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Evaluation of a multiparametric 
MRI radiomic‑based approach 
for stratification of equivocal 
PI‑RADS 3 and upgraded PI‑RADS 
4 prostatic lesions
Valentina Brancato1*, Marco Aiello1, Luca Basso1, Serena Monti3, Luigi Palumbo2, 
Giuseppe Di Costanzo2, Marco Salvatore1, Alfonso Ragozzino2 & Carlo Cavaliere1

Despite the key‑role of the Prostate Imaging and Reporting and Data System (PI‑RADS) in the 
diagnosis and characterization of prostate cancer (PCa), this system remains to be affected by several 
limitations, primarily associated with the interpretation of equivocal PI‑RADS 3 lesions and with the 
debated role of Dynamic Contrast Enhanced‑Magnetic Resonance Imaging (DCE‑MRI), which is only 
used to upgrade peripheral PI‑RADS category 3 lesions to PI‑RADS category 4 if enhancement is focal. 
We aimed at investigating the usefulness of radiomics for detection of PCa lesions (Gleason Score 
≥ 6) in PI‑RADS 3 lesions and in peripheral PI‑RADS 3 upgraded to PI‑RADS 4 lesions (upPI‑RADS 4). 
Multiparametric MRI (mpMRI) data of patients who underwent prostatic mpMRI between April 2013 
and September 2018 were retrospectively evaluated. Biopsy results were used as gold standard. 
PI‑RADS 3 and PI‑RADS 4 lesions were re‑scored according to the PI‑RADS v2.1 before and after DCE‑
MRI evaluation. Radiomic features were extracted from T2‑weighted MRI (T2), Apparent diffusion 
Coefficient (ADC) map and DCE‑MRI subtracted images using PyRadiomics. Feature selection was 
performed using Wilcoxon‑ranksum test and Minimum Redundancy Maximum Relevance (mRMR). 
Predictive models were constructed for PCa detection in PI‑RADS 3 and upPI‑RADS 4 lesions using at 
each step an imbalance‑adjusted bootstrap resampling (IABR) on 1000 samples. 41 PI‑RADS 3 and 32 
upPI‑RADS 4 lesions were analyzed. Among 293 radiomic features, the top selected features derived 
from T2 and ADC. For PI‑RADS 3 stratification, second order model showed higher performances 
(Area Under the Receiver Operating Characteristic Curve—AUC— = 80%), while for upPI‑RADS 4 
stratification, first order model showed higher performances respect to superior order models 
(AUC = 89%). Our results support the significant role of T2 and ADC radiomic features for PCa detection 
in lesions scored as PI‑RADS 3 and upPI‑RADS 4. Radiomics models showed high diagnostic efficacy in 
classify PI‑RADS 3 and upPI‑RADS 4 lesions, outperforming PI‑RADS v2.1 performance.

Prostate cancer (PCa) is one of the most commonly diagnosed malignant neoplasms among  men1. Multipara-
metric Magnetic Resonance Imaging (mpMRI) has gradually gained in importance for both a timely diagnosis 
and an accurate characterization of PCa lesions, which play a key-role in all PCa patient management  steps2,3.

With the goal of standardizing the acquisition and reporting of prostatic mpMRI imaging examinations, the 
European Society of Urogenital Radiology (ESUR) developed the Prostate Imaging-Reporting and Data System 
(PI-RADS) in 2013 and then updated it in 2015 (PI-RADS v2) and 2019 (PI-RADS v2.1)4.

PI-RADS evaluation is based on a 5-point scale associated with the probability that a combination of �nd-
ings on mpMRI modalities (namely T2-weighted—T2, Di�usion Weighted MRI—DWI and Dynamic Con-
trast-Enhanced MRI—DCE-MRI, abbreviated) correlates with the presence of a clinically signi�cant cancer for 
detected prostatic lesion. PI-RADS score ranges between 1 and 5, respectively indicating a very low and a very 
high likelihood that a lesion is malignant. �e PI-RADS classi�cation had a crucial role in PCa management since 
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its development, and has proven to be a powerful tool for the identi�cation and aggressiveness characterization 
of prostatic  lesions5–8.

