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Abstract. A statistical synthesis of marine aerosol measure-

ments from experiments in four different oceans is used to

evaluate a global aerosol microphysics model (GLOMAP).

We compare the model against observed size resolved parti-

cle concentrations, probability distributions, and the tempo-

ral persistence of different size particles. We attempt to ex-

plain the observed sub-micrometre size distributions in terms

of sulfate and sea spray and quantify the possible contribu-

tions of anthropogenic sulfate and carbonaceous material to

the number and mass distribution. The model predicts a bi-

modal size distribution that agrees well with observations as

a grand average over all regions, but there are large regional

differences. Notably, observed Aitken mode number concen-

trations are more than a factor 10 higher than in the model

for the N Atlantic but a factor 7 lower than the model in

the NW Pacific. We also find that modelled Aitken mode

and accumulation mode geometric mean diameters are gen-

erally smaller in the model by 10–30%. Comparison with ob-

served free tropospheric Aitken mode distributions suggests

that the model underpredicts growth of these particles dur-

ing descent to the marine boundary layer (MBL). Recent ob-

servations of a substantial organic component of free tropo-

spheric aerosol could explain this discrepancy. We find that

anthropogenic continental material makes a substantial con-

tribution to N Atlantic MBL aerosol, with typically 60–90%

of sulfate across the particle size range coming from anthro-

pogenic sources, even if we analyse air that has spent an aver-

age of >120 h away from land. However, anthropogenic pri-

mary black carbon and organic carbon particles (at the emis-

sion size and quantity assumed here) do not explain the large

discrepancies in Aitken mode number. Several explanations

for the discrepancy are suggested. The lack of lower atmo-

spheric particle formation in the model may explain low N

Atlantic particle concentrations. However, the observed and
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modelled particle persistence at Cape Grim in the Southern

Ocean, does not reveal a diurnal cycle consistent with a pho-

tochemically driven local particle source. We also show that

a physically based cloud drop activation scheme better ex-

plains the observed change in accumulation mode geometric

mean diameter with particle number.

1 Introduction

Marine aerosol plays an important role in global climate.

Oceans cover a large fraction of the Earth’s surface and

cloud condensation nuclei (CCN) concentrations in the ma-

rine boundary layer (MBL) are typically lower than over con-

tinental regions, making marine stratocumulus clouds par-

ticularly susceptible to change from anthropogenic sources

(Pawlowska and Brenguier, 2000).

Sea spray plays an obvious and well documented role

in maintaining super-micrometre particle concentrations in

the MBL (Fitzgerald, 1991), but its contribution to sub-

micrometre particle concentrations is less well understood.

Recently, techniques have become available that allow the

chemical characterisation of sub-micrometre aerosol and

subsequent observations have shown sea salt aerosol with

dry diameters down to as small as 10 nm (Bigg et al., 1995;

O’Dowd et al., 1997; Nilsson et al., 2001; Zhou et al., 2001;

Geever et al., 2005; Clarke et al., 2006). Recent sea salt

aerosol source functions now calculate sea salt production

down to these smaller sizes (Gong, 2003; Martensson et al.,

2003; Clarke et al., 2006). In addition, particulate organic

matter is now known to contribute to sub-micrometre aerosol

mass (Leck and Bigg, 2005a; O’Dowd et al., 2004). There

is also new evidence suggesting that during the summer in

the Arctic, primary particulate matter from marine biogenic

sources may be an additional source of marine aerosol (Bigg

et al., 2004; Heintzenberg et al., 2006; Leck and Bigg, 1999;

Leck et al., 2002, 2004; Leck and Bigg, 2005a,b; Lohmann
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and Leck, 2005). The relative contribution of this source and

its geographical extent outside the Arctic is so far unknown.

A number of modelling studies have advanced our under-

standing of what physical processes determine the particle

size distribution in the MBL (e.g., Kreidenweis et al., 1991;

Raes and Van Dingenen, 1992; Lin et al., 1992; Pandis et al.,

1994; Russell et al., 1994; Raes, 1995; Capaldo et al., 1999;

Katoshevski et al., 1999; Pirjola et al., 2000). Observations

and models show that entrainment of aerosol from the free

troposphere (FT) is important in maintaining MBL aerosol

concentrations (Raes, 1995; Covert et al., 1996; Raes et al.,

1997; Bates et al., 1998b). Aerosol in the FT immediately

above the MBL is reasonably constant in time because parti-

cles formed in the cold upper troposphere have time to evolve

into a self-preserving size distribution through slow subsi-

dence of air. This persistence of the overlying aerosol is be-

lieved to sustain a fairly constant MBL aerosol despite peri-

odic scavenging of the larger sea salt particles.

The extent to which the aerosol distribution is repopulated

by local nucleation processes is not clear. A statistical analy-

sis of observed remote MBL aerosol distributions shows that

particles below 10 nm diameter only occur in 3% of the ob-

servations (Heintzenberg et al., 2004), although regions such

as the N Atlantic do have a statistically significant ultrafine

mode around 20 nm dry diameter. These observations sug-

gest that in situ particle production in the MBL is limited,

although there is evidence that nucleation may be important

in coastal areas (O’Dowd et al., 1999) and ultrafine parti-

cles may be formed after precipitation scavenging of existing

aerosol (Clarke et al., 1998; Covert et al., 1992, 1996; Weber

et al., 1995, 1998).

Much of our understanding of MBL aerosol has stemmed

from the results of box and single column model simula-

tions (e.g., Kreidenweis et al., 1991; Raes and Van Din-

genen, 1992; Lin et al., 1992; Pandis et al., 1994; Russell

et al., 1994; Raes, 1995; Capaldo et al., 1999; Katoshevski

et al., 1999; Pirjola et al., 2000). These simulations have ex-

amined the maintenance of MBL Aitken and accumulation

mode aerosol through a combination of sea spray emission

and entrainment from the FT. The idealised nature of most

of these studies and the limited spatial scale of the models

means that they have not been able to assess the importance

of continental aerosol sources. Several sophisticated global

aerosol models have been developed, a need originally high-

lighted by Raes et al. (1995) in order to fully understand

MBL aerosol. These models allow changes in the aerosol

size distribution to be predicted through calculation of the

driving microphysical processes (Adams and Seinfeld, 2002;

Ghan et al., 2001; Gong et al., 2002, 2003; Herzog et al.,

2004; Lauer et al., 2005; Lauer and Hendricks, 2006; Ro-

driguez and Dabdub, 2004; Spracklen et al., 2005a,b; Stier

et al., 2005; Verma et al., 2007; Vignati et al., 2004; Wil-

son et al., 2001). The principal advantage of a global model

over a box or column model is that it naturally takes account

of the spatial and temporal changes in aerosol in the MBL

and overlying FT driven by variations in meteorology. In the

box models, assumptions had to be made about the nature

of the particles entrained from the FT into the MBL. Global

model FT aerosol varies depending on regional variations in

source gas concentrations (di-methyl sulfide (DMS), sulfur

dioxide (SO2)), vertical transport in clouds and subsidence

rates. Global models also account for the long-range trans-

port of aerosol, including that derived from continental pri-

mary emissions, marine DMS and anthropogenic SO2, while

box model studies have been limited to single columns of the

atmosphere influenced by local emissions only.

