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Evaluation of a Particle Swarm
Algorithm For Biomechanical
Optimization
Optimization is frequently employed in biomechanics research to solve system ide
tion problems, predict human movement, or estimate muscle or other internal forc
cannot be measured directly. Unfortunately, biomechanical optimization problems
possess multiple local minima, making it difficult to find the best solution. Further
convergence in gradient-based algorithms can be affected by scaling to accou
design variables with different length scales or units. In this study we evaluate a re
developed version of the particle swarm optimization (PSO) algorithm to address
problems. The algorithm’s global search capabilities were investigated using a s
difficult analytical test problems, while its scale-independent nature was proven
ematically and verified using a biomechanical test problem. For comparison, a
problems were also solved with three off-the-shelf optimization algorithms—a
genetic algorithm (GA) and multistart gradient-based sequential quadratic program
(SQP) and quasi-Newton (BFGS) algorithms. For the analytical test problems, on
PSO algorithm was successful on the majority of the problems. When compared
viously published results for the same problems, PSO was more robust than a
simulated annealing algorithm but less robust than a different, more complex g
algorithm. For the biomechanical test problem, only the PSO algorithm was insen
to design variable scaling, with the GA algorithm being mildly sensitive and the SQ
BFGS algorithms being highly sensitive. The proposed PSO algorithm provides
off-the-shelf global optimization option for difficult biomechanical problems, espe
those utilizing design variables with different length scales or units.
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s r
m

d i
sc
pre
-
le

im
d

on
ra
Th
al
gr
so

ver
tur

r nu-
ltiple
ocal

ost
d ana-
nsi-
e use
pro-
t at
ove

uter
ongra-
tune

a-
p-
es.
r two
ently,
f a
ms
ions
les.
hms

the

rtm
250
:

OF
ion
1 Introduction

Optimization methods are used extensively in biomechanic
search to predict movement-related quantities that cannot be
sured experimentally. Forward dynamic, inverse dynamic, an
verse static optimizations have been used to predict mu
ligament, and joint contact forces during experimental or
dicted movementsse.g., f1–12gd. System identification optimiza
tions have been employed to tune a variety of musculoske
model parameters to experimental movement datase.g.,f13–17gd.
Image matching optimizations have been performed to align
plant and bone models toin vivo fluoroscopic images collecte
during loaded functional activitiesse.g.,f18–20gd.

Since biomechanical optimization problems are typically n
linear in the design variables, gradient-based nonlinear prog
ming has been the most widely used optimization method.
increasing size and complexity of biomechanical models has
led to the parallelization of gradient-based algorithms, since
dient calculations can be easily distributed to multiple proces
f1–3g. However, gradient-based optimizers can suffer from se
important limitations. They are local rather than global by na

1Address correspondence to: B. J. Fregly, Ph.D., Assistant Professor, Depa
of Mechanical & Aerospace Engineering, 231 MAE-A Building, P.O. Box 116
University of Florida, Gainesville, FL 32611-6250. Phone:s352d 392-8157; fax
s352d 392-7303.

Contributed by the Bioengineering Division for publication In the JOURNAL
BIOMECHANICAL ENGINEERING. Manuscript received: July 9, 2003; revis

received: January 1, 2005. Associate Editor: Maury Hull.
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and so can be sensitive to the initial guess. Experimental o
merical noise can exacerbate this problem by introducing mu
local minima into the problem. For some problems, multiple l
minima may exist due to the nature of the problem itself. In m
situations, the necessary gradient values cannot be obtaine
lytically, and finite difference gradient calculations can be se
tive to the selected finite difference step size. Furthermore, th
of design variables with different length scales or units can
duce poorly scaled problems that converge slowly or no
all f21,22g, necessitating design variable scaling to impr
performance.

Motivated by these limitations and improvements in comp
speed, recent studies have begun investigating the use of n
dient global optimizers for biomechanical applications. Nep
f4g compared the performance of a simulated annealingsSAd al-
gorithm with that of downhill simplexsDSd and sequential qu
dratic programmingsSQPd algorithms on a forward dynamic o
timization of bicycle pedaling utilizing 27 design variabl
Simulated annealing found a better optimum than the othe
methods and in a reasonable amount of CPU time. More rec
Soest and Casiusf5g evaluated a parallel implementation o
genetic algorithmsGAd using a suite of analytical tests proble
with up to 32 design variables and forward dynamic optimizat
of jumping and isokinetic cycling with up to 34 design variab
The genetic algorithm generally outperformed all other algorit
tested, including SA, on both the analytical test suite and
movement optimizations.

ent
,

In this study we evaluate a recent addition to the arsenal of

JUNE 2005, Vol. 127 / 4655 by ASME
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global optimization methods—particle swarm-optimiza
sPSOd—for use on biomechanical problems. A recently develo
variant of the PSO algorithm is used for the investigation.
algorithm’s global search capabilities are evaluated using a p
ously published suite of difficult analytical test problems w
multiple local minimaf5g, while its insensitivity to design variab
scaling is proven mathematically and verified using a biomec
cal test problem. For both categories of problems, PSO ro
ness, performance, and scale independence are compared
of three off-the-shelf optimization algorithms—a genetic a
rithm sGAd, a sequential quadratic programming algorithmsSQPd,
and a Broydon-Fletcher-Goldfarb-ShannosBFGSd quasi-Newton
algorithm. In addition, previously published resultsf5g for the
analytical test problems permit a comparison with a more c
plex GA algorithmsGA*d, a simulated annealing algorithmsSAd,
a different SQP algorithmsSQP*d, and a downhill simplexsDSd
algorithm.