Although encouraging results have been reported in the literature on the role of the PI-RADS in the diagno-
sis and characterization of PCa, this system remains to be a�ected by several limitations, primarily associated 
with the interpretation of PI-RADS category 3 lesions, namely those lesions on prostate MRI that are termed as 
‘intermediate’ or ‘equivocal on the presence of clinically signi�cant cancer’4.

Despite the increase in diagnostic accuracy, reproducibility and score assignment easing of PI-RADS v2 and 
v2.1 compared to the �rst version, limitations related to risk strati�cation of PI-RADS 3 lesions still remain, since 
guidelines do not say how to deal with such imaging �ndings that are  indeterminate4,9,10. PI-RADS 3 lesions 
present a challenge to treating urologists who must decide the optimal management option, namely whether to 
monitor with follow-up prostate-speci�c antigen (PSA) testing and imaging, or schedule immediate biopsy. An 
accurate and calibrated patient selection for prostate biopsy is essential in order to avoid unnecessary  biopsies9. 
�is equivocal imaging characterization may lead to high variability in practice patterns, costs, and potentially 
clinical outcomes across di�erent institutions. Studies aimed at stratifying PI-RADS 3 lesions are  limited9,11–15. 
Another limitation directly a�ecting PI-RADS 3 lesion assignment concerns the role of DCE-MRI, which is still 
regarded as very controversial and debated, and its added value in combination with T2 and DWI was still not 
clearly assessed. Currently, according to the new PI-RADS v2.1, DCE-MRI is only used to upgrade PI-RADS 
category 3 lesions to PI-RADS category 4, but only for lesions located in peripheral zone (PZ)4. However, the 
diagnostic value of DCE-MRI in prostate MRI remains subject of the current debate and it must be shown how 
many additional cases of PCa are found in PI-RADS 3 upgraded to PI-RADS 4 lesions. Radiomics, the extrac-
tion of multiple quantitative imaging features from medical images, represents an attractive tool which could 
overcome the clinical challenge associated with radiologist uncertainties related to PI-RADS 3 lesions and PI-
RADS 3 upgraded to PI-RADS 4 lesions. Radiomic tool has been widely explored in the �eld of PCa and led to 
promising results, but especially in studies aiming at di�erentiating between normal and cancerous prostatic 
tissue, characterizing PCa lesions in terms of aggressiveness according to Gleason Score (GS), and also compar-
ing diagnostic power of radiomic features with that of PI-RADS  scoring16–22. However, to our knowledge, only 
Giambelluca et al.23 applied radiomic approach to stratify PI-RADS 3 lesions, and there are any studies aiming 
at investigating the power of radiomics in stratify PI-RADS 3 upgraded to PI-RADS 4.

In this context, we aimed at investigating the usefulness of radiomics for detection of PCa (GS ≥ 6) in PI-RADS 
category 3 lesions and in PI-RADS 3 upgraded to PI-RADS 4 lesions (upPI-RADS 4) in PZ.

Methods and materials
Patient population. We performed retrospective analysis of all mpMRI data of patients who underwent 
mpMRI of the prostate between April 2013 and September 2018 due to elevated PSA level and/or clinical suspi-
cion of PCa and subsequently biopsy. mpMRI images and histopathology records were collected at H.S. Maria 
delle Grazie, Italy and informed consent was given before Magnetic Resonance (MR)  examination24. �e study 
was conducted in accordance with the Declaration of Helsinki, and the study protocol was approved by the Eth-
ics Committee of the Istituto Nazionale Tumouri “Fondazione G. Pascale (protocol number 1/20). PI-RADS 1, 2 
and 5 lesions were excluded. Examinations where a PI-RADS 3 lesion was present together with PI-RADS 4 or 5 
lesion were excluded. Biopsy results were used as gold standard.

MRI protocol. Routine clinical mpMRI acquisition includes T2, DCE-MRI, and DWI. �e DWI includes 
an apparent di�usion coe�cient (ADC) map generated at the time of acquisition. Patients were injected with 
contrast agent Gadoteridol (Gd-HP-DO3A; Pro Hance, Bracco Diagnostics, Princeton, NJ, USA) with a dose of 
0.1 mL/kg before DCE-MRI acquisition. All patients were imaged using MAGNETOM-Avanto scanner (Sie-
mens Healthcare, Erlangen, Germany) at 1.5 T with both endorectal coil and phase-array pelvic  coil24. More 
details on the technical parameters of the MRI sequences are shown in Supplementary Table S1.

