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Abstract. Atmospheric CO2 drives most of the greenhouse

effect increase. One major uncertainty on the future rate of

increase of CO2 in the atmosphere is the impact of the an-

ticipated climate change on the vegetation. Dynamic Global

Vegetation Models (DGVM) are used to address this ques-

tion. ORCHIDEE is such a DGVM that has proven useful

for climate change studies. However, there is no objective

and methodological way to accurately assess each new avail-

able version on the global scale. In this paper, we submit

a methodological evaluation of ORCHIDEE by correlating

satellite-derived Vegetation Index time series against those of

the modeled Fraction of absorbed Photosynthetically Active

Radiation (FPAR). A perfect correlation between the two is

not expected, however an improvement of the model should

lead to an increase of the overall performance.

We detail two case studies in which model improvements

are demonstrated, using our methodology. In the first one,

a new phenology version in ORCHIDEE is shown to bring

a significant impact on the simulated annual cycles, in par-

ticular for C3 Grasses and C3 Crops. In the second case

study, we compare the simulations when using two differ-

ent weather fields to drive ORCHIDEE. The ERA-Interim

forcing leads to a better description of the FPAR interannual

anomalies than the simulation forced by a mixed CRU-NCEP

dataset. This work shows that long time series of satellite

observations, despite their uncertainties, can identify weak-

nesses in global vegetation models, a necessary first step to

improving them.
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1 Introduction

Dynamic Global Vegetation Models (DGVM) quantify en-

ergy and mass fluxes between the surface and the atmo-

sphere. They are either used as a component within mete-

orological forecasting schemes and climate models or they

are used in a stand-alone mode, forced by weather and cli-

mate fields, to help to quantify and understand the variability

of carbon, water or nutrients fluxes and pools. One major

uncertainty for the future rate of increase of CO2 in the at-

mosphere is the impact of the anticipated climate change on

the vegetation (IPCC, 2007). An increase of CO2 is expected

to have beneficiary impacts on the vegetation photosynthe-

sis and growth (leading to a net sink of carbon). However,

changes in temperature, radiation and precipitation, as a re-

sult of CO2 induced climate change, can have either posi-

tive or negative impacts on the carbon balance of ecosys-

tems (Ciais et al., 2005). These impacts differ across sea-

sons (Piao et al., 2008) and across regions (Running et al.,

2006). As such, there is a need to assess the quality of the

vegetation models at a global scale, especially as some of

them are used for prominent predictions of the carbon cycle-

climate feedbacks in the 21st century using coupled-models

(see Cox et al., 2000; Friedlingstein et al., 2006). Recent

efforts have been initiated to benchmark vegetation models

at different scales (Abramowitz, 2005; Gulden et al., 2008;

Cadule et al., 2010) and international projects are emerg-

ing such as the Carbon-Land Model intercomparison Project

(C-LAMP, Randerson et al., 2009), the International Land-

Atmosphere Model Benchmarking project (ILAMB, Blyth

et al., 2011; Cadule et al., 2010) and the LandFlux-EVAL

project (Seneviratne et al., 2009; Mueller et al., 2011). We
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focus here on the global scale, using satellite measurements

to evaluate model outputs. Even if a model modification

is evaluated favorably when comparing model outputs with

measurements at sites, it still has to be evaluated with ded-

icated global tools, such as the one we present here, when

applied on a global scale.

The objectives of this paper are twofold. First, we present

a robust method for a quantitative evaluation of any DGVM

performance using properly calibrated and corrected satel-

lite time series. Second, we apply this method to evaluate

the performances of different versions of the ORCHIDEE

vegetation model (different phenologies and different climate

drivers).

The model and satellite data are described in Sect. 2. Sec-

tion 3 details the methodology and Sects. 4 and 5 present the

results. Discussion and conclusions are given in Sect. 6.

2 Model and data

2.1 The ORCHIDEE model

ORCHIDEE (Krinner et al., 2005) is a DGVM developed at

the Institut Pierre Simon Laplace (IPSL). It models carbon,

water and energy fluxes as well as the dynamics of biomass,

soil carbon and soil water pools. It has been used at the site

level (Jung et al., 2007a) and on a global scale (Krinner et

al., 2005; Piao et al., 2008). The current version (1.9.5) is

available on request to the authors.

ORCHIDEE models the dynamics of 13 different Plant

Functional Types (PFT) (Prentice et al., 1992). Each PFT

contains different plant species which grow under similar soil

properties and climatic factors (temperature and precipita-

tion), and which share the same physiological processes such

as cold tolerance, or water needs (Cramer, 2002). The dy-

namics of each PFT are controlled by a common set of equa-

tions but with different parameters. An exception is the phe-

nology, for which each PFT is assigned a specific set of equa-

tions as described in Botta et al. (2000). The ORCHIDEE

model can either use a fixed distribution of PFTs (with frac-

tional coverage specified for each model grid) or it can cal-

culate the PFT distribution dynamically, according to local

climate and competition between different PFTs. As we are

evaluating the model over a short recent period, we chose to

use a fixed vegetation distribution, derived from recent ob-

servations, rather than a dynamic one. The state of the art

models of vegetation dynamics are still rather crude and lead

to biases in simulated vegetation types as compared to the ob-

servations (Krinner et al., 2005; Bonan and Levis, 2006). Ta-

ble 1 shows the list of the 13 PFTs along with their acronym

used in this paper.