2 Theory

2.1 Particle Swarm Algorithm. Particle swarm optimizatio
is a stochastic global optimization approach introduced
Kennedy and Eberhartf23g. The method’s strength lies in its sim
plicity, being easy to code and requiring few algorithm parame
to define convergence behavior. The following is a brief intro
tion to the operation of the particle swarm algorithm based
recent implementation by Fourie and Groenwoldf24g incorporat-
ing dynamic inertia and velocity reduction.

Consider a swarm ofp particles, where each particle’s posit
xk

i represents a possible solution point in the problem design
D. For each particlei, Kennedy and Eberhartf23g proposed tha
the positionxk+1

i be updated in the following manner:

xk+1
i = xk

i + nk+1
i , s1d

with a pseudovelocitynk+1
i calculated as follows:

nk+1
i = wknk

i + c1r1spk
i − xk

i d + c2r2sgk − xk
i d s2d

Here, subscriptk indicates asunitd pseudotime increment. Th
pointpk

i is the best-found cost location by particlei up to time step
k, which represents the cognitive contribution to the search v
nk+1

i . Each component ofnk+1
i is constrained to be less than

equal to a maximum value defined innk+1
max. The pointgk is the

global best-found position among all particles in the swarm u
time k and forms the social contribution to the velocity vec
Cost function values associated withpk

i andgk are denoted byfbest
i

and fbest
g respectively. Random numbersr1 and r2 are uniformly

distributed in the intervalf0,1g. Shi and Eberhartf25g proposed
that the cognitive and social scaling parametersc1 and c2 be se
lected such thatc1=c2=2 to allow the productc1r1 or c2r2 to have
a mean of 1. The result of using these proposed values is th
particles overshoot the attraction pointspk

i and gk half the time
thereby maintaining separation in the group and allowing a gr
area to be searched than if the particles did not overshoot
variablewk, set to 1 at initialization, is a modification to the ori
nal PSO algorithmf23g. By reducing its value dynamically bas
on the cost function improvement rate, the search area is gra
reducedf26g. This dynamic reduction behavior is defined bywd,
the amount by which the inertiawk is reduced,nd, the amount b
which the maximum velocitynk+1

max is reduced, andd, the numbe
of iterations with no improvement ingk before these reductio
take placef24g ssee algorithm flow description belowd.

Initialization of the algorithm involves several important ste
Particles are randomly distributed throughout the design s
and particle velocitiesn0

i are initialized to random values with
the limits 0øn0

i øn0
max. The particle velocity upper limitn0

max is
calculated as a fraction of the distance between the uppe
lower bound on variables in the design spacen0

max=ksxUB−xLBd

with k=0.5 as suggested inf26g. Iteration countersk andt are set
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to 0. Iteration counterk is used to monitor the total number
swarm iterations, while iteration countert is used to monitor th
number of swarm iterations since the last improvement ingk.
Thus,t is periodically reset to zero during the optimization w
k is not.

The algorithm flow can be represented as follows:

1. Initialize

sad Set constantsk , c1, c2, kmax, n0
max, w0, nd, wd, and

d
sbd Set countersk=0, t=0. Set random number seed
scd Randomly initialize particle positionsx0

i PD in R for
i =1,… ,p

sdd Randomly initialize particle velocities 0øn0
i øn0

max for
i =1,… ,p

sed Evaluate cost function valuesf0
i using design space c

ordinatesx0
i for i =1,… ,p

sfd Set fbest
i = f0

i andp0
i =x0

i for i =1,… ,p
sgd Set fbest

g to bestfbest
i andg0 to correspondingx0

i

2. Optimize

sad Update particle velocity vectorsnk+1
i using Eq.s2d

sbd If nk+1
i .nk+1

max for any component, then set that com
nent to its maximum allowable value

scd Update particle position vectorsxk+1
i using Eq.s1d

sdd Evaluate cost function valuesfk+1
i using design spac

coordinatesxk+1
i for i =1,… ,p

sed If fk+1
i ø fbest

i , then fbest
i = fk+1

i , pk+1
i =xk+1

i for i =1,… ,p
sfd If fk+1

i ø fbest
g , then fbest

g = fk+1
i , gk+1=xk+1

i for i =1,… ,p
sgd If fbest

g was improved insed, then resett=0, otherwise
incrementt

shd If the maximum number of function evaluations is
ceeded, then go to 3

sid If t=d, then multiplywk+1 by s1−wdd and nk+1
max by s1

−ndd
sjd Incrementk
skd Go to 2sad

3. Report results
4. Terminate

This algorithm was coded in the C programming languag
the lead authorf27g and was used for all PSO analyses perfor
in the present study. A standard population size of 20 particle
used for all runs, and other algorithm parameters were als
lected based on standard recommendationssTable 1d f27–29g. The
C source code for our PSO algorithm is freely available at h
www.mae.ufl.edu/̃fregly/downloads/pso.zip.