The availability of global aerosol microphysics models

now permits a more detailed evaluation of our understand-

ing of MBL aerosol. In Spracklen et al. (2005a) we showed

that a global aerosol microphysics model of the sulfate and

sea salt system (GLOMAP) is capable of capturing observed

CN concentrations in the MBL and FT. We also showed

that modelled particle size distributions are broadly in agree-

ment with typical observations. GLOMAP simulates a sur-

face mean MBL CN concentration of 465 cm−3 (Spracklen

et al., 2005a) which compares well with the aerosol clima-

tology of Heintzenberg et al. (2000) which gives a global av-

erage value (weighted by latitudinally binned ocean surface

area) of about 490 cm−3. Adams and Seinfeld (2002) use

a sectional scheme in the GISS general circulation model.

For a sulfate-only simulation they report global mean sur-

face (including the continental BL) CN number of 221 cm−3.

Their more recent study (Pierce and Adams, 2006) suggests

that sub-micrometre sea spray may enhance particle concen-

trations over the Southern Ocean by 150–500%. However,

the estimated contribution of sea spray emissions to CCN

based on model simulations will depend very much on the

modelled concentrations of sub-micrometre sulfate concen-

trations.

In this paper we use statistical analyses of observed re-

mote MBL aerosol (Heintzenberg et al., 2000, 2004) to carry

out a comprehensive evaluation of the factors controlling its

properties. We extend previous comparisons of modelled and

observed integral variables like CN and CCN to a full eval-

uation of the size distribution. This comparison will be the

basis from which we can build an understanding of how bio-

genic and anthropogenic continental sources impact the ma-

rine aerosol distribution.

2 Model description

GLOMAP is an extension to the TOMCAT global 3-

D off-line Chemical Transport Model (e.g., Chipperfield

et al., 1993; Chipperfield, 2006; Stockwell and Chipper-

field, 1999). A detailed description of GLOMAP is given

in Spracklen et al. (2005a). The aerosol distribution is de-

scribed using a sectional scheme with 20 bins spanning dry

diameters from about 3 nm to 25 µm. Two moments are sim-

ulated in each size section (particle number density and mass
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per particle). Carrying two moments for each size section al-

lows the average particle mass in each bin to vary, whereas

this is fixed in single moment schemes.

In the baseline runs presented here, GLOMAP is restricted

to sea salt and sulfate aerosol. We then explore the impact of

including primary emissions of black carbon (BC) and or-

ganic carbon (OC) on the remote MBL aerosol distribution.

To minimise computational expense we simulate all aerosol

components in one internally mixed distribution. That is we

assume instantaneous mixing of all aerosol components in

any size bin. We assume this internally mixed distribution to

have the physical and chemical properties of sulfate aerosol.

The most important effect of this simplification is to artifi-

cially increase the particle scavenging efficiency of BC and

OC particles in clouds (through drop formation on the more

hygroscopic acidic particles). We estimate the importance

of this on model CN number. Complete removal of in-cloud

scavenging in the model increased CN globally by only 10%.

The rate of emission of sea salt aerosols from the ocean

is uncertain (Lewis and Schwartz, 2004). Here we use the

emission parameterisation of Gong (2003) which calculates

sea salt flux between 70 nm and 20 µm dry diameter. The

Gong (2003) scheme extends the range of the Monahan et al.

(1986) scheme to particle sizes below 0.2 µm where the orig-

inal scheme had been found to overestimate sea salt flux. A

recent global model study by Pierce and Adams (2006) has

used new sea salt schemes (Clarke et al., 2006; Martensson

et al., 2003), which emit sea salt aerosol down to sizes as

small as 10 nm dry diameter. This study found that over the

Southern Ocean this ultrafine sea salt can increase CCN con-

centrations by more than 50%.

Oceanic DMS emissions are calculated using sea surface

DMS concentrations from Kettle et al. (1999) and the sea-

to-air transfer velocity of Liss and Merlivat (1986). Volcanic

SO2 emissions are from Andres and Kasgnoc (1998). An-

thropogenic SO2 emissions are from Benkovitz et al. (1996).

In the baseline model all anthropogenic sulfur is assumed to

be emitted as gaseous SO2.

BC and OC aerosol from fossil fuel and biofuel combus-

tion are emitted with a number mode radius of 15 nm and

geometric standard deviation 1.8 and from biofuel sources

with radius 40 nm according to Bond et al. (2004). BC and

OC from wild fires are emitted according to Van der Werf

et al. (2003) with number mode radius of 40 nm and geomet-

ric standard deviation of 1.8. There is some uncertainty as

to the most appropriate size choice for primary emissions.

As biomass burning aerosol plumes age the mode radius in-

creases and the distribution width narrows (Dentener et al.,

2006). Here we have chosen to emit particles at their freshly

emitted size according to Dentener et al. (2006). Emissions

from biofuel and fossil fuel are added to the lowest model

layer. Emissions from wild fires are emitted between the sur-

face and 6 km altitude (Dentener et al., 2006).

GLOMAP includes the processes of aerosol nucleation,

condensation, growth, coagulation, wet and dry deposition,

transport, and cloud processing as described in Spracklen

et al. (2005a).

The mechanisms by which particle formation occurs in

the atmosphere are highly uncertain. Suggested mechanisms

include binary (H2SO4-H2O), ternary (H2SO4-H2O-NH3),

ion-induced and kinetic activation schemes. Here we assume

that binary nucleation is the only particle formation mech-

anism. Other nucleation schemes also take place in the at-

mosphere leading to observed BL particle formation events

over many continental areas (Kulmala et al., 2004). The im-

pact of these events on BL total particle number is studied

in Spracklen et al. (2006). Binary homogeneous nucleation

rates are uncertain to within several orders of magnitude.

The most recent binary parameterisation (Vehkamäki et al.,

2002), whilst more physically realistic, do not agree better

with laboratory measurements than earlier schemes (Kulmala

et al., 1998). Here we use the nucleation scheme of Kulmala

et al. (1998) which calculates nucleation rates as a function

of temperature, relative humidity and gas phase concentra-

tion of sulfuric acid. This scheme is valid down to temper-

atures of 233 K. Below this temperature we use the rate at

233 K as described in Spracklen et al. (2005b).

The baseline model uses a simple scheme to activate

aerosol to cloud droplets. All particles greater than 50 nm dry

diameter are assumed activated in low stratiform clouds. The

use of a globally constant activation diameter is restrictive as

the size at which a particle can activate is sensitive to a range

of quantities, including the in-cloud updraft velocity, the

number of CCN present, and the particle composition. The

aerosol activation parameterisation of Nenes and Seinfeld

(2003) (hereafter referred to as NS03) has been implemented

in GLOMAP to provide a physically more realistic calcula-

tion of aerosol activation. NS03 is a physically based aerosol

activation scheme which has minimal reliance on empirical

data. NS03 has been shown to predict average cloud droplet

number concentrations to within ≈20% of observed val-

ues in stratiform and cumuliform clouds (Meskhidze et al.,

2005). Monthly mean cloud fraction is from the International

Satellite Cloud Climatology Project D1 database (Rossow

and Schiffer, 1999). GLOMAP includes both in-cloud and

below-cloud aerosol wet deposition in convective and frontal

precipitation as diagnosed by European Centre for Medium-

Range Weather Forecasts (ECMWF) analyses.

