can or must happen. In our case, we like to prove that every client will always be
served eventually. The corresponding modal µ-formula that can be checked by the help of the mCRL2
toolsuite is given in figure 13.

The safety formula only holds in scenario BCP A.2. In case BCP A.1 and B the 4-eye principle is
not respected. The liveness property fortunately holds in all scenarios.

6 State space visualization

In this section we discuss the results of the graphical representation of the state spaces. Hereby a special
graphical visualisation technique is used that was developed at the Technical University of Eindhoven
to represent big state spaces. This visualisation technique seriously outperforms all contemporary

f o r a l l c : Customer , t : Nat . [true ∗ . E0 c (t , c)]mu X . [! e x i s t s u : Nat . E6 c (u , c)]X

Figure 13: mCRL2 Specification: Every customer is served

6 STATE SPACE VISUALIZATION 15

techniques, which are generally restricted to at most a 100 states. This new visualisation technique
allows to answer questions such as

• How many states exist in every part of the business process and business continuity process?

• Are areas in the state space independent in a way that there is no path between them?

• Is it possible to identify hot spots? Hot spots are groups of states that are passed through
frequently in case of non-deterministic state sequences.

The visualization technique that has been introduced in [9] can visualize millions of states and
transitions. It is further possible to inspect these states and transitions according to different criteria.

Currently, input state spaces are generated on the basis of behavioral specifications in mCRL2 from
which state spaces in several formats can be produced. In these state spaces transitions are labeled
with an action and states are labeled with a vector of data values. The basic idea underlying the
visualization technique is to use a simplified representation in the form of a tree as a backbone for
the entire structure. First the state space is layered using the distance of each node to the root. This
distance is called the rank of the node. Then, the tree structure is obtained by clustering sets of
states in each layer, such that for each set a unique path to the root is obtained. Each set of states is
subsequently modeled using a disk shape in a three dimensional space. Finally, all disks are connected
in a manner resembling cone trees, forming the shapes such as the ones in figures 14, 15, 16, 17, 18,
and 19. Note that visual cues such as interactive motion, colors, lighting and transparency all add
strongly to the three dimensional perception of the shapes. The still pictures in this print are by no
means comparable to the onscreen images. After visualizing the state space as a tree shaped 3D-object
we can use coloring to stress particular aspects of the state space. Typically, coloring can be induced
by intrinsic properties such as the value of the transition label or state vector, or derived properties,
such as the probability to visit a state during a random walk.

The visualization of the state space of the “Wertschöpfungskette” that handles only one customer
is presented in figure 14. This graphics as well as all further graphics are created by the LTSview tool
which is part of the mCRL2 suite available for download at the Technical University of Eindhoven.
In figure 14, 161 states are shown. Some of them are highlighted by distinct colors. In addition to the
states, we can find 182 transitions as well as 77 clusters that are ordered by the help of 30 ranks. In
the given case pink (or dark) colored states mark a concrete state transition sequence.

The split into two main branches is caused by the fact that either one of two clerks is assigned to
execute certain activities in the process. The green state indicates where a decision for one of the
branches is taken. The four smaller branches show further alternative state sequences. From the point
of view of the underlying business domain these branches can be explained by the credit worthiness
check of a client by a clerk. This check can cause a client to be rejected and the check itself can be
performed by different clerks. These alternatives lead to different state sequences in the visualization.

The visualization shows that there is no deadlock in the statespace. This is an important result
regarding the BCP. A possible deadlock would have invalidated the solution. Another important result
is that the visualization does not contain loop transitions. Loops would have invalidated the process
likewise because it is assumed that the client considered is passing steadily through the process.

The following code shows the part where the first choice is taken. It is caused by the assign pclerk
statement.

The following sequence of process steps shows how the decision point is reached that divides into
the two big branches as visualized in figure 15.

E0_C(0,0,C(0))

E0_Split1_C(0,0,C(0))

Split1_F1_C(0,0,C(0))

assign_pclerk_C(0,pc1,0,0)

Split1_F2_C(0,0,C(0))

6 STATE SPACE VISUALIZATION 16

Figure 14: One customer in CVC - Without showing deadlocks

assign_pclerk_C(0,pc2,0,0))

assign_customer_C(0,0,C(0),0,0)

F1_getC_id(0,0,pC1,C(0))

release_Customer_C(3000,30,C(0))

release_pclerk_C(30,pc1)

F1_merge1_C(3000,30,C(0))

assign_customer_C(3000,30,C(0))

release_customer_C(4000,40,C(0))

release_pclerk_C(40,pc2)

F2_merge1_C(4000,40,C(0))

Merge1_E1a_C(4000,40,C(0))

data_grasp(4000,40,C(0))

E1a_F3a_C(4000,40,C(0))

assign_pclerk_C(40,pc1,40,30)

assign_pclerk_C(40,pc2,40,30)

In figure 15 deadlocks are identified by red (or dark) dots. These red dots can be found at the ends
of the branches. Therefore, they indicate that the process terminates there as expected. Further
deadlocks do not occur.

In figure 16 the same process is visualized, processing two clients now. As a consequence the number
of states grows to 834 and the number of clusters to 717. 77 ranks are differentiated. This is because

6 STATE SPACE VISUALIZATION 17

Figure 15: One customer in CVC - with read colored deadlock situation

there are now a number of alternatives realized that show how to handle two clients simultaneously
in the process. The state sequences can be analyzed by the help of the tool LTSview in the same
manner as already presented in figure 14. Therefore, we do not make it explicit here again. The only
difference is a higher level of complexity in the state space.

The last three figures 17, 18 as well as 19 represent different variants of the Business Continuity
Process. We like to mention that variant B is a modification of variant A.1. Variant A.2 did not
succeed to fulfill the required capacity requirement. As a consequence the BCP was modified by
relaxing the 4-eye-principle as a side constraint. So, it is possible that security requirements and
business requirements are conflicting.

We can see that in figure 17 and 18 the visualizations are of a similar shape.

6 STATE SPACE VISUALIZATION 18

Figure 16: Two customers in CVC

6 STATE SPACE VISUALIZATION 19

Figure 17: One customer in a Business Continuity Process (BCP) with Variant A.1

6 STATE SPACE VISUALIZATION 20

Figure 18: One customer in a Business Continuity Process (BCP) with Variant A.2

7 RELATED WORK 21

In figure 19 the variant B of the Business Continuity Process is presented. The structure is remark-
able because it is ideal. There are no branches and no swellings. Therefore we do have an ideal BCP
here that reduced the underlying business process at most. However, the disadvantage is that the
4-eye-principle is not longer implemented. It requires too much time and is therefore incompatible
with the specific MTPD requirement.

Furthermore, there are no deadlock states visible in both figures except at the end of the branches.
This indicates a sound termination of the processes. The processes do not get stuck in an unforeseen
manner.

Figure 19: One customer in a Business Continuity Process (BCP) with Variant B

In this section we were able to present the possibilities of the tool LTSview that can visualize the
state space of a business process. The shapes of the visualizations were able to point to decision points
in the process, parallel activities and deadlock states. It is therefore very helpful to identify possible
errors in the process specification and it is able to illustrate if a process is lean as it is the case in
figure 19.

7 Related Work

There is a strong tendency to use formal techniques for process modelling. Below we mention studies
that underline the need and mention the availability of several techniques.