2.2 Analysis of Scale Sensitivity.One of the benefits of th

Table 1 Standard PSO algorithm parameters used in the
present study

Parameter Description Valu

p Population sizesnumber of particlesd 20
c1

Cognitive trust parameter 2.0
c2

Social trust parameter 2.0
w0

Initial inertia 1
wd

Inertia reduction parameter 0.0
k Bound on velocity fraction 0.5
nd

Velocity reduction parameter 0.0
d Dynamic inertia/velocity reduction delaysfunction

evaluationsd
200
PSO algorithm is its insensitivity to design variable scaling. To
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prove this characteristic, we will use a proof by induction to s
that all particles follow an identical path through the design s
regardless of how the design variables are scaled. In actua
runs intended to investigate this property, use of the same ra
seed in scaled and unscaled cases will ensure that an ide
sequence of randomr1 and r2 values are produced by the co
puter throughout the course of the optimization.

Consider an optimization problem withn design variables. A
n-dimensional constant scaling vectorz can be used to scale a
or all dimensions of the problem design space:

z =3
z1

z2

z3

A
zn

4 s3d

We wish to show that for any time stepkù0,

nk8 = znk s4d

xk8 = zxk s5d

wherexk andnk sdropping superscriptid are the unscaled positio
and velocity, respectively, of an individual particle andxk8=zxk

andnk8=znk are the corresponding scaled versions.
First, we must show that our proposition is true for the b

case, which involves initializationsk=0d and the first time ste
sk=1d. Applying the scaling vectorz to an individual particle
positionx0 during initialization produces a scaled particle posi
x08:

x08 = zx0 s6d
This implies that

p08 = zp0, g08 = zg0 s7d
In the unscaled case, the pseudovelocity is calculated as

n0 = ksxUB − xLBd s8d
In the scaled case, this becomes

n08 = ksxUB8 − xLB8 d = kszxUB − zxLBd = zfksxUB − xLBdg = zn0

s9d
From Eqs.s1d and s2d and these initial conditions, the partic
pseudovelocity and position for the first time step can be wr
as

n1 = w0n0 + c1r1sp0 − x0d + c2r2sg0 − x0d s10d

x1 = x0 + n1 s11d
in the unscaled case and

n18 = w0n08 + c1r1sp08 − x08d + c2r2sg08 − x08d

= w0zn0 + c1r1szp0 − zx0d + c2r2szg0 − zx0d

= zfw0n0 + c1r1sp0 − x0d + c2r2sg0 − x0dg = zn1 s12d

x18 = x08 + n18 = zx0 + zn1 = zfx0 + n1g = zx1 s13d
in the scaled case. Thus, our proposition is true for the base

Next, we must show that our proposition is true for the ind
tive step. If we assume that our proposition holds for any
stepk= j , we must prove that it also holds for time stepk= j +1.
We begin by replacing subscriptk with subscriptj in Eqs.s4d and
s5d. If we then replace subscript 0 with subscriptj and subscript
with subscriptj +1 in Eqs.s12d ands13d, we arrive at Eqs.s4d and
s5d where subscriptk is replaced by subscriptj +1. Thus, ou
proposition is true for any time stepj +1.

Consequently, since the base case is true and the inductiv

is true, Eqs.s4d and s5d are true for allkù0. From Eqs.s4d and
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s5d, we can conclude that any linear scaling of the design vari
sor subset thereofd will have no effect on the final or any interm
diate result of the optimization, since all velocities and posit
are scaled accordingly. This fact leads to identical step inte
being taken in the design space for a scaled and an uns
version of the same problem, assuming infinite precision i
calculations.

In contrast, gradient-based optimization methods are often
sitive to design variable scaling due to algorithmic issues
numerical approximations. First derivative methods are sen
because of algorithmic issues, as illustrated by a simple exa
Consider the following minimization problem with two des
variablessx,yd where the cost function is

x2 +
y2

100
s14d

with initial guesss1,1d. A scaled version of the same problem
be created by lettingx̃=x, ỹ=y/10 so that the cost functio
becomes

x̃2 + ỹ2 s15d
with initial guesss1,10d. Taking first derivatives of each cost fun
tion with respect to the corresponding design variables and e
ating at the initial guesses, the search direction for the uns
problem is along a line rotated 5.7° from the positivex axis and
for the scaled problem along a line rotated 45°. To reach
optimum in a single step, the unscaled problem requires a s
direction rotated 84.3° and the scaled problem 45°. Thus
scaled problem can theoretically reach the optimum in a s
step while the unscaled problem cannot due to the effect of sc
on the calculated search direction.