Model runs presented here use a spatial resolution of

2.8◦
×2.8◦ latitude × longitude with 31 hybrid σ -p levels ex-

tending from the surface to 10 hPa. Large-scale atmospheric

transport is specified from European Centre for Medium-

Range Weather Forecasts (ECMWF) analyses at 6-hourly in-

tervals. Tracer advection is performed using the scheme of

Prather (1986). Sub-grid transport is calculated using the

convection scheme of Tiedtke (1989) and turbulent mixing

in the boundary layer is calculated using the parameterisa-

tion of Holtslag and Boville (1993).
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Table 1. Marine aerosol observations used by Heintzenberg et al. (2004) to compile an average MBL aerosol distribution. For each ex-

periment the number of observation points and the percentage of observations with back trajectories of greater than 120 h travel time since

continental contact are noted. Table adapted from Heintzenberg et al. (2004).

Experiment Location Campaign period No. of % observations Reference

observations >120 h

ACE-1 Cape Grim, Southern Ocean Nov–Dec 1995 1686 81 Covert et al. (1998)

40.8◦ S, 144◦ E

ACE-2 Sagres, NE Atlantic June–July 1997 2474 23 Russell and Heintzenberg (2000)

37◦ N, 9◦ W

Aerosols99/ Atlantic/ Jan–March 1999 1966 80 Bates et al. (2002)

INDOEX Indian Ocean Ramanathan et al. (2001)

ACE-Asia Pacific Ocean March–April 2001 4311 23 Huebert et al. (2003)

Fig. 1. Observations of marine aerosol used for comparison with

model results. Ship cruises are indicated by lines and include

Aerosols99 across the Atlantic in January 1999 (Bates et al., 2001),

INDOEX in the Indian Ocean during March 1999 (Ramanathan

et al., 2001) and ACE-Asia in the North Pacific during March and

April 2001 (Huebert et al., 2003). The locations of two coastal sta-

tions are indicated (by open diamonds), one at Cape Grim, Tasma-

nia used in ACE-1 (Bates et al., 1998a) and one at Sagres, Portugal

used during ACE-2 (Raes et al., 2000).

3 Observations

We use MBL aerosol observations from two recently com-

piled statistical analyses (Heintzenberg et al., 2000, 2004).

Heintzenberg et al. (2000) reviewed MBL observations made

over the last 30 years and presented them on a 15◦ latitude

× 15◦ longitude grid. Observations were made from Jan-

uary through December and cover 25% of the 15◦ by 15◦

ocean grid squares (see Fig. 1a of Heintzenberg et al. (2000)).

The data were then further binned into 15◦ latitude bands.

Two latitude bands contained no observations (75◦ S–90◦ S

and 60◦ N–90◦ N). Distributions were fitted with 4 lognor-

mal modes, but due to lack of data, global distributions were

available only for the Aitken and accumulation modes.

Heintzenberg et al. (2004) compiled MBL observations

from five marine aerosol experiments (ACE-1, ACE-2, ACE-

Asia, INDOEX and Aerosols99), which are summarised in

Table 1. The location of the field campaigns is illustrated

in Fig. 1. These experiments span virtually an annual cy-

cle (January to April, June to July and November to Decem-

ber) and cover 4 different regions of ocean (Atlantic, Pacific,

Indian and Southern Oceans) in both Northern and South-

ern Hemispheres. To minimise continental contamination,

and to give a better description of remote ‘background’ MBL

aerosol, Heintzenberg et al. (2004) filtered the observations

to include data only with back trajectories of at least 120

hours without land contact. Heintzenberg et al. (2000) does

not include any filtering to remove air masses with continen-

tal origin.

Aerosol size distributions were measured with a twin dif-

ferential mobility particle spectrometer (TDMPS) with a

minimum detection limit of 3 nm dry diameter. The upper

size detection limit varied between 614 and 900 nm dry di-

ameter. Counting statistics control the accuracy of particle

counters at both the lower and upper particle size limit. Be-

low 20 nm diameter, the low flow of sample air to the in-

strument results in high counting uncertainties (Heintzenberg

et al., 2004). At the upper size limit of the instruments, low

atmospheric concentrations also results in higher counting

uncertainties. Heintzenberg et al. (2004) only included data

where counting uncertainties were less than 100%.

4 Approach

4.1 Description of the model runs

A series of simulations has been carried out starting with a

baseline sulfate/sea-spray run and progressively incorporat-

ing further aerosol components or a refined treatment of spe-

cific processes.

1. Baseline sulfate/sea-spray run. We use the version of GLOMAP

as described in Spracklen et al. (2005a). The model includes no

primary particulate emissions from anthropogenic sources (all an-

thropogenic sulfur is emitted as a gas) and there are no emissions
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of carbonaceous particles. Activation of aerosol particles into cloud

droplets occurs at a fixed particle size.

2. Additional species. Several model simulations are used to inves-

tigate the contribution of primary anthropogenic aerosol sources to

the size distribution. First we assume a contribution from primary

sulfate and then we include carbonaceous aerosol (from industrial

and biomass burning sources).

3. Sensitivity to cloud processing. In these simulations we include

a mechanistic calculation of cloud drop number in low-level clouds.

The importance of these simulations is that they capture the depen-

dence of activation diameter on the particle size distribution and

should give more realistic conversion from Aitken to accumulation

mode particles.

4.2 Method of comparing model and observations

The model was initialised with an aerosol-free atmosphere on

1 October, 1995, and spun up for 90 days. Results presented

here are for an annual run for January–December 1996.

GLOMAP output was collocated with observations in both

time and space by using surface model grid squares that

lie within the geographic boundaries of the field experiment

and during the calendar months when the different experi-

ments took place. For Heintzenberg et al. (2000) the geo-

graphic boundaries are defined as the 15◦ latitude by 15◦ lon-

gitude squares where observations occurred. For Heintzen-

berg et al. (2004) the observations are from a combination

of surface stations and ship-based measurements. The ob-

servations for ACE-1 and ACE-2 are from 2 surface stations

at Cape Grim, Tasmania and Sagres, Portugal. For compari-

son with these stations we use ocean model grid squares im-

mediately adjacent to the surface station. The observations

for INDOEX/Aerosols99 and ACE-Asia are from ship-based

measurements. Here we use model grid squares along the

line of ship cruise.

Table 1 shows the number of observations in each field

campaign that contribute to the distributions of Heintzenberg

et al. (2004). Heintzenberg et al. (2004) combined results

from all experiments to produce a “grand average” distri-

bution. The modelled “grand average” size distribution is

generated by weighting the results from model grid squares

depending on the number of observational data points con-

tributed from each campaign.