Primarily, the work of Nemzow [17] discusses various strategies for protecting an organization from
both natural and man-made disasters. IBM proposes [12] to use an integrated business continuity and
resilience plan because traditional approaches to disaster planning have failed to keep organizations
operational. Quirchmayr [22] presents an overview of business continuity management and addresses
the question of how a system should be built in order to cope with a successful intrusion. Landry
and Koger [16] show ten common disaster recovery myths. They claim that many organizations
are unprepared or do make unrealistic assumptions. Tjoa, Jakoubi and Quirchmayr [26] discuss an

8 CONCLUSIONS AND FUTURE WORK 22

approach of a business process modeling and simulation methodology that is risk-aware. To do so,
they propose to advance the business impact analysis and the risk assement used today. A. and M.
Zalewski, Sztandera and Ludzia [29] mention that the importance of business continuity and disaster
recovery plans has grown considerably in the recent years. They explain that these plans are typically
text documents and that exercising is still the main measure used to verify them.

A way to model these is by petri-nets, as suggested by van der Aalst [1]. Petrinets are not only
suitable for modelling, but they can also be used for various verification purposes. Closer to our
approach is the work of Puhlmann [18,21] who suggests to use the pi-calculus to explain the semantics
of business processes. This is a little strange because classical data enlarged process algebras such as
mCRL2 are much more mature for modelling and analysis, and the typical features of the pi-calculus
do not seem to offer any additional value for business processes.

There are several other modelling formalisms. Thurner developed an own approach of how to
formalize and verify event-driven process chains [25]. Koubarakis and Plexousakis [15] developed a
formal framework for business process modeling and design. Their language permits to verify certain
correctness properties. Boehmer developed a solution [3] to evaluate the performance of a business
continuity management system according to the BS 25999.

Up till now, tool overviews for business processes do not mention the process algebraic tool suites
because they are generally not used for business process simulation. See for instance the overview of
Jansen-Vullers and Netjes [13].

8 Conclusions and Future Work

There are a couple of conclusions based on the result of this study: First, it is possible to define
the semantics of an event driven process chain as it is used today for the purpose of business process
modeling. Second, it is possible to use this semantics to check functional and non-functional properties
of a business workflow in a fully automated fashion. Third, it is possible to simulate all possible state
transitions to investigate the dynamic nature of a business process.

It is therefore possible to evaluate a CVC and a BCP as part of BCMS in an ex-ante way. By
doing this, we can make a sound statement about the effectiveness and efficiency of a BCMS. We
can further make sound statements about questions regarding the compliance of business processes
with organizational policies. We claim that this will lead to a significant reduction of the BCMS
development costs as well as a reduction of risks caused by non-functional BCPs and a reduction of
insurance costs caused by a better understanding of the business continuity costs.

Future work will encompass the evaluation of further business cases and the ongoing development
of the formal model.

9 Appendix

9.1 Process Specification

In the following the model for the critical business process and the three BCPs (Business Continuity
Processes) is presented.

9.1.1 CVC

Here, the model of the “wertschoepfungskette” is presented. The time parameter was set at the
beginning of each action. The new state space explorer selects the actions with the lowest value for
the first parameter. By multiplying the time by 100 and adding the identity of the customer, it is
assured that when all others things are equal, the first customer that arrived will be served first. This
also applies to the notfallprocesskette.

9 APPENDIX 23

% This mCRL f i l e d e s c r i b e s the ”Wertschopfungskette ”.

sort Time=Nat ;

% Spl i t1−Merge1 %%

proc Sp l i t 1 (c : Customer)=
sum t : Time . E0 Sp l i t 1 r (100∗ t+id (c) , t , c) .

sum n : Nat . S p l i t 1 F 1 s (n , t , c) .sum n : Nat . S p l i t 1 F 2 s (n , t , c) . Sp l i t 1 (c) ;

proc Merge1 (c : Customer)=
sum t : Time . F1 Merge1 r (100∗ t+id (c) , t , c) .sum u : Time . F2 Merge1 r (100∗u+id (c) , u , c) .

sum n : Nat . Merge1 E1a s (n ,max(t , u) , c) . Merge1 (c) ;

% The ”Customer a r r i v e s ” event E0 %%

proc E0(c : Customer)=
sum t : Time , n : Nat . E0 1 (n , t , c) .
sum n : Nat . E 0 Sp l i t 1 s (n , t , c) .
E0(c) ;

% The ” I d en t i f y customer ” proce s s F1 %%%

map durat ion F1 : Time ;
eqn durat ion F1 =30;

proc F1(c : Customer)=
sum t : Time . S p l i t 1 F 1 r (100∗ t+id (c) , t , c) .
sum e : PClerk , u , u ’ : Time . a s s i g n p c l e r k r (u ’ , e , t , u) .
sum v , v ’ : Time . a s s i gn cu s t ome r r (100∗v’+ id (c) , v ’ , c , u ’ , v) .
F1 getC ID (100∗v’+ id (c) , v ’ , e , c) .
sum n : Nat . r e l e a s e c u s t ome r s (n , v’+duration F1 , c) .
r e l e a s e p c l e r k s (v’+duration F1 , e) .
sum n : Nat . F1 Merge1 s (n , v’+duration F1 , c) .
F1(c) ;

% The ”get Customer master data ” proce s s F2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

map durat ion F2 : Time ;
eqn durat ion F2 =10;

proc F2(c : Customer)=
sum t : Time . S p l i t 1 F 2 r (100∗ t+id (c) , t , c) .
sum e : PClerk , u , u ’ : Time . a s s i g n p c l e r k r (u ’ , e , t , u) .
sum v , v ’ : Time . a s s i gn cu s t ome r r (100∗v’+ id (c) , v ’ , c , u ’ , v) .

% Perform task , but t h i s i s not r e a l l y important , to measure througput .
sum n : Nat . r e l e a s e c u s t ome r s (n , v’+duration F2 , c) .
r e l e a s e p c l e r k s (v’+duration F2 , e) .
sum n : Nat . F2 Merge1 s (n , v’+duration F2 , c) .
F2(c) ;

% The ”data grasped ” event E1a %%%

proc E1a(c : Customer)=
sum t : Time . Merge1 E1a r (100∗ t+id (c) , t , c) .
data grasped (100∗ t+id (c) , t , c) .
sum n : Nat . E1a F3a s (n , t , c) .
E1a (c) ;

% The ”Store in format ion in a f i l e ” proce s s F3a %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

map durat ion F3a : Time ;
eqn durat ion F3a =5;

proc F3a (c : Customer)=
sum t : Time . E1a F3a r (100∗ t+id (c) , t , c) .
sum e : PClerk , u , u ’ : Time . a s s i g n p c l e r k r (u ’ , e , t , u) .

% Perform task , but t h i s i s not r e a l l y important , to measure througput .
r e l e a s e p c l e r k s (u’+duration F3a , e) .
sum n : Nat . F3a E1 s (n , u’+duration F3a , c) .
F3a (c) ;

% The ” in format ion s tored in f i l e ” event E1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

proc E1(c : Customer)=
sum t : Time . F3a E1 r (100∗ t+id (c) , t , c) .
i n f o rm a t i o n s t o r e d i n f i l e (100∗ t+id (c) , t , c) .
sum n : Nat . E1 F3 s (n , t , c) .
E1(c) ;

% The ”Check c r e d i t worth iness ” proce s s F3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

map durat ion F3 : Time ;
eqn durat ion F3 =60;

proc F3(c : Customer)=
sum t : Time . E1 F3 r (100∗ t+id (c) , t , c) .
sum e : PClerk , u , u ’ : Time . a s s i g n p c l e r k r (u ’ , e , t , u) .
F3 ch e ck c r ed i t wo r th i n e s s (100∗u’+ id (c) , u ’ , e , c) .
r e l e a s e p c l e r k s (u’+duration F3 , e) .
((Customer values . id (c)>70)−>sum n : Nat . F3 E2a s (n , u’+duration F3 , c)

% Condition to accept i s value >70
<>sum n : Nat . F3 E2b s (n , u’+duration F3 , c)) .