Second derivative methods are sensitive to design variable
ing because of numerical issues related to approximation o
Hessianssecond derivatived matrix. According to Gill et al.f21g,
Newton methods utilizing an exact Hessian matrix will be in
sitive to design variable scaling as long as the Hessian m
remains positive definite. However, in practice, exact Hessian
culations are almost never available, necessitating numeric
proximations via finite differencing. Errors in these approxi
tions result in different search directions for scaled ve
unscaled versions of the same problem. Even a small amo
design variable scaling can significantly affect the Hessian m
so that design variable changes of similar magnitude will not
duce comparable magnitude cost function changesf21g. Common
gradient-based algorithms that employ an approximate He
include Newton and quasi-Newton nonlinear programming m
ods such as BFGS, SQP methods, and nonlinear least-s
methods such as Levenberg—Marquardtf21g. A detailed discus
sion of the influence of design variable scaling on optimiza
algorithm performance can be found in Gill et al.f21g.

3 Methodology

3.1 Optimization Algorithms. In addition to our PSO algo
rithm, three off-the-shelf optimization algorithms were applie
all test problemssanalytical and biomechanical—see belowd for
comparison purposes. One was a global GA algorithm deve
by Deb f30–32g. This basic GA implementation utilizes one m
tation operator and one crossover operator along with real e
ing to handle continuous variables. The other two algorithms
commercial implementations of gradient-based SQP and B
algorithmssVisualDOC, Vanderplaats R & D, Colorado Springs
COd.

All four algorithmssPSO, GA, SQP, and BFGSd were parallel
ized to accommodate the computational demands of the b
chanical test problem. For the PSO algorithm, parallelization
performed by distributing individual particle function evaluati
to different processors as detailed inf33g. For the GA algorithm

individual chromosome function evaluations were parallelized as

JUNE 2005, Vol. 127 / 467
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described inf5g. Finally, for the SQP and BFGS algorithms, fin
difference gradient calculations were performed on different
cessors as outlined inf34g. A master-slave paradigm using t
Message Passing InterfacesMPId f35,36g was employed for a
parallel implementations. Parallel optimizations for the bio
chanical test problem were run on a cluster of Linux-based P
the University of Florida High-performance Computing a
Simulation Research Laboratorys1.33 GHz Athlon CPUs wit
256 MB memory on a 100 Mbps switched Fast Ethernet netwd.

While the PSO algorithm used standard algorithm param
for all optimization runs, minor algorithm tuning was perform
on the GA, SQP, and BFGS algorithms for the biomechanica
problem. The goal was to give these algorithms the best pos
chance for success against the PSO algorithm. For the GA
rithm, preliminary optimizations were performed using popula
sizes ranging from 40 to 100. It was found that for the spec
maximum number of function evaluations, a population size o
produced the best results. Consequently, this population siz
used for all subsequent optimization runssanalytical and biome
chanicald. For the SQP and BFGS algorithms, automatic tunin
the finite difference step sizesFDSSd was performed separate
for each design variable. At the start of each gradient-based
forward and central difference gradients were calculated for
design variable beginning with a relative FDSS of 10−1. The step
size was then incrementally decreased by factors of 10 unt
absolute difference between forward and central gradient re
was a minimum. This approach was taken since the amou
noise in the biomechanical test problem prevented a single s
gradient value from being calculated over a wide range of F
valuesssee Sec. 5d. The forward difference step size automatic
selected for each design variable was used for the remaind
the run.

3.2 Analytical Test Problems.The global search capabiliti
of our PSO implementation were evaluated using a suite of
cult analytical test problems previously published by Soest
Casiusf5g. In that study, each problem in the suite was evalu
using four different optimizers: SA, GA* , SQP* , and DS, wher
an asterisk indicates a different version of an algorithm use
our study. One thousand optimization runs were performed
each optimizer starting from random initial guesses and u
standard optimization algorithm parameters. Each run was t
nated based on a predefined number of function evaluation
the particular problem being solved. We followed an iden
procedure with our four algorithms to permit a comparison
tween our results and those published inf5g. Since two of the
algorithms used in our studysGA and SQPd were of the sam
general category as algorithms usedf5g sGA* and SQP*d, com-
parisons could be made between different implementations o
same general algorithm. Failed PSO and GA runs were allow
use up the full number of function evaluations, whereas fa
SQP and BFGS runs were restarted from new random i
guesses until the full number of function evaluations was c
pleted. Only 100 rather than 1000 runs were performed with
SQP and BFGS algorithms due to a database size problem
VisualDOC software.

A detailed description of the six analytical test problems ca
found in Soest and Casiusf5g. Since the design variables for ea
problem possessed the same absolute upper and lower bou
appeared in the cost function in a similar form, design vari
scaling was not an issue in these problems. The six analytica
problems are described briefly below.

H1: This simple two-dimensional functionf5g has several loca
maxima and a global maximum of 2 at the coordinatess8.6998

6.7665d.
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H1sx1,x2d =

sin2Sx1 −
x2

8
D + sin2Sx2 −

x1

8
D

d + 1
s16d

where

x1,x2 P f− 100,100g

d = Îsx1 − 8.6998d2 + sx2 − 6.7665d2

Ten-thousand function evaluations were used for this proble
H2: This inverted version of the F6 function used by Schaffe

al. f37g has two dimensions with several local maxima around
global maximum of 1.0 ats0,0d.