Heintzenberg et al. (2004) filtered out observations for

which computed back trajectories passed over land within

120 h of the observation. To do likewise in GLOMAP we

emit a tracer of known lifetime from all land masses and use

the concentration of this tracer to calculate average age of

air in any grid box. For comparison with Heintzenberg et al.

(2004) we only include grid boxes where the average age of

air exceeds 120 h. Throughout the paper the size of particles

reported is the particle dry diameter.

5 MBL number-size distribution

5.1 General properties of the global MBL aerosol

Here we compare the baseline GLOMAP model of sulfate

and sea spray with MBL observations from all the ma-

rine experiments (termed the “grand average” by Heintzen-

berg et al., 2004). Figure 2a compares the GLOMAP size-

dependent 5th, 50th and 95th percentiles of number con-

centrations and the observations from Heintzenberg et al.

(2004). This comparison is shown also as a probabil-

ity density function (PDF) of the number concentrations

(N(dp)=dN(dp)/d log(dp)) with respect to the particle dry

diameter (dp) in Fig. 2b. We note that at small particle diam-

eters, observations end at between 6 and 20 nm depending on

the particle number concentration, whereas the model ends at

smaller particle sizes. This is caused by counting statistics in

the particle sensors resulting in large uncertainty at small di-

ameters (Heintzenberg et al., 2004) and does not imply any

discrepancy with the model.

The baseline model run predicts a median particle num-

ber (particles greater than 3 nm diameter) concentration of

250 cm−3, which compares well with the observed value

of 248 cm−3. Note that this is lower than the observed

(Heintzenberg et al., 2000) and modelled (Spracklen et al.,

2005a) aerosol number reported when we do not filter out

air masses with less than 120 h since continental contact (see

Sect. 1).

GLOMAP’s median distribution captures some of the key

features of the observed MBL median distribution. Firstly,

the model has a bimodal submicrometre distribution, with

Aitken and accumulation modes at approximately the correct

number concentrations (although modelled Aitken and accu-

mulation modes are smaller than observed.) Secondly, both

model and observations show “closed” size distributions at

small sizes, with a low probability of particles with diameters

less than 20 nm. This observation, which is well captured in

the model, has been used to suggest that particle nucleation

and subsequent growth to observable sizes is infrequent in

the MBL (Heintzenberg et al., 2004).

5.2 Regional variations in the size distribution

A comparison of modelled and observed particle number

from all four experiments suggests overall good agreement

(Fig. 2). However, there are some large differences between

the model and observations at a regional level. Figure 3 com-

pares the modelled and observed size distributions for the dif-

ferent field campaigns in Heintzenberg et al. (2004), which

have been filtered to reduce continental contamination (see

Sect. 4.2). Figure 4 summarises the comparison in terms of

the parameters of fitted log-normal modes. To aid compari-

son with Pierce and Adams (2006), in Fig. 5 we also compare

with the unfiltered zonally averaged size distributions origi-

nally presented in Heintzenberg et al. (2000) (baseline model
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(a)

(b)

Fig. 2. Comparison of model size dependent number concentra-

tions with the aerosol climatology from Heintzenberg et al. (2004)

for all the marine observations detailed in Table 1. Both model

and observations are filtered to include only the remote MBL (air

masses greater than 120 h since last continental contact). (a) Size-

dependent 5th, 50th and 95th percentiles of number concentrations

for the remote MBL. Solid line is the GLOMAP model and dot-

ted line is aerosol climatology. (b) Comparison of modelled and

observed probability distributions of size-dependent number con-

centrations between 1 and 104 cm−3. Filled colour contours are

the GLOMAP model, line contours are the observations. Observed

PDFs were generated for 48 logarithmically equal size classes be-

tween 3 and 900 nm. GLOMAP distributions have 20 aerosol size

sections between about 3 nm and 25 µm. To allow a comparison be-

tween GLOMAP and observations, GLOMAP distributions are in-

terpolated onto the observed diameters. The PDFs of number con-

centrations for both observations and GLOMAP were constructed

by classifying the number size distributions into 20 equal logarith-

mically spaced concentration bins between 1 and 10 000 cm−3. The

number of cases in each concentration bin was divided by the total

number of concentrations to give the probability in each bin.

run is the solid black line). As we show below, the binning of

observations in latitude bands may hide some interesting dif-

ferences between the model and observations for the separate

regional campaigns.

A clear difference between the model and the observations

is the underprediction of Aitken mode number between 45◦ S

and 30◦ S by > 50% (Fig. 5 and Fig. 3, ACE-1). A smaller

discrepancy exists between 75◦S and 45◦ S. Model underpre-

diction of total aerosol number at these latitudes has been

reported previously (Spracklen et al., 2005a; Easter et al.,

2004; Pierce and Adams, 2006). In Spracklen et al. (2005a)

we suggested that this was due to a strong seasonal cycle at

these latitudes. Observations were generally made during the

Southern Hemisphere spring or summer when DMS emis-

sions are large and previous model comparisons have used

model annual mean. In this work we only use model results

for the same calendar months as the observations and Aitken

mode number is still underpredicted by between 30 and 50%.

Recent work by Pierce and Adams (2006) has suggested

that ultrafine sea salt has an important impact on submi-

crometre marine aerosol size distributions. They showed that

emission of ultrafine sea salt, particularly with the Martens-

son et al. (2003) scheme, resulted in significant increases in

Aitken mode number between 45◦ S and 75◦ S, but only a

very minor increase in Aitken mode number between 45◦ S

and 30◦ S. Their work suggests that the lack of ultrafine sea

salt in our model may be responsible for underprediction of

Aitken mode number between 45◦ S and 75◦ S but is unlikely

to be the cause of the underprediction between 45◦ S and

30◦S. Further work is required to fully explore the role of

ultrafine sea salt.

There are other differences between modelled and ob-

served Aitken mode number in other regions (Fig. 3). For

example, in ACE-2 (N. Atlantic) the ratio modelled/observed

number is 0.06, while it is 7.4 for ACE-Asia (NW Pacific).

In both cases the modelled Aitken mode particles are too

small. Model Aitken number for ACE-Asia may be over-

predicted due to lack of dust aerosol in the model. Dust is

a major component of East Asian aerosol outflow and was

sampled on a number of occasions during ACE-Asia. Dust

aerosol provides additional surface area increasing the frac-

tion of sulfate found in the coarse mode. Tang et al. (2004)

showed that downwind of East Asia between 10 and 15%

of sulfate occurs in the supermicrometre mode. For IN-

DOEX/Aerosols99 the model/observed Aitken number ra-

tio is 1.5, indicating much better agreement at lower lati-

tudes, but again the particles are too small in the model. The

model underprediction of Aitken mode size is present at all

locations and as a grand average the Aitken mode geometric

mean diameter of the pollution-filtered model is 72% of that

observed. This difference equates to the modelled Aitken

particle volume being only 37% of that observed.