The various versions of the ORCHIDEE model are due ei-

ther to structural changes (i.e. changes in the processes or the

controlling parameters) or to different input parameters, such

as meteorological forcing fields. An objective methodology

Table 1. Vegetation types and their abbreviations as used in

ORCHIDEE.

PFT Name Abbreviation

1 Bare soil Bare

2 Tropical Broad-leaved Evergreen TroBroEver

3 Tropical Broad-leaved Raingreen TroBroRain

4 Temperate Needleleaf Evergreen TempNeedleEver

5 Temperate Broad-leaved Evergreen TempBroEver

6 Temperate Broad-leaved Summer-green TempBroSum

7 Boreal Needleleaf Evergreen BorNeedleEver

8 Boreal Broad-leaved Summer-green BorBroSum

9 Boreal Needleleaf Summer-green BorNeedleSum

10 C3 Grass C3grass

11 C4 Grass C4grass

12 C3 Crops C3crops

13 C4 Crops C4crops

is needed for the evaluation of these versions, in order to

further improve carbon fluxes estimates on a global scale.

The primary carbon flux calculated by ORCHIDEE is the

Gross Primary Productivity (GPP). In a study by Jung et

al. (2007b), it was shown that the modeling of GPP was pri-

marily sensitive to differences between models rather than to

differences in meteorological forcing. We assume that these

conclusions should also hold for the Leaf Area Index (LAI),

as it is closely related to the GPP. We will therefore focus on

this ORCHIDEE key-variable as it can be compared to actual

satellite data. In this paper, we will thus evaluate the impact

of structural changes in the phenology model on the modeled

LAI, and the impact of two different global meteorological

forcing fields.

2.1.1 The phenology models

ORCHIDEE implements a prognostic leaf cycle through cli-

mate driven leaf onset models, and leaf senescence processes

governing turnover rates.

The climate driven leaf onset phenological models in

ORCHIDEE are mainly derived from the work of Botta et

al. (2000). The authors used AVHRR satellite data to select

and calibrate local phenology models (Chuine, 2000) for the

global scale, for approximately ten biomes. In ORCHIDEE,

the Summer-green PFTs leaf onset is driven by air tem-

perature only. The two Broad-leaved Summer-green PFTs

use a classical Growing-Degree-Day (GDD) model, where

the GDD cut-off value depends on the Number of Chill-

ing Days (NCD), following a decreasing exponential rela-

tionship. The Boreal Needleleaf Sumer-green PFT (mainly

Larix decidua) model uses a simple Number of Growing

Days (NGD) threshold model. The Tropical Broad-leaved

Raingreen PFT leaf onset is driven only by moisture avail-

ability while the Grass and Crop PFTs use a model mixing

a GDD threshold and moisture availability criteria. All con-

stants appearing in these models are PFT-dependant. The

four Evergreen PFTs have no associated onset models.
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The leaf senescence is driven by two different processes:

the first one depends on climatic conditions and the sec-

ond one depends on a critical leaf life span. In the climate

driven senescence models, the process for all Summer-green

PFTs is based on conditions related to temperature decrease

and the one for the Tropical Broad-leaved Raingreen PFT is

based on a lesser moisture availability condition. For all Tree

PFTs, when senescence is declared a predefined turnover rate

is set. The senescence model for the Grass and Crop PFTs

is a mixed one, with temperature and moisture availability

conditions governing a climate dependent turnover rate. In

the leaf age related senescence models, a mean leaf life span

is set for each PFT, and the turnover rate of leaves increases

sharply where mean leaf age reaches the leaf life span. Leaf

senescence of Evergreen PFTs is only driven by leaf age.

In the current version, two drawbacks have been identified

by users and the new phenology scheme is based on the cor-

rections proposed below for these drawbacks. The first draw-

back is related to the choice of the reference date at which

the GDD calculation begins. This date is variable and cor-

responds to the end of the former growing cycle. Although

functionally realistic, this system generates chaotic behavior

(due to non-linear onset and senescence phenological mod-

els using thresholds) and leads, for Grasses and Crops, to a

seemingly erratic tendency of “grow and decay”. This results

in very irregular LAI time series, with unrealistically large

interannual variations compared to the observations. On the

other hand, a fixed date cannot be chosen as ORCHIDEE

is designed to run for a wide range of time periods and cli-

mates, including paleo-climates. For these reasons, the new

phenology scheme uses the winter solstice, calculated for

each orbital condition, as the reference date for GDD cal-

culations. Fixing the date for the start of GDD calculations

for any given simulation leads to a more stable phenological

cycle.