H2sx1,x2d = 0.5 −
sin2sÎx1

2 + x2
2d − 0.5

s1 + 0.001sx1
2 + x2

2dd2 s17d

x1,x2 P f− 100,100g

This problem was solved using 20,000 function evaluations
optimization run.

H3: This test function from Corana et al.f38g was used wit
dimensionalityn=4, 8, 16, and 32. The function contains a la
number of local minimason the order of 104nd with a globa
minimum of 0 atuxiu,0.05.

H3sx1,…,xnd = o
i=1

n Hst · sgnszid + zid2 ·c ·di if uxi − ziu , t

di ·xi
2 otherwise

J
s18d

xi P f− 1000,1000g

where

zi = bUxi

s
U + 0.49999c · sgnsxid ·s, c = 0.15,

s= 0.2, t = 0.05, and di =5
1 i = 1,5,9,…
1000 i = 2,6,10,…
10 i = 3,7,11,…
100 i = 4,8,12,…

6
The use of the floor function in Eq.s18d makes the search spa
for this problem the most discrete of all problems tested.
number of function evaluations used for this problem was 50
sn=4d, 100,000sn=8d, 200,000sn=16d, and 400,000sn=32d.

For all of the analytical test problems, an algorithm was
sidered to have succeeded if it converged to within 10−3 of the
known optimum cost function value within the specified num
of function evaluationsf5g.

3.3 Biomechanical Test Problem.In addition to these an
lytical test problems, a biomechanical test problem was us
evaluate the scale-independent nature of the PSO algorithm
though our PSO algorithm is theoretically insensitive to de
variable scaling, numerical round-off errors and implementa
details could potentially produce a scaling effect. Running
other three algorithms on scaled and unscaled versions of th
problem also permitted investigation of the extent to which o
algorithms are influenced by design variable scaling.

The biomechanical test problem involved determination o
ankle joint kinematic model that best matched noisy synt
si.e., computer generatedd movement data. Similar tof13g, the
ankle was modeled as a three-dimensional linkage with two
intersecting pin joints defined by 12 subject-specific param
sFig. 1d. These parameters represent the positions and orient
of the talocrural and subtalar joint axes in the tibia, talus,
calcaneous. Position parameters were in units of centimeter

orientation parameters in units of radians, resulting in parameter

Transactions of the ASME
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values of varying magnitude. This model was part of a large
degree-of-freedomsDOFd full-body kinematic model used to o
timize other joints as wellf15g.

Given this model structure, noisy synthetic movement
were generated from a nominal model for which the “true” mo
parameters were known. Joint parameters for the nominal m
along with a nominal motion were derived fromin vivo experi-
mental movement data using the optimization methodology
scribed below. Next, three markers were attached to the tibia
calcaneous segments in the model at locations consistent wi
experiment, and the 27 model DOFs were moved through
nominal motions. This process created synthetic marker traj
ries consistent with the nominal model parameters and motio
also representative of the original experimental data. Finally
merical noise was added to the synthetic marker trajectori
emulate skin and soft tissue movement artifacts. For each m
coordinate, a sinusoidal noise function was used with unifo
distributed random period, phase, and amplitudeslimited to a
maximum of ±1 cmd. The values of the sinusoidal parame
were based on previous studies reported in the literaturef39,40g.

An unconstrained optimization problem with bounds on the
sign variables was formulated to attempt to recover the kn
joint parameters from the noisy synthetic marker trajectories.
cost function was

min
p

fspd s19d

with

fspd = o
k=1

50

min
q

o
j=1

6

o
i=1

3

scijk − ĉi jksp,qdd2, s20d

where p is a vector of 12 design variables containing the j
parameters,q is a vector of 27 generalized coordinates for
kinematic model,cijk is theith coordinate of synthetic markerj at
time framek, and ĉi jksp ,qd is the corresponding marker coor
nate from the kinematic model. At each time frame,ĉi jksp ,qd was
computed from the current model parametersp and an optimize

Fig. 1 Experimental shank and foot surface m
subject-specific kinematic ankle model defined by
parameter defines the position or orientation of a
model configurationq. A separate Levenberg–Marquardt nonlin-
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ear least-squares optimization was performed for each time
in Eq. s20d to determine this optimal configuration. A relat
convergence tolerance of 10−3 was chosen to achieve good ac
racy with minimum computational cost. A nested optimiza
formulation fi.e., minimization occurs in Eqs.s19d and s20dg was
used to decrease the dimensionality of the design space i
s19d. Equations20d was coded in Matlab and exported as sta
alone C code using the Matlab CompilersThe Mathworks, Natick
MA d. The executable read in a file containing the 12 design
ables and output a file containing the resulting cost function v
This approach facilitated the use of different optimizers to s
Eq. s19d.

To investigate the influence of design variable scaling on
mization algorithm performance, two versions of Eq.s20d were
generated. The first used the original units of centimeters
radians for the position and orientation design variables, re
tively. Bounds on the design variables were chosen to encl
physically realistic region around the solution point in de
space. Each position design variable was constrained to re
within a cube centered at the midpoint of the medial and la
malleoli, where the length of each side was equal to the dis
between the malleolisi.e., 11.32 cmd. Each orientation desig
variable was constrained to remain within a circular cone de
by varying its “true” value by ±30°. The second version norm
ized all 12 design variables to be withinf−1,1g using

xnorm=
2x − xUB − xLB

xUB − xLB
s21d

where UB and LB denote the upper and lower bounds, res
tively, on the design variable vectorf41g.