The accumulation mode number concentrations are gener-

ally in fair agreement, and the model captures some of the ob-

served differences between the different regions. The biases

(model divided by observations) in accumulation mode num-

ber are: ACE-1 (0.57), ACE-2 (1.1), INDOEX/Aerosols99

(1.1), and ACE-Asia (1.9). The accumulation mode size is
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Fig. 3. Comparison of regional MBL log-normal approximations of aerosol number size distributions. The model (black lines) and observa-

tions (solid blue line) have been filtered to minimise continental contamination (see Sect. 4.2) and fitted with lognormal modes. Observations

are from Heintzenberg et al. (2004). Standard model run includes no primary emissions from anthropogenic sources, 3% SO2 primary model

run includes 3% of anthropogenic sulfur as particulate sulfate, BC/OC model run includes primary emissions of black carbon and organic

carbon.

underpredicted in all regions except for the Southern Ocean

(ACE-1). The biases (model divided by observations) are:

ACE-1 (1.4), ACE-2 (0.83), INDOEX/Aerosols99 (0.73),

and ACE-Asia (0.85).

The model overpredicts Aitken mode number for ACE-

Asia and INDOEX but underpredicts the size of the mode.

Heintzenberg et al. (2000) reported that both Aitken and

accumulation mode diameters are about 25% bigger in the

Northern than the Southern hemispheres. This trend is sup-

ported by observations in the field campaigns in Heintzen-

berg et al. (2004) but is not captured by the model. It is

interesting that accumulation mode size is either well pre-

dicted or overpredicted by the model in the remote South-

ern Ocean (75◦ S–30◦ S) whereas it is generally underpre-

dicted in the NH. Particle size in the NH may be larger due to

emissions from continental sources (e.g., primary emissions

of carbonaceous aerosol or emissions of volatile organic

compounds that are oxidised to secondary organic aerosol),

which are not included in the baseline model runs presented

here. Alternatively differences in cloud processing between

hemispheres may influence the activation diameter which is

fixed in this model run. In Sects. 5.3 and 8 we explore the ef-

fect of anthropogenic primary emissions and of more detailed

aerosol activation schemes on the modelled aerosol size dis-

tribution.

Another difference between the model and observations is

in the minimum in the number-size distribution between the

Aitken and accumulation modes (apparent in Fig. 2). The

modelled number concentration at the minimum is too low.

The deep minimum is caused by the use of a fixed activa-

tion diameter (50 nm) during cloud formation in the model.

In reality, this activation diameter varies according to varia-

tions in updraft velocity as well as the shape of the particle

size distribution. This issue is also connected with the way

that the diameter of the observed Aitken and accumulation

modes (and the minimum between them) increases from the

5% to the 50% to the 95% percentiles (e.g., the minimum in-

creases as 63, 78 and 110 nm). That is, particle distributions
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Fig. 4. Comparison of modelled and observed (Heintzenberg et al.,

2004) Aitken (black) and accumulation (blue) mode lognormal fit

parameters for the four marine experiments (ACE-1, ACE-2, IN-

DOEX/Aerosols99, ACE-ASIA). (a) Model mode number concen-

tration (Nmodel)/Observed mode number concentration (Nobserved),

(b) Model geometric mean diameter (dpmodel) / Observed geomet-

ric mean diameter (dpobserved). Standard model run includes no

primary emissions from anthropogenic sources, 3% SO2 primary

model run includes 3% of anthropogenic sulfur as particulate sul-

fate, BC/OC model run includes primary emissions of black carbon

and organic carbon.

with higher concentrations tend to have larger accumulation

modes. The model does not capture this property. These ef-

fects are explored in Sect. 8.

5.3 Effect of anthropogenic aerosol on the size distribution

In section 5.2 we showed that the model greatly underpre-

dicts the concentration of Aitken mode particles over the

N. Atlantic (based on a comparison with observations from

ACE-2). Although the analysis included only airmasses that

were more than 120 h from land, it is still possible that an-

thropogenic material contributes to the particle loading. Be-

fore examining the effect of anthropogenic emissions on the

size distribution, we quantify the effectiveness of the 120 h

cut-off in filtering out continental contamination. We do this

by using the model to track separate anthropogenic (anth)

and natural (nat) sulfur tracers. SO2(anth) is emitted di-

rectly from anthropogenic combustion sources (including 3%

as primary sulfate particles) and SO2(nat) is derived from

DMS oxidation products and directly from volcanic emis-

sions. Through gas phase oxidation these two tracers produce

H2SO4(anth) and H2SO4(nat). We then track separate an-

thropogenic and natural particulate components formed after

either nucleation or condensation of the two different H2SO4

tracers or aqueous phase oxidation of the two different SO2

tracers.

Figure 6a and b show the contribution of natural and an-

thropogenic sulfate to the total aerosol mass in the boundary

layer with and without the 120 h filter, respectively. The un-

filtered results show that between 60 and 90% of the N. At-

lantic particulate sulfate is anthropogenic in origin. In the

SH oceans generally less than 20% of surface model sul-

fate is anthropogenic in origin. Earlier model studies have

found that over NH oceans up to 80% of surface sulfate in

anthropogenic in origin whereas this is generally less than

20% over most of the SH oceans (Chin et al., 1996; Koch

et al., 1999; Chin et al., 2000; Rasch et al., 2000). Includ-

ing the age filter has little influence on the extent to which

anthropogenic sources impact on MBL aerosol. The aver-

age fraction of anthropogenic sulfate across the aerosol size

distribution is shown for the geographic regions covered by

each field campaign in Fig. 6c. A fraction in excess of 70%

is calculated across the entire size spectrum for ACE-2 and

ACE-Asia regions both with and without the age filter. The

strong continental influence on aerosol across each of these

regions may explain why the model fails to accurately predict

Aitken mode concentrations. The inclusion of other conti-

nental material such as carbonaceous aerosol and condens-

able organics may lead to a better agreement between model

and observations.

ACE-1 stands out from Fig. 6 as being the campaign from

which observations best characterised natural aerosol pro-

cesses. Nevertheless, our model suggests there was probably

still a substantial continental influence on air sampled across

Cape Grim, even when excluding air masses aged less than

120 h since contact with land. From these model results it

appears that the majority of the remote marine air sampled

across each campaign is likely to have been contaminated

with continental material. Figure 6 shows that there are few

regions of the Northern Hemisphere ocean where the influ-

ence of anthropogenic sulfate on marine aerosol is negligible.

5.4 Effect of primary anthropogenic emissions on MBL

size distributions

The baseline model run presented in Sects. 5.1 and 5.2 in-

cludes anthropogenic SO2 emissions but no emissions of pri-

mary anthropogenic particles. Here we investigate the con-

tribution of anthropogenic primary emissions to MBL size

distributions and explore to what extent they may explain

discrepancies between model and observations as outlined in

Sects. 5.1 and 5.2.