The second drawback in the current ORCHIDEE version

is that crops share the same leaf onset and senescence cli-

mate driven phenology models as grasses. This is quite un-

realistic, even with different PFT parameters, as the crop

growing season length is generally much shorter than that

of grasses because the harvest abruptly terminates the sea-

sonal cycle. A complex approach for crop representation

was developed by coupling ORCHIDEE to the STICS agro-

nomic model (Gervois et al., 2008), but this option is not

yet included in the current ORCHIDEE version. In parallel,

a simpler approach has been adopted in the new phenology

version, which now includes a specific climate driven senes-

cence model for crops, based on the work done in Bondeau et

al. (2007) for the DGVM LPJ managed Land (LPJmL). This

crops senescence model is simply based on a GDD thresh-

old. At present ORCHIDEE is able to simulate only one C3

Crop type and only one C4 Crop type. We thus selected, in

the new phenology scheme, parameter values corresponding

to winter wheat for the C3 Crop PFT and parameter values

corresponding to maize for the C4 Crop PFT.

2.1.2 The meteorological forcings

The ORCHIDEE model generally uses 6-hourly meteoro-

logical fields of the following variables: surface pressure,

2-m air temperature, 2-m specific humidity, rainfall and

snowfall precipitation, surface wind, downward solar and

longwave radiation. We first evaluated the effect of driv-

ing ORCHIDEE by the latest ECMWF re-analysis, ERA-

Interim (ERA-I), which is currently available from 1989 to

the present (Berrisford et al., 2009). The variables are de-

fined on a Gaussian grid with a spatial resolution of approxi-

mately 70 km. We also evaluated the effect of a mixed CRU-

NCEP meteorological forcing dataset, based on the 6-hourly

2.5◦ NCEP/NCAR re-analysis (Kalnay et al., 1996), com-

bined with the CRU TS 2.1 monthly anomalies (Mitchell and

Jones, 2005). Precipitation and radiation fields are known

to be of a rather poor quality in re-analyses and are bet-

ter represented in climatologies; moreover re-analyses only

cover the second half of the 20th century up to the present.

The fusion of climatologies and re-analyses combines the ad-

vantage of the two datasets, although there are inconsisten-

cies between the parameters. The re-analyses datasets then

need to be corrected using monthly mean fields derived from

surface meteorological stations observations (Mitchell and

Jones, 2005). The CRU climate dataset is available for the

1901–2002 period. We performed monthly linear regressions

between CRU and NCEP during the common period (1901–

2002) of the two datasets, and used the results of these re-

gressions to correct the NCEP data over the whole period

(1901–2008). It is expected that the resulting fields have reli-

able mean values and show realistic temporal variations. The

mixed dataset is provided at a resolution of 0.5◦ (see more

details at http://dods.extra.cea.fr/data/p529viov/cruncep/).

For each simulation, the model is first run for several

decades until all carbon reservoirs reach their steady state

equilibrium, indicated by a close-to-zero decadal-mean value

of the Net Ecosystem Productivity (NEP) over each point of

the globe. Once equilibrium is reached, the model is run from

1901 to 2008 for a CRU-NCEP simulation, and from 1989 to

2008 for an ERA-Interim simulation. As is discussed below,

the MODIS (Moderate Resolution Imaging Spectroradiome-

ter) satellite data are only available after 2000. As such, the

period of interest for our research is set from 2000 to 2008.

ORCHIDEE is used at the spatial grid of the meteorologi-

cal forcings. This requires that the PFT distribution map, as

well as the soil map that gives the proportions of silt, sand

and clay (Zobler, 1986), are interpolated on the same grid.

As a consequence, the impact of the spatial scale must be

accounted for and, as such, is analyzed in Sect. 5.3.

2.1.3 PFT spatial distribution

As explained above, we chose to use fixed distributions of

PFTs. For the simulations that use the ERA-Interim mete-

orological forcings, the PFT distribution was derived from

www.geosci-model-dev.net/4/1103/2011/ Geosci. Model Dev., 4, 1103–1114, 2011
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high-resolution vegetation maps such as CORINE over Eu-

rope (Heymann et al., 1993) and UMd (Hansen et al., 2000)

for the rest of the world. The CRU-NCEP simulation that

is used for comparison was produced earlier in another con-

text and uses a different PFT distribution, derived from the

standard Olson classification at 5 km (Vérant et al., 2004).

Differences between the two PFT maps are detailed and the

respective fractional coverages for each of the PFTs are illus-

trated in the Supplement.

2.2 Satellite data

For the evaluation of the model simulations, we use prod-

ucts from the MODIS instrument, on board the Terra satel-

lite. MODIS is a key instrument of the NASA Earth Ob-

serving System and provides data for atmospheric, oceanic

and land surfaces studies. The primary inputs of our pro-

cessing are the daily surface reflectances, after correction for

atmospheric absorption and scattering (Vermote et al., 2002).