F3(c) ;

% The ”Customer r e j e c t e d ” event E2a %%%

9 APPENDIX 24

proc E2a(c : Customer)=
sum t : Time . F3 E2a r (100∗ t+id (c) , t , c) .
customer accepted (100∗ t+id (c) , t , c) .
sum n : Nat . E2a F4 s (n , t , c) .
E2a (c) ;

% The ”Customer r e j e c t e d ” event E2b %%%

proc E2b(c : Customer)=
sum t : Time . F3 E2b r (100∗ t+id (c) , t , c) .
cu s t omer r e j e c t ed (100∗ t+id (c) , t , c) .
sum n : Nat . E6 s (n , t , c) .
E2b(c) ;

% The ”Evaluate ra t ing ” proce s s F4 %%

map durat ion F4 : Time ;
eqn durat ion F4 =15;

proc F4(c : Customer)=
sum t : Time . E2a F4 r (100∗ t+id (c) , t , c) .
sum e : PPClerk , u , u ’ : Time . a s s i g n p p c l e r k r (u ’ , e , t , u) .

% Perform task , but t h i s i s not r e a l l y important , to measure througput .
r e l e a s e p p c l e r k s (u’+duration F4 , e) .
sum n : Nat . F4 E3 s (n , u’+duration F4 , c) .
F4(c) ;

% The ”Bundled product chosen ” event E3 %%

proc E3(c : Customer)=
sum t : Time . F4 E3 r (100∗ t+id (c) , t , c) .
bundled product chosen (100∗ t+id (c) , t , c) .
sum n : Nat . E3 F5 s (n , t , c) .
E3(c) ;

% The ”Create optimized cont rac t ” proce s s F5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

map durat ion F5 : Time ;
eqn durat ion F5 =20;

proc F5(c : Customer)=
sum t : Time . E3 F5 r (100∗ t+id (c) , t , c) .
sum e : Supervisor , u , u ’ : Time . a s s i g n s u p e r v i s o r r (u ’ , e , t , u) .

% Perform task , but t h i s i s not r e a l l y important , to measure througput .
r e l e a s e s u p e r v i s o r s (u’+duration F5 , e) .
sum n : Nat . F5 E4 s (n , u’+duration F5 , c) .
F5(c) ;

% The ”Contract c reated ” event E4 %%

proc E4(c : Customer)=
sum t : Time . F5 E4 r (100∗ t+id (c) , t , c) .
c on t r a c t c r e a t ed (100∗ t+id (c) , t , c) .
sum n : Nat . E4 F6 s (n , t , c) .
E4(c) ;

% The ”Print cont rac t ” proce s s F6 %%

map durat ion F6 : Time ;
eqn durat ion F6 =5;

proc F6(c : Customer)=
sum t : Time . E4 F6 r (100∗ t+id (c) , t , c) .

% Perform task , but t h i s i s not r e a l l y important , to measure througput .
sum n : Nat . F6 E5 s (n , t+duration F6 , c) .
F6(c) ;

% The ”Contract pr inted ” event E5 %%

proc E5(c : Customer)=
sum t : Time . F6 E5 r (100∗ t+id (c) , t , c) .
c on t r a c t p r i n t ed (100∗ t+id (c) , t , c) .
sum n : Nat . E5 F7 s (n , t , c) .
E5(c) ;

% The ”Bank and customer s ign form ” proce s s F7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

map durat ion F7 : Time ;
eqn durat ion F7 =30;

proc F7(c : Customer)=
sum t : Time . E5 F7 r (100∗ t+id (c) , t , c) .
sum e : Manager , u , u ’ : Time . a s s i gn manage r r (u ’ , e , t , u) .

% Perform task , but t h i s i s not r e a l l y important , to measure througput .
r e l e a s e manage r s (u’+duration F7 , e) .
sum n : Nat . F7 E6 s (n , u’+duration F7 , c) .
F7(c) ;

% The ”Contract s igned ” event E6 %%%

proc E6(c : Customer)=
sum t : Time . F7 E6 r (100∗ t+id (c) , t , c) .
c on t r a c t s i gn ed (100∗ t+id (c) , t , c) .
sum n : Nat . E6 s (n , t , c) .
E6(c) ;

% End tasks and events %%%

9 APPENDIX 25

% Customer %%%

proc Customer (c : Customer)=
sum t : Time , n : Nat . E0 3 (n , t , c) . Customer (c , t) ;

Customer (c : Customer , t : Time)
= sum t ’ : Time , n : Nat . a s s i gn cu s t ome r s (n ,max(t , t ’) , c , t ’ , t) .

sum u : Time . (u>=max(t , t ’)) −> r e l e a s e c u s t ome r r (100∗u+id (c) , u , c) .
Customer (c , u)

+ sum t : Time . E6 r (100∗ t+id (c) , t , c) . d e l t a ;

sort Customer=struct c (id : Nat) ;
map Customer values : L i s t (Nat) ;
eqn Customer values =[30 ,80 ,40 ,90 ,95 ,12 ,98 ,45 ,90 ,96 ,71 ,34] ;

proc Customers= Customer (c (0)) | | Customer (c (1)) % | | Customer (c (2)) | | Customer (c (3))
% | | Customer (c (4)) | | Customer (c (5)) | | Customer (c (6)) | | Customer (c (7))
% | | Customer (c (8)) | | Customer (c (9)) % | | Customer (c (10)) | | Customer (c (11))
;

% Enter ing times o f customers %%%

map Max Delay : Time ;
eqn Max Delay=1;

proc Ente r i ng t ime s o f cu s t ome r s (id : Nat)=
E0 2 (100∗10∗ id+id ,10∗ id , c (id)) .
En t e r i ng t ime s o f cu s t ome r s (id +1);

% Persone l %%

% Rea l i s t i c c on s t e l l a t i o n , accord ing to Christoph and Wolfgang .
% 2 Proces s ing Clerk
% 2 post−proce s s ing Clerk
% 1 Superv i sor
% 2 Manager

% Proces s ing c l e r k %%%

sort PClerk=struct pc1 | pc2 ;

proc PClerk (e : PClerk , t : Time)=
sum t ’ : Time . a s s i g n p c l e r k s (max(t , t ’) , e , t ’ , t) .
sum u : Time . (u>=max(t , t ’)) −> r e l e a s e p c l e r k r (u , e) .
PClerk (e , u) ;

proc PClerks=PClerk (pc1 , 0) | | PClerk (pc2 , 0) ;

% Post p roce s s ing c l e r k %%

sort PPClerk=struct ppc1 | ppc2 ;

proc PPClerk (e : PPClerk , t : Time)=
sum t ’ : Time . a s s i g n p p c l e r k s (max(t , t ’) , e , t ’ , t) .
sum u : Time . (u>=max(t , t ’)) −> r e l e a s e p p c l e r k r (u , e) .
PPClerk (e , u) ;

proc PPClerks=PPClerk (ppc1 , 0) | | PPClerk (ppc2 , 0) ;