5.4.1 Effect of primary sulfate emissions

Spracklen et al. (2005a) and Adams and Seinfeld (2002)

have shown that primary anthropogenic sulfate particles can

greatly increase continental boundary layer CN number, and

may also affect particle concentrations over oceanic regions

downwind. In Spracklen et al. (2005b) we showed in par-

ticular that N Atlantic MBL CN concentrations could be in-

creased by between 100 and 300% by such emissions. As in

Spracklen et al. (2005b) we follow the approach of Adams
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Fig. 5. Comparison of zonal MBL aerosol number size distributions. Observations are from Heintzenberg et al. (2000). Model output is for

the 15◦ latitude x 15◦ longitude grid cells defined by Heintzenberg et al. (2000) and the results have not been filtered to reduce continental

contamination. Standard model run includes no primary emissions from anthropogenic sources, 3% SO2 primary model run includes 3% of

anthropogenic sulfur as particulate sulfate, BC/OC model run includes primary emissions of black carbon and organic carbon.

and Seinfeld (2003) and assume 3% of anthropogenic sulfur

is emitted as primary particles with two lognormal modes

with geometric mean diameters of 10 and 70 nm and stan-

dard deviations of 1.6 and 2.0, respectively. Fifteen percent

by mass of the primary particles is assumed to be emitted in

the small mode and the remainder in the large mode.

The effect of these anthropogenic primary emissions on

modelled Aitken and accumulation mode number and size is

summarised in Fig. 4 as triangles.

Figures 3 and 5 show the effect of including primary emis-

sions (dotted line) on regional and zonal number size distri-

butions. When we do not filter out continental air masses in-

cluding primary emissions causes a large increase in model

Aitken mode between 45◦N and 60◦ N resulting in an over-

prediction of Aitken mode number here by about a factor of

4. The impact of primary sulfate emissions is smaller when

we filter out continental airmasses (Fig. 4). ACE-Asia and

INDOEX modelled median number increase by about 25%

and ACE-2 concentrations by about 50%. ACE-2 95th per-

centile number increases by a factor of 2.5. However, ACE-2

Aitken mode number is still greatly underpredicted even with

primary emissions.

Including primary emissions of anthropogenic sulfate

(with the assumptions on mode size and emission rate made

here) has relatively little impact on the size of the Aitken

mode and does not help to explain model underprediction of

mode diameter.
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(a)

(b)

(c)

Fig. 6. Contribution of anthropogenic sources to the total burden of

submicrometre sulfate as an average for July and December 1995.

(a) Global distribution using all model data without filtering. (b)

Global distribution after filtering to remove air that is less than 120 h

from land. (c) Contribution of anthropogenic sulfur to the modelled

aerosol size distribution for the geographic regions covered by each

field campaign when including and excluding the 120 h filter. Re-

sults are shown as an average for June and December 1995.

5.4.2 Effect of industrial and biomass burning black and

organic carbon

BC and OC particles have also been observed at remote

MBL sites (Heintzenberg and Bigg, 1990). During the Joint

Global Ocean Flux Study (JGOFS) cruises between Nova

Scotia and the Canary Islands during September–October

1992, Van Dingenen et al. (1995) observed high concentra-

tions of carbonaceous aerosols up to about 600 km from the

continents. We examine the potential influence of BC and

OC particles on the MBL aerosol distributions. The effect

on regional Aitken and accumulation mode aerosol is sum-

marised in Fig. 4 as squares.

BC and OC emissions increase grand average median

aerosol number by about 40% (from 250 cm−3 to 350 cm−3)

and grand average 95th percentile number by 75% (from

1370 cm−3 to 2390 cm−3) even with the 120 h filter. These

emissions result in a better comparison with the observed

95th percentile concentration of 2380 cm−3. However, the

success of the model in capturing regional variations in

Aitken and accumulation mode properties is limited (Fig. 3

and 4). In the N. Atlantic (ACE-2) the inclusion of BC/OC

emissions has a negligible effect on the significant underpre-

diction of Aitken mode concentration, with the ratio mod-

elled/observed changing from 0.06 to 0.09. Aitken mode

concentrations were already overpredicted by a factor 7 in the

NE Pacific even without anthropogenic primary emissions,

and inclusion of BC/OC increases that overprediction to a

factor 9. There is a slight improvement for the ACE-1 region

in the Southern Ocean where anthropogenic BC and OC im-

prove the underprediction of Aitken mode number from 55%

to 40%.

The effect of anthropogenic BC and OC on accumulation

mode number is also mixed. There is a slight improvement

for ACE-1 but mode number is now overpredicted by about

a factor 2 for ACE-2 and ACE-Asia, where good agreement

was obtained in the baseline simulation. The mode diameter

of the accumulation mode is hardly affected or even made

worse by the primary emissions.

5.4.3 Discussion of the effect of anthropogenic primary

emissions

This comparison has identified a number of significant dis-

crepancies between modelled and observed particle size dis-

tributions in the MBL. We have shown that it is difficult to

filter out anthropogenic (or continental) influences on aerosol

simply based on the time that air has spent away from conti-

nental sources. This means that model-observation discrep-

ancies may be due in large part to uncertainties in continen-

tal emissions rather than marine aerosol emissions and pro-

cesses. Thus, it is difficult, based on these datasets, to eval-

uate our understanding of clean remote regions. Rather, our

model-observation comparison becomes a test also of our un-

derstanding of continental aerosol processes.

Our model, including natural and anthropogenic emis-

sions, underpredicts Aitken mode concentrations by more

than factor 9 in the N. Atlantic (ACE-2) but overpredicts by

a similar amount over the NW Pacific (ACE-Asia). Super-

fine sea spray emission is a possible explanation for the
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underprediction over the Atlantic, but the study of Pierce

and Adams (2006) suggests only a 20% effect at these lat-

itudes. Another possible explanation for the underprediction

is the lack of aerosol nucleation in the lower layers of the

model atmosphere. We have shown that Atlantic CN con-

centrations could be enhanced by up to a factor 10 by this

mechanism (Spracklen et al., 2006), although the predictions

for marine regions remain to be tested. An ultrafine mode

with diameter 19 nm and median concentration of 248 cm−3

(1866 cm−3 for the 95th percentile) is apparent in the ob-

servations during ACE-2 but is much less obvious during

other campaigns. The complete lack of this mode in the

model suggests we are missing a significant source of ultra-

fine particles in the lower atmosphere over the NE Atlantic.

Including primary anthropogenic emissions does produce an

ultrafine mode in the model but with low number concen-

trations (median number of 30–40 cm−3 for ACE-2). The

ultrafine mode may be attributable to local particle formation

in the lower atmosphere which could contribute to total par-

ticle concentrations. ACE-2 observations are from a coastal

station in Portugal and therefore could be also influenced by

coastal nucleation (O’Dowd et al., 1999). A further expla-

nation for the underprediction in the N. Atlantic could be

that emissions inventories for anthropogenic primary parti-

cles (BC and OC) are too low in terms of particle number at

Aitken mode sizes. In addition, our treatment of BC and OC

aerosol as hydrophilic upon emission will likely increase the

efficiency at which this aerosol is scavenged.

6 Free tropospheric number-size distribution

We have shown that the model consistently underpredicts the

size of the Aitken mode in the MBL. This could be a result of

the model underpredicting the FT particle size. FT aerosol is

entrained into the MBL and is the main source of the Aitken

mode. Here we compare modelled FT number-size distribu-

tions against observations to evaluate to what extent this is

the case.