Two approaches were used to compare PSO scale sensiti
that of the other three algorithms. For the first approach, a
number of scaled and unscaled runss10d was performed with eac
optimization algorithm starting from different random ini
seeds, and the sensitivity of the final cost function value to a
rithm choice and design variable scaling was evaluated. The
ping condition for PSO and GA runs was 10,000 function ev

ker configuration „left … for developing a
2 parameters p1 through p12 „right …. Each
nt axis in one of the body segments.
ar
1

joi
ations, while SQP and BFGS runs were terminated when a relative
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convergence tolerance of 10−5 or absolute convergence toleran
of 10−6 was met. For the second approach, a fixed numb
function evaluationss10,000d were performed with each algorith
to investigate unscaled versus scaled convergence history. A
random initial guess was used for the PSO and GA algorit
and each algorithm was terminated once it reached 10,000
tion evaluations. Since individual SQP and BFGS runs req
much fewer than 10,000 function evaluations, repeated runs
performed with different random initial guesses until the t
number of function evaluations exceeded 10,000 at the term
tion of a run. This approach essentially uses SQP and BFG
global optimizers, where the separate runs are like individua
ticles that cannot communicate with each another but have a
to local gradient information. Finite difference step size tunin
the start of each run was included in the computation of numb
function evaluations. Once the total number of runs require
reach 10,000 function evaluations was known, the lowest
function value from all runs at each iteration was used to repr
the cost over a range of function evaluations equal to the nu
of runs.

4 Results
For the analytical test problems, our PSO algorithm was m

robust than our GA, SQP, and BFGS algorithmssTable 2, top
halfd. PSO converged to the correct global solution 100% o
time on four of the six test problemssH1 andH3 with n=4, 8, and
16d. It converged 58% of the time for problemH2 and not at al
for problemH3 with n=32. In contrast, none of the other alg
rithms converged more than 32% of the time on any of the
lytical test problems. Though our GA algorithm typically exh
ited faster initial convergence than did our PSO algorithmsFig. 2,
left columnd, it leveled off and rarely reached the correct fi
point in design space within the specified number of func
evaluations.

When PSO results were compared with previously publi
results for the same analytical test problemsf5g, PSO succes
rates were better than those of SA but worse than those of*

sTable 2, bottom halfd. SA was successful 100% of the time o
on problemH1, while GA* was successful nearly 100% of t
time on all six problems. Thus, for the global algorithms, G*

was the most robust overall, followed by PSO and then SA,
GA exhibiting the worst robustness. PSO converged more sl
than did GA* on all problems with available convergence p
sfour of the six problemsd and also more slowly than did S
on the one problem for which SA was successfulsFig. 2, right
columnd.

For the biomechanical test problem, only the PSO algor

Table 2 Fraction of successful optimizer runs fo
sults from the PSO, GA, SQP, and BFGS algori
Results from the SA, GA, SQP, and DS algorithm
SQP algorithms used in that study were different
runs were identified by a final cost function valu
consistent with †5‡.

Study Algorithm H1

PSO 1.000
Present GA 0.000

SQP 0.00
BFGS 0.00

SA 1.000
Soest and Casiusf5g GA 0.990

SQP 0.279
DS 1.000
was insensitive to design variable scaling, with the GA algorithm
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being only mildly sensitive. In ten out of ten trials, unscaled
scaled PSO runs converged to the same point in design spacfFig.
3sadg, while unscaled and scaled GA runs converged to nearl
same pointfFig. 3sbdg. PSO results were the most consistent f
trial to trial, converging to a final cost function value between
and 71.sTable 3d. GA results were the next most consistent w
final cost function values ranging from 71 to 84. Typical unsc
and scaled PSO and GA runs produced root-mean-squaresRMSd
marker distance, position parameter, and orientation parame
rors of comparable magnitude, with PSO errors generally b
slightly smaller.

In contrast, the SQP and BFGS algorithms were highly s
tive to design variable scaling in the biomechanical test prob
For the ten trials, unscaled and scaled SQP or BFGS runs
converged to similar points in design spacesnote they axis scale
in Fig. 3d and produced large differences in the final cost func
value from one trial to the nextfFigs. 3scd and 3sddg. Scaling
improved the final result in seven out of ten SQP trials and in
of ten BFGS trials. The best unscaled and scaled SQP fina
function values were 255 and 121, respectively, while thos
BFGS were 355 and 102sTable 3d. Thus, scaling yielded the be
result found with both algorithms. The best SQP and BFGS
generally produced larger RMS marker distance errorssup to two
times worsed, orientation parameter errorssup to five times
worsed, and position parameter errorssup to six times worsed than
those found by PSO or GA.