% Superv i sor %%%

sort Superv i sor=struct sup1 ;

proc Superv i sor (e : Supervisor , t : Time)=
sum t ’ : Time . a s s i g n s u p e r v i s o r s (max(t , t ’) , e , t ’ , t) .
sum u : Time . (u>=max(t , t ’)) −> r e l e a s e s u p e r v i s o r r (u , e) .
Superv i sor (e , u) ;

proc Superv i so r s=Superv i sor (sup1 , 0) ;

% Manager %%

sort Manager=struct man1 | man2 ;

proc Manager (e : Manager , t : Time)=
sum t ’ : Time . a s s i gn manage r s (max(t , t ’) , e , t ’ , t) .
sum u : Time . (u>=max(t , t ’)) −> r e l e a s e manage r r (u , e) .
Manager (e , u) ;

proc Managers=Manager (man1 , 0) | | Manager (man2 , 0) ;

% Persone l %%%

proc Persone l=PClerks | | PPClerks | | Superv i so r s | | Managers ;

% Tasks %%

proc Tasks (c : Customer)=E0(c) | | Sp l i t 1 (c) | | F1(c) | | F2(c) | | Merge1 (c) | | E1a(c) | | F3a (c) | | E1(c) | | F3(c) | |
E2a(c) | | E2b(c) | | F4(c) | | E3(c) | | F5(c) | | E4(c) | | F6(c) | | E5(c) | | F7(c) | | E6(c) ;

% Actions %%

act a s s i g n p c l e r k r , a s s i g n p c l e r k s , a s s i g n p c l e r k c : Time#PClerk#Time#Time ;
a s s i g n pp c l e r k r , a s s i g n pp c l e r k s , a s s i g n pp c l e r k c : Time#PPClerk#Time#Time ;
a s s i g n s up e r v i s o r r , a s s i g n s up e r v i s o r s , a s s i g n s u p e r v i s o r c : Time#Superv i sor#Time#Time ;
as s ign manager r , a s s ign manager s , a s s i gn manager c : Time#Manager#Time#Time ;
a s s i gn cu s tomer r , a s s i gn cus tomer s , a s s i gn cu s t ome r c : Nat#Time#Customer#Time#Time ;

9 APPENDIX 26

r e l e a s e p c l e r k r , r e l e a s e p c l e r k s , r e l e a s e p c l e r k c : Time#PClerk ;
r e l e a s e p p c l e r k r , r e l e a s e p p c l e r k s , r e l e a s e p p c l e r k c : Time#PPClerk ;
r e l e a s e s u p e r v i s o r r , r e l e a s e s u p e r v i s o r s , r e l e a s e s u p e r v i s o r c : Time#Superv i sor ;
r e l ea s e manage r r , r e l ea s e manage r s , r e l e a s e manage r c : Time#Manager ;
r e l e a s e cu s t ome r r , r e l e a s e cu s t ome r s , r e l e a s e c u s t ome r c : Nat#Time#Customer ;
E0 1 , E0 2 , E0 3 , E0 c : Nat#Time#Customer ;
E0 Sp l i t 1 r , E0 Sp l i t 1 s , E0 Sp l i t 1 c : Nat#Time#Customer ;
Sp l i t 1 F1 r , Sp l i t 1 F1 s , S p l i t 1 F1 c : Nat#Time#Customer ;
Sp l i t 1 F2 r , Sp l i t 1 F2 s , S p l i t 1 F2 c : Nat#Time#Customer ;
F1 Merge1 r , F1 Merge1 s , F1 Merge1 c : Nat#Time#Customer ;
F2 Merge1 r , F2 Merge1 s , F2 Merge1 c : Nat#Time#Customer ;
Merge1 E1a r , Merge1 E1a s , Merge1 E1a c : Nat#Time#Customer ;
E1a F3a r , E1a F3a s , E1a F3a c : Nat#Time#Customer ;
F3a E1 r , F3a E1 s , F3a E1 c : Nat#Time#Customer ;
E1 F3 r , E1 F3 s , E1 F3 c : Nat#Time#Customer ;
F3 E2a r , F3 E2a s , F3 E2a c : Nat#Time#Customer ;
E2a F4 r , E2a F4 s , E2a F4 c : Nat#Time#Customer ;
F3 E2b r , F3 E2b s , F3 E2b c : Nat#Time#Customer ;
F4 E3 r , F4 E3 s , F4 E3 c : Nat#Time#Customer ;
E3 F5 r , E3 F5 s , E3 F5 c : Nat#Time#Customer ;
F5 E4 r , F5 E4 s , F5 E4 c : Nat#Time#Customer ;
E4 F6 r , E4 F6 s , E4 F6 c : Nat#Time#Customer ;
F6 E5 r , F6 E5 s , F6 E5 c : Nat#Time#Customer ;
E5 F7 r , E5 F7 s , E5 F7 c : Nat#Time#Customer ;
F7 E6 r , F7 E6 s , F7 E6 c : Nat#Time#Customer ;
E6 s , E6 r , E6 c : Nat#Time#Customer ;

data grasped : Nat#Time#Customer ;
i n f o rm a t i o n s t o r e d i n f i l e : Nat#Time#Customer ;
r a t ing checked : Nat#Time#Customer ;
bundled product chosen : Nat#Time#Customer ;
c on t r a c t c r e a t ed : Nat#Time#Customer ;
c on t r a c t p r i n t ed : Nat#Time#Customer ;
c on t r a c t s i gn ed : Nat#Time#Customer ;
customer accepted : Nat#Time#Customer ;
cu s tomer r e j e c t ed : Nat#Time#Customer ;

F1 getC ID , F3 ch e ck c r ed i t wo r th i n e s s : Nat#Time#PClerk#Customer ;
% System %%

i n i t al low ({ a s s i g n p c l e r k c ,
a s s i g n pp c l e r k c ,
a s s i g n s up e r v i s o r c ,
ass ign manager c ,
a s s i gn cus tomer c ,
r e l e a s e p c l e r k c ,
r e l e a s e p p c l e r k c ,
r e l e a s e s u p e r v i s o r c ,
r e l ea s e manage r c ,
r e l e a s e cu s t ome r c ,
E0 c ,
E0 Sp l i t 1 c ,
Sp l i t 1 F1 c ,
Sp l i t 1 F2 c ,
F1 Merge1 c ,
F2 Merge1 c ,
Merge1 E1a c ,
E1a F3a c ,
F3a E1 c ,
E1 F3 c ,
F3 E2a c ,
E2a F4 c ,
F3 E2b c ,
F4 E3 c ,
E3 F5 c ,
F5 E4 c ,
E4 F6 c ,
F6 E5 c ,
E5 F7 c ,
F7 E6 c ,
E6 c ,

data grasped ,
i n f o rm a t i o n s t o r e d i n f i l e ,
ra t ing checked ,
bundled product chosen ,
con t rac t c r ea t ed ,
con t rac t s i gned ,
customer accepted ,
cus tomer re j e c t ed ,
con t rac t p r in t ed ,