Clarke and Kapustin (2002) averaged observations from

six aircraft flights of the PEM-Tropics B campaign over

the tropical Pacific Ocean between 20◦ S and 20◦ N during

March and April 1999. Figure 7a and b show a compari-

son of observed and modelled aerosol vertical profiles. Both

model and observations clearly show a monomodal distri-

bution in the FT (in contrast to the multi-modal distribution

observed and modelled in the MBL due to cloud process-

ing). As air descends from about 5 km altitude towards the

MBL, the particles grow (through coagulation and conden-

sation of vapours) and particle number falls (due to coagu-

lation). While modelled particle number and size shows the

same trends with altitude as observed, it is clear from Fig. 7a

and b that modelled growth of particles during descent is less

than observed. This can also be seen in Fig. 7c, which com-

pares modelled and observed number-size distributions in the

lower FT. Observations are from a variety of different mea-

surement campaigns and all show a monomodal distribution

with number peak dry diameter at between 50 and 80 nm,

somewhat larger than the modelled peak at around 40 nm.

These comparisons suggest that insufficient particle growth

in the FT produces FT particles that are too small when they

are entrained into the MBL. Heald et al. (2005) suggests that

a large fraction of FT aerosol mass is secondary organic from

the oxidation of long lived volatile organic compounds. The

model runs do not include condensation of secondary organic

aerosol. Our results therefore suggest that long-range trans-

port of continental organic compounds could impact the re-

mote MBL aerosol. Further work is needed to confirm this

hypothesis. An additional contribution to underestimated

growth maybe be due to the problems of representing sub-

grid scale growth in the global model.

7 Variability of MBL aerosol

The variability of MBL aerosol was investigated by

Heintzenberg et al. (2004) in order to understand the phys-

ical processes that control the aerosol properties. There are

two aspects to the variability of MBL aerosol: the spread

of particle concentrations about the median and the temporal

variability.

7.1 Particle concentration variability

Figure 8 compares the variability of observed and modelled

aerosol about the median for the four experiments combined.

It shows the frequency of occurrence of different particle

concentrations relative to the median after applying the 120 h

filter. The results show that the model correctly captures the

frequency of occurrence of particle concentrations greater

than the median but tends to overpredict the occurrence of

concentrations much less than the median. The same result is

apparent in Fig. 2: for particle diameters greater than about

40 nm the model 5th percentile is lower than the observed

5th percentile. Part of this discrepancy at very low N/Nmed

may be due to bad counting statistics at low number con-

centrations as described in Sect. 3. This will lead to a high

bias in the observations. The excessive occurrence of rela-

tively low particle concentrations suggests that the model’s

removal processes are too effective. It needs to be borne in

mind that this analysis of the grand average variability may

obscure regional differences.

7.2 Temporal variability

Heintzenberg et al. (2004) discussed the persistence of MBL

aerosol in the Southern Ocean and how it contrasts with that

of a continental site. The observations at the continental

site show an obvious diurnal cycle but no diurnal cycle is

present at the marine site. Figure 9 compares the persistence

of GLOMAP and the observations at the remote marine site
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(a)

(b)

(c)

Fig. 7. Number size distribution (at ambient temperature and pres-

sure) in the tropical Pacific. (a) Observations from six PEM-Tropics

B profiles between 20◦ S and 20◦ N (Clarke and Kapustin, 2002)

Contours are dN/dlogDp (cm−3). (b) GLOMAP model mean

number size distribution for 15 March–15 April 1999 averaged

over 20◦ S–20◦ N, 210◦ E–270◦ E. (c) Comparison of observed and

modelled number size distributions in the lower free troposphere.

Solid line shows the GLOMAP median distribution at 3 km altitude

averaged over the same geographic locations as in Fig. 2. Observa-

tions are from a variety of campaigns at altitudes between 2.4 and

3.4 km .

Fig. 8. Variability of size averaged and median normalised number

concentrations in the MBL. Solid line is the GLOMAP model and

dashed line is the average of all marine experiments from Heintzen-

berg et al. (2004). The number at each measurement diameter and

model size bin were normalised with the respective median con-

centration. These normalised concentrations were then placed in 21

geometrically spaced bins spanning between 0.01 and 100 times the

median concentration.

in the Southern Ocean. The model and observations have

several features in common: e.g., the smallest particles have

the least persistence; and a lack of a diurnal cycle for any size

class in the MBL. The short persistence of small particles is

not surprising. It indicates that there is no steady source of

small particles and that, when small particles do exist, their

persistence is limited by rapid coagulation. The presence of

a diurnal cycle at the continental site suggests that the small-

est continental particles have a local photochemical source

either in or just above the BL. The lack of such a cycle at

the marine site suggests that such nucleation is uncommon

in the Southern Ocean MBL. Particle formation in the UT

will certainly have a diurnal cycle driven by photochemistry,

but the long transport time from the UT to the BL will tend

to smooth this out. In GLOMAP, we include only binary

H2SO4−H2O particle nucleation, which does not produce

particles in the BL (due to the strong temperature depen-

dence of this mechanism) and explains the lack of a diurnal

cycle modelled number-size distribution. The good compar-

ison between modelled and observed persistence at this site

suggests that the model is correctly calculating the source of

secondary particles to the MBL (i.e., from the FT) and would

appear to rule out a local particle formation source. Further

work needs to determine whether there are regional differ-

ences in the importance of particle formation.
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8 Sensitivity to in-cloud aerosol activation schemes

In the baseline model runs all aerosol greater than 50 nm dry

diameter is activated into cloud droplets when low clouds are

present. Here we explore the impact of including a phys-

ically based aerosol activation scheme. Figure 10 shows a

comparison of size-dependent percentiles of number concen-

tration simulated using the fixed activation diameter scheme

and the NS03 scheme. For NS03, we show results for two

fixed updraught speeds and a run with a random updraught

speed between two limits.

To minimise the computational expense of multiple model

runs for an entire year, we limit model output for the sensitiv-

ity tests to a 10 day period in January and a 10 day period in

July. Comparisons of this shortened model output (Fig. 10a)

with that for an entire model year (Fig. 2) shows that we pro-

duce number concentrations in any model bin to typically

within ± 30%.

The use of a variable activation scheme with a constant

updraft speed reduces the depth of the minimum in the num-

ber size distribution between the Aitken and accumulation

modes. This reduction occurs because the NS03 scheme

permits the different aerosol distributions to activate with

different efficiencies, leading to the prediction of a range

of activation diameters. This range smoothes out the min-

imum between the Aitken and accumulation modes and re-

sults in better agreement with the observations. The use of

a random distribution of updraft velocities further reduces

the minimum between the Aitken and accumulation modes.

However, we note that using the NS03 scheme reduces the

modelled accumulation mode number concentration giving a

worse comparison with observations.