We use reduced-resolution data products at the 5 km spa-

tial resolution of the Climate Modeling Grid. The visible

(620–670 nm) and near infrared (841–876 nm) reflectances

are used to constrain a directional reflectance model, which

is then applied to correct the measurements for directional

effects (Vermote et al., 2009). This procedure retains the

highest temporal resolution (daily, cloud cover permitting)

without the noise generated by the day-to-day changes in

observation geometry. From the corrected reflectances, the

Normalized Difference Vegetation Index (NDVI) is calcu-

lated. Based on the irregular variation of the NDVI, Vermote

et al. (2009) estimate that individual measurements of the

NDVI have a noise of 0.02 or less for most tropical and mid-

latitudes pixels. This noise is approximately 0.03 for equa-

torial areas (due to a large cloud cover), some high-latitudes

areas (due to snow, clouds and large zenithal angles), and

south-east of Asia (due to a large aerosol load). The noise

is further reduced by temporal interpolation of the individual

measurements (see below).

This satellite product is, in principle, available every day;

however, due to cloud cover, the actual temporal resolution

is decreased. To generate a consistent dataset with a daily

resolution, we made a temporal interpolation using a polyno-

mial fit on the 10 observations that are closest in time. The

interpolated value is considered invalid if the difference in

time between the day of interest and the closest observation

is larger than 15 days.

3 Presentation of the methodology

3.1 Selecting variables

NDVI satellite data quantify the vegetation cover (Tucker,

1979) and may be logically used to evaluate the modeled

Leaf Area index (LAI), which is a key-variable of DGVMs

as it is directly related to GPP through the photosynthesis

process. However, it is well known that the NDVI tends to

saturate for large LAIs (Myneni et al., 1997) because, as leaf

cover gets larger, fewer and fewer photons can penetrate and

illuminate the lower leaf layers, so that the latter have a very

limited impact on the measured reflectance. There is there-

fore no linear relationship between LAI and NDVI. However,

a much more linear relationship exists between the NDVI

and the Fraction of absorbed Photosynthetically Active Radi-

ation (FPAR) (Knyazikhin et al., 1998). To a first approxima-

tion, FPAR can be estimated from LAI using a simple Beer’s

law with a general purpose extinction coefficient value of 0.5

(Monsi and Saeki, 1953):

FPAR = 1−exp(−0.5 LAI) (1)

We will therefore compare the measured NDVI and the

simulated FPAR time series. Although NDVI and FPAR are

related, a number of variables other than FPAR, such as veg-

etation geometry, soil reflectance, fractional cover, mixture

of grass understory with trees, measurement noise, or leaf

spectral signatures, also impacts NDVI. Hence, there is no

expectation of a robust correspondence between the two vari-

ables but we argue that these perturbing factors apply to all

versions of the ORCHIDEE model and have a similar impact.

Therefore, an improved version of the model should better fit

the satellite observations. A quantitative evaluation is there-

fore obtained through the correlation between the modeled

FPAR and satellite observed NDVI time series. As the corre-

lation will be meaningful only for time series with an annual

cycle, it has not been calculated if the standard deviations of

both time series are lower than a threshold of 0.04, which is

larger than the noise of a pixel NDVI time series.

3.2 Averaging satellite observations at the model

resolutions

The satellite data and the model outputs are provided at dif-

ferent spatial and temporal resolutions. It is therefore neces-

sary to apply some interpolation and averaging. In our anal-

ysis, the correlations are computed over the time series at

a weekly or monthly scale and at the vegetation model grid

scale. Satellite data are provided at a spatial resolution that

is much higher than that of the model. It is then straightfor-

ward to degrade the resolution of satellite data to that of the

model through a simple averaging of the pixels that fall into

the model box. As for the temporal averaging, we use the

interpolation procedure described above to generate consis-

tent daily time series. A simple averaging is then applied to

generate the weekly or monthly datasets. The temporal and

spatial averaging is expected to reduce the noise of the NDVI

time series even more, by decreasing the effect of random er-

rors present in satellite observations.

We also produce interannual anomaly time series of both

NDVI and FPAR, by computing a mean annual cycle over

the full observation period and removing it from each year of

the corresponding time series. The comparison between the
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modeled FPAR anomaly time series and the satellite NDVI

anomaly time series enables us to quantify the model’s abil-

ity to reproduce interannual variations in the vegetation leaf

cycle, in response to climate and weather interannual vari-

ability.

3.3 Correlation maps

For any grid box, the satellite and model time series are used

to compute a correlation coefficient. The spatial distribution

of these coefficients is shown in correlation maps, which are

informative in identifying areas where the model reproduces

the observed variations with various degree of accuracy. We

analyze both the correlation maps based on the original time

series, and those based on the anomalies. The former are

indicative of the model ability to reproduce the seasonal cy-

cle, whereas the latter are representative of the model perfor-

mance for reproducing interannual anomalies, as a response

to anomalous weather patterns.