F1 getC ID ,
F3 ch e ck c r ed i t wo r th i n e s s

} ,
comm({

a s s i g n p c l e r k r | a s s i g n p c l e r k s −>a s s i g n p c l e r k c ,
a s s i g n p p c l e r k r | a s s i g n pp c l e r k s −>a s s i g n pp c l e r k c ,
a s s i g n s u p e r v i s o r r | a s s i g n s up e r v i s o r s −>a s s i g n s up e r v i s o r c ,
a s s i gn manage r r | ass ign manager s−>ass ign manager c ,
a s s i gn cu s t ome r r | a s s i gn cus tomer s−>as s i gn cus tomer c ,
r e l e a s e p c l e r k r | r e l e a s e p c l e r k s −>r e l e a s e p c l e r k c ,
r e l e a s e p p c l e r k r | r e l e a s e p p c l e r k s −>r e l e a s e p p c l e r k c ,
r e l e a s e s u p e r v i s o r r | r e l e a s e s u p e r v i s o r s −>r e l e a s e s u p e r v i s o r c ,
r e l e a s e manage r r | r e l ea s e manage r s−>r e l ea s e manage r c ,
r e l e a s e c u s t ome r r | r e l e a s e cu s t ome r s −>r e l e a s e cu s t ome r c ,
E0 1 | E0 2 | E0 3−>E0 c ,
E0 Sp l i t 1 r | E0 Sp l i t 1 s −>E0 Sp l i t 1 c ,

9 APPENDIX 27

Sp l i t 1 F 1 r | Sp l i t 1 F1 s −>Sp l i t 1 F1 c ,
S p l i t 1 F 2 r | Sp l i t 1 F2 s −>Sp l i t 1 F2 c ,
F1 Merge1 r | F1 Merge1 s−>F1 Merge1 c ,
F2 Merge1 r | F2 Merge1 s−>F2 Merge1 c ,
Merge1 E1a r | Merge1 E1a s−>Merge1 E1a c ,
E1a F3a r | E1a F3a s−>E1a F3a c ,
F3a E1 r | F3a E1 s−>F3a E1 c ,
E1 F3 r | E1 F3 s−>E1 F3 c ,
F3 E2a r | F3 E2a s−>F3 E2a c ,
E2a F4 r | E2a F4 s−>E2a F4 c ,
F3 E2b r | F3 E2b s−>F3 E2b c ,
F4 E3 r | F4 E3 s−>F4 E3 c ,
E3 F5 r | E3 F5 s−>E3 F5 c ,
F5 E4 r | F5 E4 s−>F5 E4 c ,
E4 F6 r | E4 F6 s−>E4 F6 c ,
F6 E5 r | F6 E5 s−>F6 E5 c ,
E5 F7 r | E5 F7 s−>E5 F7 c ,
F7 E6 r | F7 E6 s−>F7 E6 c ,
E6 r | E6 s−>E6 c

} ,
En t e r i ng t ime s o f cu s t ome r s (0) | | Customers | | Persone l | |
Tasks (c (0))

| | Tasks (c (1))
| | Tasks (c (2))
| | Tasks (c (3))
| | Tasks (c (4))
| | Tasks (c (5))
| | Tasks (c (6))
| | Tasks (c (7))
| | Tasks (c (8))
| | Tasks (c (9))

)) ;

9.1.2 BCP A.1, A.2 and B

The following code defines the behavior of A.1 and A.2 as well as B. To switch to the according
behavior the flag on top of the model can be set to ”true” or ”false” to make the choice between A and
B. Further on, once, A is choosen, proc F5a can be re-defined to switch between A.1 and A.2.

The following code snippet will make that clear for the choice of A.

map variantA:Bool;
eqn variantA=true;

The following code snippet will make that clear for the choice of B.

map variantA:Bool;
eqn variantA=false;

The following change in the code will determine if A.1 or A.2 is executed.

proc F5a(c : Customer)=F5a - alt1(c);
or
proc F5a(c : Customer)=F5a - alt2(c);

Below you will find the full model including all specifications for A.1, A.2 and B.

map variantA : Bool ;
eqn variantA=f a l s e ; % Allows to choose between var iant A or B. B has

% an add i t i ona l pre−s e l e c t i o n o f customers .

% This mCRL f i l e d e s c r i b e s the ”No t f a l l p r o z e s s k e t t e ”

sort Time=Nat ;

9 APPENDIX 28

% Check bus ine s s value F0 %%

map durat ion F0 : Time ;
eqn durat ion F0 =60;

proc F0(c : Customer)=
sum t : Time . E0 F0 r (100∗ t+id (c) , t , c) .
sum e : PClerk , u , u ’ : Time . a s s i g n p c l e r k r (u ’ , e , t , u) .
F0 ch e ck c r ed i t wo r th i n e s s (100∗u’+ id (c) , u ’ , e , c) .
r e l e a s e p c l e r k s (u’+duration F0 , e) .
((Customer values . id (c)>70)

−>sum n : Nat . F0 E0a s (n , u’+duration F0 , c) % Condition to accept i s value >70
<>sum n : Nat . F0 E0b s (n , u’+duration F0 , c)) .

F0(c) ;

% The ”Accept customer ” event E2a %%%

proc E0a(c : Customer)=
sum t : Time . F0 E0a r (100∗ t+id (c) , t , c) .
accept customer (100∗ t+id (c) , t , c) .
sum n : Nat . E 0 Sp l i t s (n , t , c) .
E0a (c) ;

% The ”Reject customer ” event E2b %%%

proc E0b(c : Customer)=
sum t : Time . F0 E0b r (100∗ t+id (c) , t , c) .
r e j e c t cu s t ome r (100∗ t+id (c) , t , c) .
sum n : Nat . E6 s (n , t , c) .
E0b(c) ;

% Sp l i t−Merge %%

proc Sp l i t (c : Customer)=
sum t : Time . E 0 Sp l i t r (100∗ t+id (c) , t , c) .

sum n : Nat . S p l i t F 1 s (n , t , c) .sum n : Nat . S p l i t F 2 s (n , t , c) . S p l i t (c) ;

proc Merge (c : Customer)=
sum c : Customer , t : Time . F1 Merge r (100∗ t+id (c) , t , c) .sum u : Time . F2 Merge r (100∗u+id (c) , u , c) .

sum n : Nat . Merge E1a s (n ,max(t , u) , c) . Merge (c) ;

% The ”Customer a r r i v e s ” event E0 %%

proc E0(c : Customer)=
sum t : Time , n : Nat . E0 1 (n , t , c) .
(variantA −>sum n : Nat . E 0 Sp l i t s (n , t , c)<>sum n : Nat . E0 F0 s (n , t , c)) .
E0(c) ;

% The ” I d en t i f y customer ” proce s s F1 %%%

map durat ion F1 : Time ;
eqn durat ion F1 =30;

proc F1(c : Customer)=
sum t : Time . S p l i t F 1 r (100∗ t+id (c) , t , c) .
sum e : PClerk , u , u ’ : Time . a s s i g n p c l e r k r (u ’ , e , t , u) .
sum v , v ’ : Time . a s s i gn cu s t ome r r (100∗v’+ id (c) , v ’ , c , u ’ , v) .
F1 getC ID (100∗v’+ id (c) , v ’ , e , c) .
sum n : Nat . r e l e a s e c u s t ome r s (n , v’+duration F1 , c) .
r e l e a s e p c l e r k s (v’+duration F1 , e) .
sum n : Nat . F1 Merge s (n , v’+duration F1 , c) .
F1(c) ;

% The ”get Customer master data ” proce s s F2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

map durat ion F2 : Time ;
eqn durat ion F2 =10;

proc F2(c : Customer)=
sum t : Time . S p l i t F 2 r (100∗ t+id (c) , t , c) .
sum e : PClerk , u , u ’ : Time . a s s i g n p c l e r k r (u ’ , e , t , u) .
sum v , v ’ : Time . a s s i gn cu s t ome r r (100∗v’+ id (c) , v ’ , c , u ’ , v) .