In the observational data, the mean diameter of the accu-

mulation mode and the diameter of the minimum between

the Aitken and accumulation modes increases from the 5th

to the 50th to the 95th percentile. With the fixed diameter

of activation, GLOMAP is unable to capture this shift; the

accumulation mode occurs in the same position for all three

percentiles. When the NS03 scheme is used, the mean diam-

eter of the accumulation mode is shifted to larger sizes as the

percentile increases. This occurs because the NS03 scheme

is able to capture the feedback between particle number and

the activation diameter: when particle number is small, there

are few sites onto which water vapour can condense, thus

the maximum supersaturation attained is large, and the cor-

responding activation diameter is small. Likewise, the maxi-

mum supersaturation is suppressed and the activation diame-

ter is large when particle concentrations are high. This find-

ing highlights the coupling between the particle size distri-

bution and cloud processes.

The NS03 scheme combined with the updraft speeds cho-

sen here makes the comparison of model 5th percentile with

observations worse. This is especially true for the Aitken

mode which is reduced both in size and number. Particle wet

removal in our model appears to be too effective resulting in

Fig. 9. Modelled and observed (Heintzenberg et al., 2004) auto-

correlation coefficients in the remote MBL at Cape Grim (40.8◦ S,

144.7◦ E) for different size particles and for total number concen-

trations for time lags between 0 and 60 h. Model results are for the

nearest model grid square whose land use is defined as 100% ocean.

too many occurrences of low particle concentrations in the

model (Fig. 8). With the standard fixed activation scheme

low particle concentration has no impact on the size of par-

ticles activated. With the NS03 scheme low particle con-

centrations result in particle activation down to very small

diameters which impacts Aitken mode size and number.

9 Conclusions

Recent compilations of marine boundary layer aerosol ob-

servations (Heintzenberg et al., 2000, 2004) have allowed

a detailed evaluation of a global 3-D sectional aerosol mi-

crophysics model against MBL aerosol statistics. We ex-

tend previous comparisons of observed and model particle

number concentrations (Spracklen et al., 2005a) to include

particle number size distributions, probability distributions,

and temporal persistence of different size particles. The ob-

servation datasets allow us to compare global and regional

marine aerosol properties. Heintzenberg et al. (2000) bins

aerosol observations by 15◦ latitude bands. Heintzenberg

et al. (2004) compiles observations from 5 different field

experiments (ACE-1, ACE-2, INDOEX/Aerosols99, ACE-

Asia) in four different oceans. To minimise contamination

from continental sources this database excludes data with

less than 120 h travel time from last contact with land.

Our initial model simulations assume that MBL aerosol

comprises solely of sulfate and sea salt and activation of

aerosol particles into cloud droplets occurs at a fixed size.

We then explore the impact of primary continental particle
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a) Constant diameter

b) Updraft= 0.15 ms−1

c) Updraft= 0.3 ms−1

d) Updraft=0.1–0.3 ms−1

Fig. 10. Comparison of GLOMAP aerosol size distributions for

January and July 1996 (solid) with observational data (dotted) from

Heintzenberg et al. (2004). Both model and observational data is

filtered to minimise continental influence (>120 h since land). Plots

show the model data using (a) a constant diameter of activation (of

50 nm) and a variable activation diameter, produced using the NS03

activation scheme assuming an updraft velocity of (b) 0.15 ms−1,

(c) 0.3 ms−1 and (d) 0.1–0.3 ms−1.

emissions and a more detailed treatment of aerosol activation

on modelled MBL aerosol.

The model (with sulfate and sea salt aerosol and fixed ac-

tivation diameter) simulates realistic global mean Aitken and

accumulation mode number. Key aspects of global mean re-

mote MBL aerosol distributions – a bimodal distribution with

“closed” size distribution at small particle diameters – are ac-

curately captured by the model. “Closed” size distributions

suggest that particle nucleation in the MBL is a rare occur-

rence. In addition we compared model and observed parti-

cle persistence in the Southern Ocean MBL, both of which

showed no diurnal cycle. In the model this is due to the bi-

nary homogeneous H2SO4−H2O nucleation scheme predict-

ing particle formation solely in the cold UT. Transport time

from the UT to BL smoothes out the diurnal cycle in the UT

before entrainment into the BL.

Our model is less capable of capturing observed regional

variations in aerosol number and size distributions. Observed

Aitken mode number is up to a factor of 3 higher than in the

model between 75◦ S and 30◦ S, a factor of 10 higher than

in the model in the N Atlantic and a factor of 7 lower than

the model in the NW Pacific. The work of Pierce and Adams

(2006) suggests that ultrafine sea spray may only contribute

to part of the underprediction of Aitken mode number in our

model. An alternative explanation may be underprediction of

particle nucleation in the lower atmosphere over certain areas

of the ocean. Further work is required to establish whether

different nucleation mechanisms result in more realistic re-

gional representation of Aitken mode number without im-

pacting aerosol properties (closed size distributions and tem-

poral persistence) which are well modelled with the current

nucleation scheme.

Our model underpredicts “grand average” Aitken mode

geometric mean diameter by 28% and accumulation mode

geometric mean diameter by 15%. Comparison of model

and observed FT size distributions suggests that some of the

underprediction of Aitken mode size is due to particles not

growing sufficiently in the FT before they are entrained into

the MBL. This may be due to lack condensable gases, other

than sulfuric acid, in our model. The emission of primary

carbonaceous aerosol does little to improve modelled Aitken

mode or accumulation mode size. Further work is required to

investigate the role of secondary organic aerosol which has

recently been suggested to contribute greatly to FT aerosol

mass (Heald et al., 2005).

Model Aitken mode size is also controlled by the activa-

tion diameter of aerosol particles into cloud droplets. Base-

line model runs assume a fixed activation diameter of 50 nm.

Including a more sophisticated aerosol activation scheme

(Nenes and Seinfeld, 2003) improves some aspects of mod-

elled aerosol size distributions. Variable activation diameter

results in a more realistic minimum between Aitken and ac-

cumulation mode and allows the model to capture feedbacks

between aerosol number and activation size. In compari-

son with observed 5th, 50th and 95th percentiles this allows
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the model to capture the observed increase in accumulation

mode size with increasing aerosol number.

The underprediction of accumulation mode size in the

MBL is important for calculations of cloud drop number. The

importance of this underestimation can be illustrated by con-

sidering its effect on the predicted cloud drop number. The

Nenes and Seinfeld (2003) parameterisation predicts the me-

dian observed distribution to have an average cloud droplet

number concentration (CDN) at cloud base of 207 cm−3, but

the average CDN concentration calculated from the model

data is just 130 cm−3 (using an updraft velocity from 0.5–

5.0 ms−1). Some models avoid this underestimation by spec-

ifying a minimum aerosol concentration in remote regions

in the calculation of CDN, but the forcing calculated is then

sensitive to the minimum chosen.

Emissions of primary particles from anthropogenic

sources contribute greatly to model MBL aerosol. When we

do not filter out air masses with continental character pri-

mary emissions can cause a large increase to both Aitken

and accumulation mode number. We explore the impact of

anthropogenic sulfate on MBL aerosol. In the North Atlantic

between 60 and 90% of sulfate mass across the size range is

anthropogenic in origin. This work suggests that even if a

back trajectory analysis is used to filter out continental con-

tamination, the North Atlantic is not a good location to study

natural aerosol processes many of which will still be domi-

nated by anthropogenic emissions.
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