PI‑RADS assignment. A�er exclusion of PI-RADS 1, 2 and 5, imaging �ndings of the remaining patients 
were re-scored according the PI-RADS v2.1 by two radiologists, respectively with 10 and 8 years of experience. 
�ey independently reviewed MR images blinded to the results of biopsy and any clinical information. Evalu-
ation of MR images was performed in two reading-sessions, following a similar procedure performed in our 
previous  study24: the �rst reading-session was performed considering a biparametric MRI (bpMRI) protocol 
consisting of axial, sagittal and coronal T2 images and axial DWI images with their corresponding ADC maps 
and a b-computed image with b = 1400 s/mm2; the second reading-session was performed a�er 2 weeks con-
sidering the entire mpMRI protocol, and rearranging patient IDs in a di�erent order, to reduce memory bias. 
Discrepancies were resolved by consensus. For both reading sessions, we assessed the inter-reader agreement 
between the two radiologists based on the ratings assigned before the consensus using the weighted Cohen’s 
kappa (κ) with linear  weights25–27. �e strength of agreement was evaluated as excellent if κ = 0.81–1.00, good if 
κ = 0.61–0.80, moderate if κ = 0.41–0.60, fair if κ = 0.21–0.40, and poor if κ = 0–0.20. A�er reaching consensus, 
PI-RADS 3 scored lesions a�er mpMRI evaluation and PI-RADS 3 lesions upgraded to PI-RADS 4 a�er DCE-
MRI evaluation were selected.

Biopsy protocol. All prostatic biopsies were TRUS-guided and performed using an 18-gauge tru-cut nee-
dle, under anesthesia. Each patient underwent both systematic biopsies, with an average of 12 random samples 
of the entire prostate gland, and target biopsy, with at least three samples taken from each lesion identi�ed by 
MRI. �e number of randomly-taken samples could vary depending on dimensions of prostate gland, as well as 
number of target samples could do depending on dimension of each lesion. Target sampling was performed with 
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an MRI/TRUS fusion, using alternately the cognitive technique or dedicated so�ware, coupled with ultrasound 
platforms from various  companies24. �e gross description included number and core lengths of needle biopsies. 
�e specimens were �xed in bu�ered 10% formalin, and routinely processed. �in sections of fuor microns were 
cut and stained with hematoxylin and eosin stain (H&E). Supplementary sections were performed for possible 
immunohistochemical stains to prove the loss of basal cells in small focus of cancer (p63, and high molecular 
weights keratin) combined with other antibodies overexpress in prostatic cancer (anti-AMACR/p504S). One 
senior pathologist (with more than 10 years of experience in prostate specimen interpretation) who was blinded 
to the MRI reports, reviewed pathological slices and classi�ed tumors according to the 4th WHO classi�cation, 
further grading them by Gleason scores and the group grade  cancer28–30. �e �nal report also included tumor 
extent in each needle biopsies and the percent core involvement by tumor.

Image preprocessing and 3D ROI segmentation. ADC images were non-rigidly coregistered on T2 
image using Elastix so�ware (v. 4.9.0) in order to correct for typical spatial distortion arising from DWI acquisi-
tion. Subtraction DCE-MRI images were all resliced on T2 images. Two experienced radiologists were asked 
to consensually draw 3D regions of interest (ROIs) in the biopsied lesions with PI-RADS3 and upPI-RADS4, 
while also looking at the b = 1000 coregistered volume. Lesion segmentation was performed on T2 images using 
an in-house developed so�ware for region labeling. During the segmentation procedure, the radiologists were 
blinded to both the histological results and all clinical information relative to the retrospective prostate mpMR 
images. Prior to radiomic features extraction, normalization was applied on T2 images intensities. Speci�cally, 
intensities were normalized by centering them at their respective mean value with standard deviation of all gray 
values in the original  image31–34.