% Perform task , but t h i s i s not r e a l l y important , to measure througput .
sum n : Nat . r e l e a s e c u s t ome r s (n , v’+duration F2 , c) .
r e l e a s e p c l e r k s (v’+duration F2 , e) .
sum n : Nat . F2 Merge s (n , v’+duration F2 , c) .
F2(c) ;

% The ”data grasped ” event E1a %%%

proc E1a(c : Customer)=
sum t : Time . Merge E1a r (100∗ t+id (c) , t , c) .
data grasped (100∗ t+id (c) , t , c) .
sum n : Nat . E1a F4a s (n , t , c) .
E1a (c) ;

% The ”Accept customer ” proce s s F4a %%

map durat ion F4a : Time ;
eqn durat ion F4a =60;

proc F4a (c : Customer)=
sum t : Time . E1a F4a r (100∗ t+id (c) , t , c) .
sum e : PClerk , u , u ’ : Time . a s s i g n p c l e r k r (u ’ , e , t , u) .
F4a ch e ck c r ed i t wo r th i n e s s (100∗u’+ id (c) , u ’ , e , c) .
r e l e a s e p c l e r k s (u’+duration F4a , e) .
((Customer values . id (c)>70)

9 APPENDIX 29

−>sum n : Nat . F4a E2a s (n , u’+duration F4a , c) % Condition to accept i s value >70
<>sum n : Nat . F4a E2b s (n , u’+duration F4a , c)) .

F4a (c) ;

% The ”Accept customer ” event E2a %%%

proc E2a(c : Customer)=
sum t : Time . F4a E2a r (100∗ t+id (c) , t , c) .
accept customer (100∗ t+id (c) , t , c) .
sum n : Nat . E2a F5a s (n , t , c) .
E2a (c) ;

% The ”Reject customer ” event E2b %%%

proc E2b(c : Customer)=
sum t : Time . F4a E2b r (100∗ t+id (c) , t , c) .
r e j e c t cu s t ome r (100∗ t+id (c) , t , c) .
sum n : Nat . E6 s (n , t , c) .
E2b(c) ;

% The ”Create standard ized cont rac t ” proce s s F5a %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

map durat ion F5a : Time ;
eqn durat ion F5a =90;

proc F5a (c : Customer)=F5a a l t1 (c) ;

proc F5a a l t1 (c : Customer)=
sum t : Time . E2a F5a r (100∗ t+id (c) , t , c) .
sum e : PClerk , u , u ’ : Time . a s s i g n p c l e r k r (u ’ , e , t , u) .

% Perform task , but t h i s i s not r e a l l y important , to measure througput .
r e l e a s e p c l e r k s (u’+duration F5a , e) .
sum n : Nat . F5a E4a s (n , u’+duration F5a , c) .
F5a a l t1 (c) ;

proc F5a a l t2 (c : Customer)=
sum t : Time . E2a F5a r (100∗ t+id (c) , t , c) .
sum e : Manager , u , u ’ : Time . a s s i gn manage r r (u ’ , e , t , u) .

% Perform task , but t h i s i s not r e a l l y important , to measure througput .
r e l e a s e manage r s (u’+duration F5a , e) .
sum n : Nat . F5a E4a s (n , u’+duration F5a , c) .
F5a a l t2 (c) ;

% The ”Form f i l l e d ” event E4a %%

proc E4a(c : Customer)=
sum t : Time . F5a E4a r (100∗ t+id (c) , t , c) .
f o rm f i l l e d (100∗ t+id (c) , t , c) .
sum n : Nat . E4a F7 s (n , t , c) .
E4a (c) ;

% The ”Print cont rac t ” proce s s F6 %%

map durat ion F7 : Time ;
eqn durat ion F7 =30;

proc F7(c : Customer)=
sum t : Time . E4a F7 r (100∗ t+id (c) , t , c) .
sum e : Manager , u , u ’ : Time . a s s i gn manage r r (u ’ , e , t , u) .

% Perform task , but t h i s i s not r e a l l y important , to measure througput .
r e l e a s e manage r s (u’+duration F7 , e) .
sum n : Nat . F7 E6 s (n , t+duration F7 , c) .
F7(c) ;

% The ”Contract s igned ” event E6 %%%

proc E6(c : Customer)=
sum t : Time . F7 E6 r (100∗ t+id (c) , t , c) .
c on t r a c t s i gn ed (100∗ t+id (c) , t , c) .
sum n : Nat . E6 s (n , t , c) .
E6(c) ;

% End tasks and events %%%

% Customer %%%

proc Customer (c : Customer)=
sum t : Time , n : Nat . E0 3 (n , t , c) . Customer (c , t) ;

Customer (c : Customer , t : Time)
= sum t ’ : Time , n : Nat . a s s i gn cu s t ome r s (n ,max(t , t ’) , c , t ’ , t) .

sum u : Time . (u>=max(t , t ’)) −> r e l e a s e c u s t ome r r (100∗u+id (c) , u , c) .
Customer (c , u)

+ sum t : Time . E6 r (100∗ t+id (c) , t , c) . d e l t a ;

sort Customer=struct c (id : Nat) ;
map Customer values : L i s t (Nat) ;
eqn Customer values =[30 ,80 ,40 ,90 ,95 ,12 ,98 ,45 ,90 ,96 ,71 ,34] ;

proc Customers= Customer (c (0)) | | Customer (c (1)) | | Customer (c (2)) | | Customer (c (3))
| | Customer (c (4)) | | Customer (c (5)) | | Customer (c (6)) | | Customer (c (7))
| | Customer (c (8)) | | Customer (c (9))
;

% Enter ing times o f customers %%%

9 APPENDIX 30

map Max Delay : Time ;
eqn Max Delay=1;

proc Ente r i ng t ime s o f cu s t ome r s (id : Nat)=
E0 2 (1000∗ id+id ,10∗ id , c (id)) .
En t e r i ng t ime s o f cu s t ome r s (id +1);

% Persone l %%

% Rea l i s t i c c on s t e l l a t i o n , accord ing to Christoph and Wolfgang .
% 1 Proces s ing Clerk
% 0 post−proce s s ing Clerk
% 0 Superv i sor
% 1 Manager f o r 50% of h i s time .

% Proces s ing c l e r k %%%

sort PClerk=struct pc1 | pc2 ;

proc PClerk (e : PClerk , t : Time)=
sum t ’ : Time . a s s i g n p c l e r k s (max(t , t ’) , e , t ’ , t) .
sum u : Time . (u>=max(t , t ’)) −> r e l e a s e p c l e r k r (u , e) .
PClerk (e , u) ;

proc PClerks=PClerk (pc1 , 0) ; % Only one c l e r k in the emergency case .