3.4 Median correlation as a simple scoring value

Correlation maps are certainly needed to analyze the model

performance. However, a single value for the scoring of a

particular simulation is needed if we want to rank different

ORCHIDEE versions. To reduce the model performance to

a single parameter, several statistics are possible. Although

there is very little difference between the median and the

mean, we favor the former as it gives less weight to outliers:

we thus select the weighted median value of the correlation

map (Ratel, 2006), the “weight” being the surface area of

each model box, to avoid over-representation of high lati-

tudes in regular grids.

3.5 Scoring per PFT

Although a single scoring value is useful for ranking pur-

poses, one may also want to evaluate the model for each PFT

independently to get a more precise diagnostic and to see

for which PFTs improvements have occurred and for which

PFTs modifications are still needed. This is not an obvious

task as most model boxes include a mix of several PFTs. We

recall that the FPAR simulations are performed for each of

the 12 PFTs independently (not for Bare Soil). We have used

the same high-resolution vegetation maps, that were used to

derive the PFT distribution for the ERA-Interim simulations,

to identify the dominant PFT at the resolution of the satellite

dataset (5 km). For each model box, we identified the domi-

nant PFT. The box was not used further when the fraction of

this dominating PFT was less than 50 %. We then identified

the satellite pixels that were assigned the same PFT as the

dominant PFT of the box, and averaged the satellite NDVI of

these pixels. The same time series and correlation analysis

could then be done as described above in Sects. 3.2, 3.3 and

3.4, but using the dominant PFT of the box and averaging

Fig. 1. Top plot: Monthly time series of the NDVI (black thick

curve) and the FPAR (red thick curve) over the MODIS period, for a

model box located in Bostwana (21.0◦ S, 22.7◦ E, see cyan diamond

on the map). The correlation coefficient of the two time series is

given on the right under the top plot (r = 0.59). Using the nine

years between 2000–2008, a mean annual cycle for both the NDVI

and FPAR signals is derived (middle left plot). We then subtract

each year these mean annual cycles from their respective time series

and get NDVI and FPAR anomaly time series (bottom plot). The

correlation coefficient of the two anomaly time series is given on

the right under the bottom plot (r = 0.52).

only the satellite pixels corresponding to this PFT. This pro-

cedure results in a scoring for each of the 12 PFTs.

4 Illustrative results for a single simulation

4.1 Correlations at the model box level

An example of the methodology is shown at the model box

level in Fig. 1. The plots are generated for a model box lo-

cated in Botswana (see inset). The top figure shows the ob-

served NDVI and the modeled FPAR for the ERA-I-based

simulation with the new phenology version, over the nine-

year period. Both time series show a clear annual cycle with

vegetation growth towards the end of the year, and senes-

cence around April (see the mean annual cycle). Although

the agreement is not striking, there is some correspondence

between the two time series. The correlation coefficient, (r),

is 0.59. The bottom plot shows the same time series, but after

the mean annual cycle has been subtracted. Again, the corre-

spondence is still only moderate, but there is nevertheless a

decent correlation, indicating that the model is able to repro-

duce some of the interannual signal observed by the satellite.

www.geosci-model-dev.net/4/1103/2011/ Geosci. Model Dev., 4, 1103–1114, 2011
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Fig. 2. Correlation map between the NDVI and the FPAR monthly

time series for the 2000–2008 period and the ERA-I simulation with

the new phenology scheme. The correlation is not calculated when

no annual cycle in the NDVI and FPAR is detected (grey areas).

4.2 Correlation map

The corresponding map of correlation coefficients is shown

in Fig. 2. This particular figure was obtained based on the

simulation forced by the ERA-Interim meteorology and the

new phenology version of ORCHIDEE. The highest corre-

lations (>0.8) are found over high temperate latitudes, es-

pecially Europe and large parts of North America. There

are also high correlations over tropical Raingreen Africa and

Brazil. Approximately 10 % of the boxes do not exhibit a

significant seasonal cycle, neither in the measurements nor

in the model results. They are represented in grey in Fig. 2.

These boxes are mostly located either over desert or in the

tropical evergreen forest areas. Still, low correlations (close

to zero) are found over equatorial forests (Amazonia, Cen-

tral Africa, Indonesia), indicating a real model deficiency in

these regions. A closer analysis of these latter regions shows

that the satellite NDVI time series exhibits a significant an-

nual cycle, while the modeled FPAR shows either no cycle or

a phase-shifted one. Indeed, in Amazonia, a marked annual

cycle has been observed over evergreen forests using MODIS

Enhanced Vegetation Index (EVI; Huete et al., 2006; Moreau

et al., 2010) or MODIS LAI (Myneni et al., 2007). LAI

and EVI are preferred in these studies to FPAR and NDVI

as they do not saturate over dense vegetation and then have

larger amplitude (Huete et al., 2002). Hence, the extension

of the grey zone could have been smaller if we have used

EVI instead of NDVI. The failure of the ORCHIDEE veg-

etation model over these regions needs to be further inves-

tigated. As an example, the BIOME-BGC model has been

shown to underestimate rooting depth in the Amazon, an

important parameter because it controls water stress during

the dry season, when plants have access to moisture only in

deeper soil (Ichii et al., 2007). A similar deficiency in the

ORCHIDEE model was recently shown when assimilating

FLUXNET data to optimize the model parameters (Verbeeck

et al., 2011). Furthermore, seasonal variations in leaf phe-

nology for evergreen tropical forests are currently being in-

troduced in ORCHIDEE (de Weirdt et al., 2010).