Radiomic analysis. Feature extraction. Extraction of radiomic features from 3D ROIs on T2, registered 
ADC and resliced subtraction DCE-MRI images was performed using PyRadiomics, an open-source package 
for standardizing the extraction of radiomics  data32. �e extracted features can be classi�ed into three classes: 
shape (n = 14), �rst-order statistics (n = 18), and second order textural statistics including grey level cooccur-
rence matrix—glcm—(n = 24), grey level run length matrix—glrlm—(n = 16), grey level size zone matrix—
glszm—(n = 16), neighbouring gray tone di�erence matrix—ngtdm—(n = 5) and gray level dependence ma-
trix—gldm—(n = 14). Detailed description and computing algorithms of the radiomic features were available 
at https ://pyrad iomic s.readt hedoc s.io. �e �rst and second order textural features were computed for T2, ADC 
and the DCE-MRI subtraction series with the highest mean signal intensity within the  ROI35,36. Finally, a total 
of 293 features were extracted for each lesion, namely 14 shape features and, for each of the three MRI images 
(T2, ADC, DCE-MRI), 93 features including �rst- and second-order features. �e full list of extracted radi-
omic features is provided in Supplementary Table S2. Two classi�cation tasks were investigated: PCa/non-PCa 
PI-RADS3 and PCa/non-PCa upPI-RADS 4. So, procedures described in the following paragraphs are to be 
considered per classi�cation task.

Feature selection. Feature normalization was performed before feature selection by using z normalization. Spe-
ci�cally, each feature was normalized as z = (x−

−

x)/s , where x , 
−

x , and s are the feature, the mean, and the 
standard deviation,  respectively37,38. Due to the relatively small patient sample size and high-dimensional feature 
size, we then performed feature selection process to select features most related to biopsy outcome, in order to 
construct prediction models. Feature selection was performed including two steps. In the �rst step the feature 
set was restricted through a univariate analysis by using nonparametric Wilcoxon rank-sum test performed to 
investigate their statistical signi�cance with respect to the outcome (PCa vs non-PCa). �e signi�cantly di�er-
ent features (p < 0.05) were then selected and further reduced in the second step using Minimum Redundancy 
Maximum Relevance (mRMR) algorithm. mRMR algorithm selects an optimal set of features considering both 
the relevance for outcome prediction and the redundancy between features, using mutual information (MI) to 
measure both the relevance and the redundancy. At each step of mRMR feature selection process, the feature 
with the highest predictor importance score (de�ned as the di�erence between MI between outcome and the 
considered feature and the average MI of previously selected feature and the considered feature) will be added 
to the selected feature  set39,40. �e top �ve features with highest predictor importance score were �nally used to 
construct radiomics prediction models. Feature selection procedures were implemented in MATLAB R2019b 
(�e MathWorks Inc., Natick, MA, USA).

Multivariable model building and analysis. For each classi�cation task, the reduced feature set was used to build 
logistic regression models of order from 1 to 5 that would best predict the presence of PCa using an imbalanced-
adjusted bootstrap resampling (IABR) approach on 1000 bootstrap  samples41. Speci�cally, 1000 bootstrap sam-
ples were randomly drawn with replacement from the available dataset and used as training set, while instances 
that do not appear in the bootstrap sample are the testing  set42. �en, the imbalance-adjustment step was applied 
duplicating the number of positive instances by a factor equal to the number of negative instances, and the 
number of negative instances by a factor equal to the number of positive instances. �is operation made the 
probability of picking a positive and a negative instance in the bootstrap sample the  same41.

For each model order, the combination of features maximizing the 0.632+ area under the receiver operating 
characteristic curve (AUC) within 1000 bootstrap training and testing samples was  identi�ed43,44. Once optimal 
combination of features was identi�ed for model orders 1–5, IABR on 1000 samples was performed again for all 
models in order to evaluate prediction performances.

https://pyradiomics.readthedocs.io
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Results
Patients characteristics. 116 PCa lesions were �nally identi�ed. Among patients with double lesions, no 
one presented PI-RADS 3 lesion together with PI-RADS 4 or 5 lesion. 41 lesions were scored as PI-RADS 3 and 
46 as PI-RADS 4. For lesions evaluated as PI-RADS 3, PI-RADS reevaluation con�rmed a PI-RADS 3 score in 
both bpMRI and mpMRI reading session. For lesions evaluated as PI-RADS 4, PI-RADS reevaluation con�rmed 
a PI-RADS 4 score in mpMRI reading session. Among these, 32 lesions were scored as PI-RADS 3 in bpMRI 
reading session, but were upgraded to 4 due to focal, positive DCE-MRI. �e remaining 14 PI-RADS 4 lesions 
were excluded from our analysis. Finally, our study results were based on 41 PI-RADS 3 and 32 upPI-RADS 4 
lesions. See Fig. 1 for the patient selection �ow chart and Table 1 for characteristics of included patients. Inter-
reader agreement based on the ratings assigned before the consensus was excellent (κ > 0.8) for both sessions 
(See Supplementary Section S3). Of selected PI-RADS 3 and upPI-RADS 4 lesions, 26 and 24 were positive for 
PCa, respectively. Examples of PI-RADS 3 and upPI-RADS 4 PCa and non-PCa lesions are shown in Figs. 2 and 
3.