% Post p roce s s ing c l e r k %%

sort PPClerk=struct ppc1 | ppc2 ;

proc PPClerk (e : PPClerk , t : Time)=
sum t ’ : Time . a s s i g n p p c l e r k s (max(t , t ’) , e , t ’ , t) .
sum u : Time . (u>=max(t , t ’)) −> r e l e a s e p p c l e r k r (u , e) .
PPClerk (e , u) ;

proc PPClerks=PPClerk (ppc1 , 0) | | PPClerk (ppc2 , 0) ;

% Superv i sor %%%

sort Superv i sor=struct sup1 ;

proc Superv i sor (e : Supervisor , t : Time)=
sum t ’ : Time . a s s i g n s u p e r v i s o r s (max(t , t ’) , e , t ’ , t) .
sum u : Time . (u>=max(t , t ’)) −> r e l e a s e s u p e r v i s o r r (u , e) .
Superv i sor (e , u) ;

proc Superv i so r s=Superv i sor (sup1 , 0) ;

% Manager %%

sort Manager=struct man1 | man2 ;

proc Manager (e : Manager , t : Time)=
sum t ’ : Time . a s s i gn manage r s (max(t , t ’) , e , t ’ , t) .
sum u : Time . (u>=max(t , t ’)) −> r e l e a s e manage r r (u , e) .
Manager (e , t+2∗(max(u−t , 0))) ; % The manager has only 50% of h i s time ava i l a b l e .

proc Managers=Manager (man1 , 0) ; % Only one manager i s a v a i l a b l e in the emergency case .

% Persone l %%%

proc Persone l=PClerks | | PPClerks | | Superv i so r s | | Managers ;

% Tasks %%

proc Tasks (c : Customer)=E0(c) | | F0(c) | | E0a(c) | | E0b(c) | | Sp l i t (c) | | F1(c) | | F2(c) | | Merge (c) | |
E1a(c) | | F4a (c) | | E2a(c) | | E2b(c) | | F5a (c) | | E4a(c) | | F7(c) | | E6(c) ;

% Actions %%

act a s s i g n p c l e r k r , a s s i g n p c l e r k s , a s s i g n p c l e r k c : Time#PClerk#Time#Time ;
a s s i g n pp c l e r k r , a s s i g n pp c l e r k s , a s s i g n pp c l e r k c : Time#PPClerk#Time#Time ;
a s s i g n s up e r v i s o r r , a s s i g n s up e r v i s o r s , a s s i g n s u p e r v i s o r c : Time#Superv i sor#Time#Time ;
as s ign manager r , a s s ign manager s , a s s i gn manager c : Time#Manager#Time#Time ;
a s s i gn cu s tomer r , a s s i gn cus tomer s , a s s i gn cu s t ome r c : Nat#Time#Customer#Time#Time ;
r e l e a s e p c l e r k r , r e l e a s e p c l e r k s , r e l e a s e p c l e r k c : Time#PClerk ;
r e l e a s e p p c l e r k r , r e l e a s e p p c l e r k s , r e l e a s e p p c l e r k c : Time#PPClerk ;
r e l e a s e s u p e r v i s o r r , r e l e a s e s u p e r v i s o r s , r e l e a s e s u p e r v i s o r c : Time#Superv i sor ;
r e l ea s e manage r r , r e l ea s e manage r s , r e l e a s e manage r c : Time#Manager ;
r e l e a s e cu s t ome r r , r e l e a s e cu s t ome r s , r e l e a s e c u s t ome r c : Nat#Time#Customer ;
E0 1 , E0 2 , E0 3 , E0 c : Nat#Time#Customer ;
E0 Sp l i t r , E0 Sp l i t s , E 0 Sp l i t c : Nat#Time#Customer ;
E0 F0 r , E0 F0 s , E0 F0 c : Nat#Time#Customer ;
F0 E0a r , F0 E0a s , F0 E0a c : Nat#Time#Customer ;
F0 E0b r , F0 E0b s , F0 E0b c : Nat#Time#Customer ;
Sp l i t F1 r , Sp l i t F1 s , S p l i t F 1 c : Nat#Time#Customer ;
Sp l i t F2 r , Sp l i t F2 s , S p l i t F 2 c : Nat#Time#Customer ;
F1 Merge r , F1 Merge s , F1 Merge c : Nat#Time#Customer ;
F2 Merge r , F2 Merge s , F2 Merge c : Nat#Time#Customer ;
Merge E1a r , Merge E1a s , Merge E1a c : Nat#Time#Customer ;
E1a F4a r , E1a F4a s , E1a F4a c : Nat#Time#Customer ;
F4a E2a r , F4a E2a s , F4a E2a c : Nat#Time#Customer ;
F4a E2b r , F4a E2b s , F4a E2b c : Nat#Time#Customer ;
E2a F5a r , E2a F5a s , E2a F5a c : Nat#Time#Customer ;
F5a E4a r , F5a E4a s , F5a E4a c : Nat#Time#Customer ;
E4a F7 r , E4a F7 s , E4a F7 c : Nat#Time#Customer ;
F7 E6 r , F7 E6 s , F7 E6 c : Nat#Time#Customer ;
E6 s , E6 r , E6 c : Nat#Time#Customer ;

REFERENCES 31

data grasped : Nat#Time#Customer ;
accept customer : Nat#Time#Customer ;
r e j e c t cu s t ome r : Nat#Time#Customer ;
f o rm f i l l e d : Nat#Time#Customer ;
c on t r a c t s i gn ed : Nat#Time#Customer ;

F1 getC ID , F4a che ck c r ed i t wo r th in e s s ,
F0 ch e ck c r ed i t wo r th i n e s s : Nat#Time#PClerk#Customer ;

% System %%

i n i t al low ({ a s s i g n p c l e r k c ,
a s s i g n pp c l e r k c ,
a s s i g n s up e r v i s o r c ,
ass ign manager c ,
a s s i gn cus tomer c ,
r e l e a s e p c l e r k c ,
r e l e a s e p p c l e r k c ,
r e l e a s e s u p e r v i s o r c ,
r e l ea s e manage r c ,
r e l e a s e cu s t ome r c ,
E0 c ,
E0 Sp l i t c ,
E0 F0 c ,
F0 E0a c ,
F0 E0b c ,
Sp l i t F1 c ,
Sp l i t F2 c ,
F1 Merge c ,
F2 Merge c ,
Merge E1a c ,
E1a F4a c ,
F4a E2a c ,
F4a E2b c ,
E2a F5a c ,
F5a E4a c ,
E4a F7 c ,
F7 E6 c ,
E6 c ,

data grasped ,
accept customer ,
r e j e c t cu s tomer ,
f o rm f i l l e d ,
con t rac t s i gned ,

F1 getC ID ,
F4a che ck c r ed i t wo r th in e s s ,
F0 ch e ck c r ed i t wo r th i n e s s