Fig. 3. NDVI/FPAR monthly correlations weighted histograms for

the current phenology (blue curve) and for the new phenology (red

curve) simulations, both forced by ERA-I fields (binsize = 0.02).

The vertical dashed lines indicate the weighted median values.

5 Application to the comparison of different

simulations

We now discuss the application of the general methodology

described in Sect. 3 to two sets of model versions. The first

one focuses on a structural modification of the model phe-

nology, while the second concerns the input meteorological

fields.

5.1 Evaluation of the phenology modeling

Figure 3 shows the surface-weighted normalized histograms

of two monthly correlation maps, in blue for the simula-

tion with the current phenology and in red for the simu-

lation with the new phenology modules. Both simulations

are driven with the same ERA-Interim meteorology. A his-

togram shifted to the right is desirable. The comparison of

the two histograms clearly indicates that the new modeling

of the phenology performs better; the surface-weighted me-

dian value of the monthly correlations is 0.67 for the new

phenology against 0.57 for the current one.

To better interpret the comparison, it is necessary to ad-

ditionally identify the regions where the improvement is the

most significant. Figure 4 shows the difference between the

new phenology correlation map and the current version cor-

relation map. Most of the mid and high latitude regions of the

Northern Hemisphere are improved with the new phenology

version. On the other hand, a large area in southern China

is significantly degraded. This area corresponds to double

and triple-cropping cultivation, where the current crop phe-

nology of ORCHIDEE with an ill-defined seasonality is in

better agreement with the NDVI observations (Piao et al.,

2010). There are consistent patterns, which indicate that the
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Fig. 4. Difference between the correlation maps for the new phe-

nology and the current phenology.

Fig. 5. Surface-weighted median values per PFT, for the

NDVI/FPAR time series correlations. The blue bars are for the cur-

rent phenology and the red bars for the new phenology. The black

thick line indicates the total surface of the boxes used to assess the

PFT median correlation.

impact of the structural model modification is not random but

rather biome-dependent.

Figure 5 shows the surface-weighted median correlations

for each of the 12 PFTs together with their respective sur-

faces and for the two phenology schemes. Only the boxes

where the specific PFT is dominant (>50 % fractional cover)

are considered here. Figure 5 confirms that the ability of

the model to reproduce the observed annual cycles strongly

depends on the PFT. As already explained above, the Trop-

ical Broad-leaved Evergreen PFT shows a poor correlation.

The best score on the other hand is found for the Temperate

Broad-leaved Summer-green PFT. Figure 5 shows that the

improvement for the new phenology version is essentially

for the C3 Grass PFT, with a weighted median correlation

value of 0.72 rather than 0.48. The C4 Crop PFT also shows

an improvement, but it describes a very small surface. There

is no improvement for the C3 Crop PFT, which is surprising

as some of the phenology modifications were targeted at this

specific PFT.

This outcome thus needs to be analyzed more in detail.

The correlation histograms for the C3 Crop PFT are shown

Fig. 6. Weighted normalized histograms of the correlations between

the partial NDVI and partial FPAR for the PFT C3 Crops, in blue

for the current phenology and in red for the new phenology (bin-

size = 0.02).

in Fig. 6. A majority (53 %) of the model boxes show an im-

proved correlation with the observation, but a large number

show a significant degradation, with correlations that actu-

ally become negative after the modeling change. In the new

modeling scheme, the C3 Crops phenology is based on the

dynamic of the winter wheat in Europe. Hence it clearly im-

proves results for boxes where this type of crop is dominant

(Europe, Great Plains, Manchuria), such as that shown in

Fig. 7, top. The current version of ORCHIDEE (blue curve)

simulates, for the C3 Crop PFT, a large seasonal cycle with

large interannual variations; on the other hand, the new phe-

nology version (red curve) shows a cycle that is well in phase

with the NDVI observation (black curve). However, there are

a large number of C3 crops other than wheat, including rice,

soybean, cotton, barley, each with multiple cultivars and thus

multiple phenologies. A single model box containing any

given percentage of the C3 Crop PFT may in reality include

a mix of different crops with different phenologies. Hence

other boxes behave less favorably with the new phenology

version, as shown in Fig. 7, bottom, for a box in south-eastern

China that clearly exhibits a double cropping NDVI cycle

(black curve). The FPAR simulated by the new phenology

(red curve) is in phase with the first observed crop cycle but,

as only one crop type is simulated, there is no modeled signal

corresponding to the second observed crop cycle, thus result-

ing in an absence of correlation. The FPAR simulated by the

current version, similar to that of a grassland, has a large

seasonal cycle that is somewhat closer to the succession of

multiple crops. However this is not an acceptable solution.