Radiomic analysis. Univariate analysis revealed 36 and 43 statistically signi�cant features, respectively for 
PI-RADS3 and upPI-RADS 4 classi�cation tasks. Statistically signi�cant features are reported in Supplementary 
Tables S4 and S5. By using the mRMR method on these features, the �ve highest mRMR-ranked features were 

Figure 1.  Flowchart showing how �nal cohort was selected. PI-RADS prostate imaging reporting and data 
system, upPI-RADS 4 lesions scored as PI-RADS 4 a�er mpMRI PI-RADS assignment but evaluated as 
PI-RADS 3 a�er biparametric MRI reading session.

Table 1.  Characteristics of included patients. PSA prostate-speci�c antigene, PCa prostate cancer, PZ 
peripheral zone, TZ transition zone, CG central gland, PI-RADS prostate imaging-reporting and data system.

Variable PI-RADS 3 upPI-RADS 4

Clinical variables

No. lesions [n] 41 32

Median age [years (range)] 66 (54 – 78) 68 (54 – 80)

Mean PSA level (ng/mL) 10.36 8.56

Prostate volume  (cm3) 55.76 55.6

Prostatic zone

 PZ [n (%)] 35 (85.4) 32 (100)

 TZ [n (%)] 2 (4.9) 0 (0)

 CG [n (%)] 4 (9.7) 0 (0)

Biopsy results

PCa negative [n (%)] 15 (36.58) 8 (25)

PCa positive [n (%)] 26 (63.42) 24 (75)

Gleason scores for PCa lesions [n (%)]

 3 + 3 15 (57.7) 13 (52)

 3 + 4 3 (11.5) 2 (8)

 4 + 3 5 (19.3) 6 (24)

 4 + 4 3 (11.5) 4 (16)
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selected to build the prediction models. Bar plots of predictor importance score for the top �ve features selected 
by mRMR for each classi�cation task are shown in Fig. 4.

Multivariable logistic regression models of order from 1 to 5 were obtained, and their prediction performance 
for the two classi�cation tasks were reported in Supplementary Table S6 and showed in Fig. 5. By inspecting 
curves in Fig. 5 and values in Supplementary Table S6, we determined that the simplest multivariable model 
with the best prediction performances were reached by second order model for PI-RADS 3 and for �rst and 
third upPI-RADS4 classi�cation task. For PI-RADS 3 lesion detection, second order model was chosen due 
to a slightly higher mean sensitivity, speci�city and accuracy (80%, 51%, 71%, respectively) respect to �rst 
order model (76%, 42%, 65%, respectively), which showed comparable AUC (AUC = 74% for �rst order model, 
AUC = 0.76 for second order model). For models of order from 3 to 5, prediction performances get worse. For 
upPI-RADS 4 classi�cation task, �rst order model showed higher performances (AUC = 89%, sensitivity = 87%, 
speci�city = 62%, accuracy = 82%) respect to higher order models. However, promising results were also obtained 
from third order model performance metrics.