} ,
comm({

a s s i g n p c l e r k r | a s s i g n p c l e r k s −>a s s i g n p c l e r k c ,
a s s i g n p p c l e r k r | a s s i g n pp c l e r k s −>a s s i g n pp c l e r k c ,
a s s i g n s u p e r v i s o r r | a s s i g n s up e r v i s o r s −>a s s i g n s up e r v i s o r c ,
a s s i gn manage r r | ass ign manager s−>ass ign manager c ,
a s s i gn cu s t ome r r | a s s i gn cus tomer s−>as s i gn cus tomer c ,
r e l e a s e p c l e r k r | r e l e a s e p c l e r k s −>r e l e a s e p c l e r k c ,
r e l e a s e p p c l e r k r | r e l e a s e p p c l e r k s −>r e l e a s e p p c l e r k c ,
r e l e a s e s u p e r v i s o r r | r e l e a s e s u p e r v i s o r s −>r e l e a s e s u p e r v i s o r c ,
r e l e a s e manage r r | r e l ea s e manage r s−>r e l ea s e manage r c ,
r e l e a s e c u s t ome r r | r e l e a s e cu s t ome r s −>r e l e a s e cu s t ome r c ,
E0 1 | E0 2 | E0 3−>E0 c ,
E 0 Sp l i t r | E0 Sp l i t s −>E0 Sp l i t c ,
E0 F0 r | E0 F0 s−>E0 F0 c ,
F0 E0a r | F0 E0a s−>F0 E0a c ,
F0 E0b r | F0 E0b s−>F0 E0b c ,
S p l i t F 1 r | Sp l i t F1 s −>Sp l i t F1 c ,
S p l i t F 2 r | Sp l i t F2 s −>Sp l i t F2 c ,
F1 Merge r | F1 Merge s−>F1 Merge c ,
F2 Merge r | F2 Merge s−>F2 Merge c ,
Merge E1a r | Merge E1a s−>Merge E1a c ,
E1a F4a r | E1a F4a s−>E1a F4a c ,
F4a E2a r | F4a E2a s−>F4a E2a c ,
F4a E2b r | F4a E2b s−>F4a E2b c ,
E2a F5a r | E2a F5a s−>E2a F5a c ,
F5a E4a r | F5a E4a s−>F5a E4a c ,
E4a F7 r | E4a F7 s−>E4a F7 c ,
F7 E6 r | F7 E6 s−>F7 E6 c ,
E6 r | E6 s−>E6 c

} ,
En t e r i ng t ime s o f cu s t ome r s (0) | | Customers | | Persone l | | Tasks (c (0)) | | Tasks (c (1))

| | Tasks (c (2)) | | Tasks (c (3)) | | Tasks (c (4)) | | Tasks (c (5)) | | Tasks (c (6))
| | Tasks (c (7)) | | Tasks (c (8)) | | Tasks (c (9))
)) ;

References

[1] W.M.P Aalst van der. Formalization and verification of event-driven process chains. Information
and Software Technology, 41(10):639–650, 1999.

REFERENCES 32

[2] Marco Alemanni, Grimaldi Alessia, Stefano Tornincasa, and Enrico Vezzetti. Key performance in-
dicators for plm benefits evaluation: The alcatel alenia space case study. Comput. Ind., 59(8):833–
841, 2008.

[3] W. Boehmer. Survivability and business continuity management system according to bs 25999.
In SECURWARE ’09, volume 0, Athens/Glyfada, Greece, June 2009. IEEE Computer Society.

[4] Christoph Brandt, Thomas Engel, Wolfgang Boehmer, and Claude Roeltgen. Diskus-
sionsvorschlag einer lösungsskizze zur behandlung von operationellen it-sicherheitsrisken nach
basel ii auf der grundlage von anforderungen der credit suisse. In Multikonferenz Wirtschaftsin-
formatik, 2008.

[5] E. W. Dijkstra. Hierarchical ordering of sequential processes. In Acta Informatica, pages 1:115–
138, 1971.

[6] T. Engels, J. F. Groote, M. van Weerdenburg, and T. Willemse. Search algorithms for automated
validation. J. Log. Algebr. Program, (2009, to appear).

[7] J. F. Groote, A. Mathijssen, M. van Weerdenburg, and Y. S. Usenko. From µcrl to mcrl2:
Motivation and outline. In Proc. Workshop Essays on Algebraic Process Cacluli (APC 25), pages
162:191–196, Bertinoro, Romagna, Italy, 2006. Electronic Notes in Theoretical Computer Science,
Springer-Verlag.

[8] J. F. Groote and F. v. Ham. State space visualization. In International Journal on Software Tools
for Technology Transfer (STTT), volume 8, pages 77–91. Springer Berlin / Heidelberg, 2005.

[9] J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and M.J. van Weerdenburg. Analysis
of distributed systems with mCRL2. In Michael Alexander and William Gardner, editors, Process
Algebra for Parallel and Distributed Processing, pages 99–128. Chapman & Hall/CRC, 2008.

[10] J.F. Groote and M.A. Reniers. Modelling and Analysis of Communicating Systems. CRC Press,
To appear. 2009.

[11] IBM. Panic slowly. integrated disaster response and built-in business continuity.
ibm.com/itsolutions/uk/governance/businesscontinuity, 2006.

[12] M.H. Jansen-Vullers and M. Netjes. Business process simulation - a tool survey. In K. Jensen
(ed.). 7th Workshop and Tutorial on the Practical Use of CPN 06, Volume 579 of DAIMI, pp.
77-96. Uni. of Arhus, Denmark, 2006.

[13] E. Kindler. Safety and liveness properties: A survey. EATCS-Bulletin, 53:268–272, June 1994.

[14] M. Koubarakis and D. Plexousakis. A formal framework for business process modelling and
design. Inf. Syst., 27(5):299–319, 2002.

[15] B. J. L. Landry and M. S. Koger. Dispelling 10 common disaster recovery myths: Lessons learned
from hurricane katrina and other disasters. J. Educ. Resour. Comput., 6(4):6, 2006.

[16] M. Nemzow. Business continuity planning. Int. J. Netw. Manag., 7(3):127–136, 1997.

[17] F. Nestmann, U. & Puhlmann. Business Process Specification and Analysis. Chapman & Hal-
l/CRC (ed) Alexander, Michael and Gardner, William, 1.st. edition, 2008.

[18] B. Ploeger and C. Tankink. Improving an interactive visualization of transition systems. In
Proceedings of the 4th ACM Symposium on Software Visualization (SoftVis 2008), pages 115–
124. ACM, 2008.

REFERENCES 33

[19] F. Puhlmann. Why do we actually need the pi-calculus for business process management? In
W. Abramowicz & H. C. Mayr, editor, 9th Int. Conf. on Business Information Systems (BIS
2006), pages 77–89. Dept. of Information Systems, Poznań University of Economics, 2006.

[20] G. Quirchmayr. Survivability and business continuity management. In ACSW Frontiers ’04,
pages 3–6, Darlinghurst, Australia, 2004. Australian Computer Society, Inc.

[21] Raul Rodriguez Rodriguez, Juan José Alfaro Saiza, and Angel Ortiz Basa. Quantitative relation-
ships between key performance indicators for supporting decision-making processes. Computer
in Industry, 2008.

[22] A.-W. Scheer. ARIS-Modellierungs-Methoden, Metamodelle, Anwendungen. Springer, Berlin/Hei-
delberg, 2001.

[23] V. Thurner. Formal fundierte Modellierung von Geschäftsprozessen – Geschäftsprozesse an-
schaulich und präzise dokumentieren. ISBN 3-8325-0683-7. Logos Verlag, Berlin, 2004.

[24] S. Tjoa, S. Jakoubi, and G. Quirchmayr. Enhancing business impact analysis and risk assessment
applying a risk-aware business process modeling and simulation methodology. In ARES ’08,,
pages 179–186, Washington, DC, USA, 2008. IEEE Computer Society.

[25] BSI (UK). Business continuity management system – part 1: Code of practice. ISBN 0580496015,
11 2006.

[26] BSI (UK). Business continuity management system – part 2: Specification. ISBN 9780580599132,
11 2007.

[27] A. Zalewski, P. Sztandera, M. Ludzia, and M. Zalewski. Modeling and analyzing disaster recov-
ery plans as business processes. In SAFECOMP ’08, pages 113–125, Berlin, Heidelberg, 2008.
Springer-Verlag.