Although the changes in the phenology lead to a general im-

provement, there is a clear necessity to at least enlarge the

number of crop types simulated by ORCHIDEE, in order to

get realistic seasonal cycles on a global scale.
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Fig. 7. Time series for two C3 Crops boxes located respectively in the Great Plains of North America (upper plot) and south-east of China

(lower plot); NDVI is in black, the FPAR for the current phenology is in blue and the FPAR for the new phenology is in red. The plots give

only the signals related to the C3 Crops fraction of the boxes. For the upper plot, the new phenology delivers a C3 Crops FPAR whose phasing

with the C3 Crops NDVI has largely been improved (r = 0.85), as compared to the C3 Crops FPAR of the current phenology (r = 0.43). For

the lower plot box, the C3 Crops NDVI exhibits a regular double cropping signal, the C3 Crops FPAR delivered by the new phenology is

in phase with the first observed crop cycle but, as only one crop type is simulated, there is no modeled signal corresponding to the second

observed crop cycle, thus resulting in an absence of correlation (r = 0.03).

5.2 Evaluation of the meteorological forcings

We now evaluate the impact of using two different sets of

global meteorological inputs. The procedure is similar as to

the one above and we use the ORCHIDEE version with the

new phenology scheme. When looking at the modeled time

series over the same time frame against those of the satel-

lite data, the weighted median values of the correlation are

rather similar. The ERA-I forcing leads to a median value

of r = 0.67 while CRU-NCEP leads to r = 0.66. The two

different meteorology fields thus do not lead to significant

global differences in the mean seasonal cycle generated by

ORCHIDEE. We then compare the anomaly time series. Re-

producing the interannual variations of leaf activity is more

difficult than reproducing the mean annual cycle and, as ex-

pected, the mean correlations are much lower than those ob-

tained with the original time series. Although the model-

measurement correspondence is poor, it is nevertheless sig-

nificantly better (given the large number of grid boxes, more

than 20 000) for the ERA-I forcing (r = 0.25) than for the

CRU-NCEP forcing (r = 0.19). This result may indicate

the better quality of the ERA-I re-analysis interannual sig-

nal compared to CRU-NCEP, and the model ability to make

use of it.

Fig. 8. Surface-weighted median values per PFT, for the anomaly

NDVI/FPAR time series correlations. The green bars are for CRU-

NCEP meteorological forcing and the red bars for ERA-Interim me-

teorological forcing. The black thick line indicates the total surface

of the boxes used to assess the PFT median correlation.

Figure 8 represents the scoring per PFT of the NDVI ver-

sus FPAR anomaly time series. As the simulations have two

different vegetation maps, we only compare the results where

Geosci. Model Dev., 4, 1103–1114, 2011 www.geosci-model-dev.net/4/1103/2011/



F. Maignan et al.: Evaluation of a Global Vegetation Model using time series of satellite vegetation indices 1111

the vegetation maps are coherent. Hence a box is selected in

each simulation only if the vegetation fraction of the domi-

nant PFT is higher than 0.5 and if the dominant PFT of the

nearest box of the other simulation is the same, and with

a vegetation fraction higher than 0.5, even though Jung et

al. (2007b) did not identify different land cover maps as a

key factor for different outputs. This analysis per PFT con-

firms that the ERA-I-based simulation reproduces the inter-

annual variability better than the CRU-NCEP simulation for

a majority of cases. This holds true for the Tropical Broad-

leaved Raingreen PFT, for all three Temperate PFTs, and for

the two C3 PFTs. There are no common boxes for the two

C4 PFTs and the Boreal Broad-leaved Summer-green PFT.

At face value CRU-NCEP leads to a better median correla-

tion for the two Evergreen PFTs. The simulations perform

similarly for the Boreal Needleleaf Summer-green.

We performed a similar study per season (December,

January and February representing Winter in the Northern

Hemisphere for example, and the seasons in the Southern

Hemisphere with a six-month shift). We found that Spring

gives the best scorings for the modeled FPAR anomaly time

series, which is expected as the onset is very sensitive to

climate modifications, at least in the northern mid-latitudes

(Schwartz et al., 2006; Richardson et al., 2010). The best

scorings are for the C3 Crop PFT (r = 0.54 for ERA-I) and

the Boreal Needleleaf Summer-green (r = 0.37 for CRU-

NCEP). There is no significant difference between seasons,

so that no specific season drives the better scoring of ERA-I

for anomaly time series.

5.3 Impact of the spatial resolution

We now study how the satellite NDVI versus modeled FPAR

correlation is sensitive to the spatial resolution. For this ob-

jective, we used the CRU-NCEP simulation as its regular

0.5◦ grid is easier to handle than the irregular ERA-I Gaus-

sian grid, and can be degraded through a simple averaging.