When detailed convergence histories were plotted over 10
function evaluations for the biomechanical test problemsFig. 4d,
unscaled and scaled histories for PSO were indistinguish
while those of GA were similar and those of SQP or BFGS n
bly different. For PSO, only minute differences in the design v
ables on the order of 10−5 were observed, resulting from nume
cal round off errors caused by limitations in machine precision
reach 10,000 function evaluations, 17 unscaled and 26 scale
runs were required compared to 56 unscaled and 44 scale
for BFGS. The length and value of the initial flat region in
SQP and BFGS convergence histories was related to the n
of FDSS tuning evaluations performed. More runs meant m
tuning evaluations as well as an increased likelihood of findi
lower initial cost function value.

5 Discussion
In this paper we evaluated a recent variation of the PSO

rithm with dynamic inertia and velocity updating as a poss
addition to the arsenal of methods that can be applied to dif
biomechanical optimization problems. For all problems inv
gated, our PSO algorithm with standard algorithm parameter

e analytical test problems. Top half: Re-
s used in the present study. Bottom half:

used in Soest and Casius †5‡. The GA and
m the ones used in our study. Successful

ithin 10 −3 of the known optimum value,

H3

2 sn=4d sn=8d sn=16d sn=32d

.583 1.000 1.000 1.000 0.000
.034 0.000 0.000 0.000 0.002
.11 0.00 0.00 0.00 0.00
.32 0.00 0.00 0.00 0.00

027 0.000 0.001 0.000 0.000
999 1.000 1.000 1.000 1.000
.810 0.385 0.000 0.000 0.000
636 0.000 0.000 0.000 0.000
r th
thm
s

fro
e w

H

0
0
0
0

0.
0.
0
0.
formed better than did three off-the-self optimizers—GA, SQP,
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Fig. 2 A comparison of convergence history results for the analytical test problems. Left
column: Results from the PSO, GA, SQP, and BFGS algorithms used in the present study.
Right column: Results from the SA, GA, SQP, and DS algorithms used in Soest and Casius
†5‡. The GA and SQP algorithms used in that study were different from the ones used in our
study. „a… Problem H1. The SA results have been updated using corrected data provided by
Soest and Casius, since the results in †5‡ accidentally used a temperature reduction rate of
0.5 rather than the standard value of 0.85 as reported. „b… Problem H2. „c… Problem H3 with
n =4. „d… Problem H3 with n =32. The error was computed using the known cost at the global
optimum and represents the average of 1000 runs „100 multi-start SQP and BFGS runs in
our study … with each algorithm.
Journal of Biomechanical Engineering JUNE 2005, Vol. 127 / 471
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and BFGS. For the analytical test problems, PSO robustnes
found to be better than that of two other global algorithms
worse than that of a third. For the biomechanical test prob
with added numerical noise, PSO was found to be insensiti
design variable scaling while GA was only mildly sensitive
SQP and BFGS highly sensitive. Overall, the results sugges
our PSO algorithm is worth consideration for difficult biom
chanical optimization problems, especially those for which de
variable scaling may be an issue.

Though our biomechanical optimization involved a sys
identification problem, PSO may be equally applicable to p
lems involving forward dynamic, inverse dynamic, inverse st
or image matching analyses. Other global methods such as S
GA have already been applied successfully to such prob
f4,5,19g, and there is no reason to believe that PSO would
perform equally well. As with any global optimizer, PSO utili
tion would be limited by the computational cost of function ev
ations given the large number required for a global search.

Our particle swarm implementation may also be applicab
some large-scale biomechanical optimization problems. Ou
the biomechanics arenaf28,29,42–51g, PSO has been used
solve problems on the order of 120 design variablesf49–51g. In

Fig. 3 Final cost function values for ten unscaled „dark bars …

and scaled „gray bars … parallel PSO, GA, SQP, and BFGS runs
for the biomechanical test problem. Each pair of unscaled and
scaled runs was started from the same initial point „s… in design
space, and each run was terminated when the specified stop-
ping criteria was met „see the text ….

Table 3 Final cost function values and associate
mean-square „RMS… errors after 10,000 function
and scaled PSO, GA, SQP, and BFGS runs. S
histories.

Optimizer Formulation Cost function dis

PSO Unscaled 70.4
Scaled 70.4

GA Unscaled 77.9
Scaled 74.0

SQP Unscaled 255
Scaled 121

BFGS Unscaled 355
Scaled 102
472 / Vol. 127, JUNE 2005
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the present study, our PSO algorithm was unsuccessful o
largest test problem,H3 with n=32 design variables. However,
a recent study, our PSO algorithm successfully solved
Griewank global test problem with 128 design variables u
population sizes ranging from 16 to 128f33g. When the Coran
test problemsH3d was attempted with 128 DVs, the algorith
exhibited worse convergence. Since the Griewank problem
sesses a bumpy but continuous search space and the Coran
lem a highly discrete search space, our PSO algorithm may
best on global problems with a continuous search space. It
known how our PSO algorithm would perform on biomechan
problems with several hundred DVs, such as the forward dyn
optimizations of jumping and walking performed with para
SQP inf1–3g.