Discussions
�e aim of our study was to investigate whether an mpMRI-based radiomic approach was able to outperform 
PI-RADS v2.1 performance in stratifying PI-RADS 3 and PI-RADS 3 upPI-RADS4 lesions, which are directly 
related to still opening challenges and controversies for PI-RADS score assignment. In particular, concerning 
PI-RADS3 lesions, indicating an equivocal likelihood of signi�cant PCa, the major clinical challenge is to avoid 
excessive biopsies and simultaneously improve PCa  detection10,14. On the other hand, the upgrade of upPI-RADS 
4 lesions depends on DCE-MRI, its role in prostate mpMRI remains debated for PCa  detection45,46. On the 
basis of promising results o�ered by radiomic approach for PCa detection, characterization and assessment in 
comparison with PI-RADS assignment, we investigated the power of radiomics for PI-RADS 3 and upPI-RADS 
4 strati�cation, which, despite its relevancy for the previous mentioned reasons, still represents a little-explored 
�eld. �erefore, using biopsy as reference standard, we tested two classi�cation tasks aiming at detecting PCa 
(namely lesions with GS ≥ 6) in PI-RADS 3 and upPI-RADS 4 scored lesions, respectively. Prediction models 
performances varied depending on the classi�cation task and the model order. �e obtained results for PCa 
positive PI-RADS 3 detection showed that the most relevant features for this classi�cation task were texture 
features arising from T2 and ADC. However, the best multivariable prediction model was those built using 
T2 glrlm SRLGLE and T2 glrlm LGLRE texture features. �e obtained results for PCa positive upPI-RADS 4 
detection showed that the most relevant features for this classi�cation task were texture features arising from 
T2 and ADC and interquartile range of ADC value. However, the best multivariable prediction model was that 

Figure 2.  PI-RADS 3 scored alterations. In the �rst row, an example of PI-RADS 3 lesion con�rmed at biopsy 
as GS 3 + 3: mpMRI showed reduced T2 signal intensity in the le� PZ (A), altered di�usivity at b1000 DWI (B) 
without contrast enhancement (C). In the second row, an example of PI-RADS 3 lesion not con�rmed at biopsy: 
mpMRI showed reduced T2 signal intensity in the right PZ (D), altered di�usivity at b1000 DWI (E) without 
contrast enhancement (F). PI-RADS prostate imaging-reporting and data system, mpMRI multiparametric MRI, 
DWI di�usion weighted MRI, PZ peripheral zone.
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built using ADC IR. Promising results were also obtained using third order model built using ADC IR together 
with glszm LAE and T2 glcm MCC texture features. Interestingly, for both classi�cation tasks, speci�city was 
found to be lower than the other performance parameters across each model order, highlighting that our models 
may be prone to false positive errors. Previous studies aimed at stratifying PI-RADS 3  lesions9,11,13–15, but only 
one investigated the power of radiomic features for this  purpose23. Our results on PI-RADS 3 lesions are in line 
with those obtained in this work, in which authors also reported that T2 and ADC texture features could help 
in strati�cation of PI-RADS 3 lesions. However, several di�erences respect to our work should be highlighted. 
First, in the above-mentioned work, authors just analyzed texture features arising from T2 and ADC maps 

Figure 3.  upPI-RADS 4 scored alterations. In the �rst row, an example of upPI-RADS 4 lesion con�rmed at 
biopsy as GS 4 + 4: mpMRI showed reduced T2 signal intensity in the right PZ (A), altered di�usivity at b1000 
DWI (B) with focal contrast enhancement (C). In the second row, an example of upPI-RADS 4 lesion classi�ed 
as in�ammatory at biopsy: mpMRI showed reduced T2 signal intensity in the right PZ (D), altered di�usivity at 
b1000 DWI (E) with contrast enhancement (F). PI-RADS prostate imaging-reporting and data system, mpMRI 
multiparametric MRI, DWI di�usion weighted MRI, PZ peripheral zone.