Figure 9 shows the median correlations for both the time se-

ries and their interannual anomalies for a spatial resolution of

0.5◦ to 10◦; the model-observation correspondence increases

as the spatial resolution gets coarser. A simple explanation

is that spatial averaging decreases the non systematic errors.

Such random errors are certainly present in the satellite data.

They may also be present in the model results, in particu-

lar due to random errors in the meteorological forcing. The

significant improvement in the correlation with coarser reso-

lution puts our earlier result on the better performance of the

ERA-I forcing compared to that of CRU-NCEP into ques-

tion. Indeed, the ERA-I analysis has a resolution of 0.7◦,

against 0.5◦ for that of CRU-NCEP, and one may therefore

question whether the comparison is fair. From the data points

shown in Fig. 9, we performed a simple polynomial fit and

used the fit to extrapolate the CRU-NCEP results to a hypo-

thetical resolution of 0.7◦ (vertical dashed lines in Fig. 9).

The interpolated correlations are 0.67 for the time series and

Fig. 9. Surface-weighted median values for the NDVI/FPAR time

series (thick black diamonds) and anomaly time series correlations

(thick red diamonds), as a function of the spatial resolution. The

black and red curves are the results of degree 5 polynomial fit. The

dashed lines indicate the extrapolation to the theoretical resolution

of 0.7◦ using the polynomial fit.

0.21 for the anomalies, which is still statistically significantly

lower than the 0.25 value obtained with the ERA-I forcing.

Therefore, although the spatial resolution may explain

some of the better results obtained with the ERA-I meteo-

rological fields, it cannot explain them fully, and the data of

the latter are most likely of better quality, in particular when

considering the interannual variations.

6 Discussion and conclusions

This work demonstrates a global satellite database can be

used to rank several versions of the ORCHIDEE model.

Evaluations of DGVMs using satellite data have been pub-

lished before, but not using the spatial and temporal resolu-

tion of the present study. For instance, Krinner et al. (2005)

focused on the mean LAI over a 5 yr period at coarse scale

(4◦
× 2.5◦). Other studies (e.g. Kim and Wang, 2005; Twine

and Kucharik, 2008) focused over North America and did

not analyze all biomes. To our knowledge, there is no previ-

ously published work that compares the annual cycle and the

interannual anomalies of the model outputs and the satellite

observations.

Although the analysis presented above uses the correla-

tion as a metric, we also performed similar analysis but us-

ing the “relative Root Mean Square Error” (rRMSE), cal-

culated between the NDVI and a scaled FPAR. We reached

the same conclusion as with the median correlation, that the

proposed new phenology is improved over the current one

(with a lower rRMSE of 17 % against 20 %). The ERA-

I and CRU-NCEP forcings reached similar scores (respec-

tively 17 % and 17 % for the time series and 132 % and 134 %

for the anomaly time series).
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We observed no significant trends over the nine year-

period of the study, neither in the satellite data nor in the

modeled FPAR. When the weekly temporal resolution was

available for the outputs (for the ERA-I simulations) we

found a slightly lesser weighted median value than for the

monthly resolution (e.g. 0.65 against 0.67, for the second

simulation with the new phenology). We tested other ex-

tinction coefficient values for the FPAR/LAI relationship

(Eq. 1), as mentioned in Beer et al. (2009): 0.7 for Decid-

uous Broad-leaved forests, including PFTs 3, 6 and 8 and

0.4 for grasses, including PFTs 12 and 13. This modifica-

tion had only a small impact on the time series correlations

with a final scoring for the corresponding PFTs changing by

less than 0.02. When comparing the simulations per PFT we

adopted a rather conservative approach by imposing a mini-

mum threshold of 0.5 on the PFT fractional cover for a box

to be considered. This was done to be sure that there was

enough information in the NDVI signal for the correspond-

ing PFT. However it is worth noting that even when lowering

this threshold to 0.2, the median correlations are degraded by

less than −0.01 on the average.

The comparison of the model outputs with the satellite

data produces a very wide range of correlations for the C3

Crop PFT. This is most likely due to the fact that C3 crops are

very diverse, with different phenologies and different agri-

culture practices. This work stresses the necessity to split the

Crop PFTs between several crop types (maybe first by sim-

ply regionalizing the PFTs parameter values) to get realistic

simulated seasonal cycles all over the world.

The present study demonstrates the possibility of using

satellite data as an objective means to evaluate the perfor-

mance of various versions of the ORCHIDEE model. It could

of course be also applied to other DGVMs, or for inter-model

evaluations. In the future we will systematically perform a

similar evaluation for each new version of the ORCHIDEE

model. The next planned new functionalities will concern

the nitrogen cycle (Zaehle et al., 2010), and the introduction

of specific crop modules (Gervois et al., 2008). We will also

test EVI instead of NDVI in our procedure, as this variable

appears to be quite robust to atmospheric conditions over the

tropical forests (Poulter and Cramer, 2009).

Supplementary material related to this

article is available online at:

http://www.geosci-model-dev.net/4/1103/2011/

gmd-4-1103-2011-supplement.pdf.
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