Figure 4.  Bar plots of radiomic features ranked according to their relevance-redundancy predictor importance 
score for PI-RADS 3 (le� side) upPI-RADS4 (right side) lesion detection tasks. ADC apparent di�usion 
coe�cient, glcm gray level co-occurrence matrix, glrlm grey level run length matrix, gldm gray level dependence 
matrix, glszm grey level size zone matrix, SDLGLE Small Dependence Low Gray Level Emphasis, SALGLE Small 
Area Low Gray Level Emphasis; SRLGLE Short Run Low Gray Level Emphasis; LAE Large Area Emphasis; IR 
Interquartile Range; LGLE Low Gray Level Emphasis; CS Cluster Shade; MCC Maximal Correlation Coe�cient.
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images, omitting analysis of shape and �rst order features. In our work we also analyzed these features, even 
if none of them were useful for building predictive models. Second, we also evaluated features associated with 
DCE-MRI. However, none of them were useful for building predictive models. �ese results suggest that the 
inclusion of radiomic features derived from DCE-MRI does not provide a clear added value for PCa detection of 
PI-RADS 3 lesions. On one hand, this would justify the choice to exclude DCE-MRI from dominant sequences 
for PI-RADSv2 and PI-RADS v2.1 score  assessment17,24,45. Similar considerations also apply to upPI-RADS 4 
classi�cation task, for which DCE-MRI features did not even survive in the univariate analysis preceding the 
mRMR step. However, a direct comparison with studies applying radiomic analysis restricted to this kind of 
lesions could not be applied, since literature is lacking in this �eld to our knowledge. Ullrich et al.46 discussed 
about the added value of DCE-MRI in a large cohort of patients with assigned PI-RADS 4 in a recent study, �nd-
ing DCE-MRI useful to avoid underestimation and misclassi�cation of clinically signi�cant PCa and improve 
detection rates in PI-RADS 4 patients.

Strengths of our study were that we use PI-RADS v2.1 assessment, which should not a�ect the overall diag-
nostic accuracy when compared to PI-RADS v2, but should improve inter-reader variability and simplify score 
 assignment4,24,45. Moreover, the use of 3D ROI should reduce inter-reader variability by avoiding the need to 
select a single-slice corresponding to a portion of a lesion and allow for a more complete description of the lesion 
given by the increasing of the number of points considered for features computation, which should improve the 
accuracy of characterization of heterogeneous lesions and reduce sampling  errors47,48. �en, as recommended 
by the IBSI (Image Biomarker Standardization Initiative) guidelines, we normalized raw images to account for 
the variable intensity ranges of MRI data (acquired in arbitrary units) and improve robustness of radiomics 
 features34,49–52. Lastly, a special attention should be given to the potential clinical impact of our work that lies in 
the fact that we attempted to overcome the clinical challenge associated with radiologist uncertainties related to 
PI-RADS 3 lesions, as well as those related to upPI-RADS 4 lesions due to the previously mentioned  reasons10,45,53.

Despite the above, this study su�ers from some limitations. First, PI-RADS 3 and upPI-RADS 4 datasets were 
too small and imbalanced to generalize results. A larger and more balanced study group is needed to better con-
duct a radiomic analysis and build more robust prediction models. In particular, although the IABR strategy we 
used for model building is a common reliable approach in case of small and imbalanced datasets, a larger sample 
size would allow to use part of the dataset for the training, and part for testing and validating the performance 
of the classi�er with external  datasets44,54,55. Given the small sample size for both PI-RADS 3 and upPI-RADS 
4 groups, we did not perform a separate analysis aiming at detecting clinically signi�cant PCa lesions (namely 
GS ≥ 7). Moreover, in PI-RADS 3 analysis, the low number of lesions prevent us to perform a sub-analysis on the 
basis of prostatic zone, similar to analysis performed by Ginsburg et al. for PCa detection in histopathological 
proven  lesion56. In addition, although features arising from DCE-MRI parameters proved not to be useful for 
building prediction models. Further analysis on original DCE-MRI  images57 and/or maps of pharmacokinetic 
 parameters58 may be investigated, helping to overcome controversies related to DCE-MRI and clarify its role in 
PCa management. It could be also interesting to investigate if performances of prediction models for PCa detec-
tion in PI-RADS 3 and upPI-RADS 4 lesions could improve adding features arising from advanced di�usion 
models prediction model, which were found to be promising for detection and characterization of PCa, even if 
their role is not clearly a�rmed due to the lack of a standardized di�usion MRI  protocol17,59. Another aspect to 
highlight is that also delineations of prostatic lesions are prone to inter-observer variability. In fact, it should be 
considered that we delineated only the prostatic lesion for feature extraction, and it is well-recognized that small 
volumes might lead to uncertainties in feature  extraction60–63.

In conclusion, our preliminary results support the signi�cant role of T2 and ADC radiomic features, mainly 
second-order texture features, for PCa detection in lesions scored as PI-RADS 3 and upPI-RADS 4.

Figure 5.  Prediction performances of models from order 1 to 5 for detection of PCa in PI-RADS 3 lesions (on 
the le�) and in upPI-RADS 4 lesions (on the right).
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