One advantage of global algorithms such as PSO, GA, an
is that they often do not require significant algorithm param
tuning to perform well on difficult problems. The GA used inf5g
swhich is not freely availabled required no tuning to perform we
on all of these particular analytical test problems. The SA a

marker distance and joint parameter root-
valuations performed by multiple unscaled
Fig. 4 for the corresponding convergence

RMS error

rker
cessmmd

Orientation
parameterssdegd

Position
parameterssmmd

5.49 4.85 2.40
5.49 4.85 2.40

5.78 2.65 6.97
5.64 3.76 4.01

10.4 3.76 14.3
7.21 3.02 9.43

12.3 21.4 27.5
6.61 18.4 8.52

Fig. 4 Convergence history for unscaled „dark lines … and
scaled „gray lines … parallel PSO, GA, SQP, and BFGS runs for
the biomechanical test problem. Each algorithm run was termi-
nated after 10,000 function evaluations. Only one unscaled and
scaled PSO and GA run were required to reach 10,000 function
evaluations, while repeated SQP and BFGS runs were required
to reach that number. Separate SQP and BFGS runs were
treated like individual particles in a single PSO run for calculat-
ing convergence history „see the text ….
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rithm in f5g required tuning of two parameters to improve al
rithm robustness significantly on those problems. Our PSO
rithm swhich is freely availabled required tuning of one parame
swo, which was increased from 1.0 to 1.5d to produce 100% su
cess on the two problems where it had significant failures. Fo
biomechanical test problem, our PSO algorithm required no
ing, and only the population size of our GA algorithm requ
tuning to improve convergence speed. Neither algorithm was
sitive to the two sources of noise present in the problem—n
added to the synthetic marker trajectories, and noise due
somewhat loose convergence tolerance in the Levenb
Marquardt suboptimizations. Thus, for many global algori
implementations, poor performance on a particular problem
be rectified by minor tuning of a small number of algorit
parameters.

In contrast, gradient-based algorithms such as SQP and B
can require a significant amount of tuning even to begin to
proach global optimizer results on some problems. For the bi
chanical test problem, our SQP and BFGS algorithms were h
tuned by scaling the design variables and determining the op
FDSS for each design variable separately. FDSS tuning was
cially critical due to the two sources of noise noted above. W
forward and central difference gradient results were compare
one of the design variables using two different Levenb
Marquardt relative convergence tolerancess10−3 and 10−6d, a
“sweet spot” was found near a step size of 10−2 sFig. 5d. Outside
of that “sweet spot,” which was automatically identified and u
in generating our SQP and BFGS results, forward and ce
difference gradient results diverged quickly when the looser
erance was used. Since most users of gradient-based optim
algorithms do not scale the design variables or tune the FDS
each design variable separately, and many do not perform mu
runs, our SQP and BFGS results for the biomechanical test
lem represent best-case rather than typical results. For this pa
lar problem, an off-the-shelf global algorithm such as PSO or
is preferable due to the significant reduction in effort require
obtain repeatable and reliable solutions.

Another advantage of PSO and GA algorithms is the ease
which they can be parallelizedf5,33g and their resulting high pa
allel efficiency. For our PSO algorithm, Schutte et al.f33g recently
reported near ideal parallel efficiency for up to 32 proces
Soest and Casiusf5g reported near ideal parallel efficiency
their GA algorithm with up to 40 processors. Though SA

Fig. 5 Sensitivity of SQP and BFGS gradient calculations to
the selected finite difference step size for one design variable.
Forward and central differencing were evaluated using relative
convergence tolerances of 10 −3 and 10−6 for the nonlinear least
squares suboptimizations performed during a cost function
evaluation †see Eq. „20…‡.
historically been considered more difficult to parallelizef52g, Hig-
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ginson et al.f53g recently developed a new parallel SA implem
tation and demonstrated near ideal parallel efficiency for up
processors. In contrast, Koh et al.f34g reported poor SQP paral
efficiency for up to 12 processors due to the sequential natu
the line search portion of the algorithm.

The caveat for these parallel efficiency results is that the
required per function evaluation was approximately constan
the computational nodes were homogeneous. As shown inf33g,
when function evaluations take different amounts of time, par
efficiency of our PSO algorithmsand any other synchronous p
allel algorithm, including GA, SA, SQP, and BFGSd will degrade
with an increasing number of processors. Synchronization
tween individuals in the population or between individual grad
calculations requires slave computational nodes that have
pleted their function evaluations to sit idle until all nodes h
returned their results to the master node. Consequently, the
est computational nodeswhether loaded by other users, perfo
ing the slowest function evaluation, or possessing the slowes
cessor in a heterogeneous environmentd will dictate the overa
time for each parallel iteration. An asynchronous PSO implem
tation with load balancing, where the global best-found positio
updated continuously as each particle completes a function e
ation, could address this limitation. However, the extent to w
convergence characteristics and scale independence would
fected is not yet known.

To put the results of our study into the proper perspective
must remember that optimization algorithm robustness can b
fluenced heavily by algorithm implementation details, and
single optimization algorithm will work for all problems. For tw
of the analytical test problemssH2 andH3 with n=4d, other stud
ies have reported PSO results using formulations that did n
clude dynamic inertia and velocity updating. Comparisons are
ficult given differences in the maximum number of funct
evaluations and number of particles, but in general, algor
modifications weresnot surprisinglyd found to influence algorithm
convergence characteristicsf54–56g. For our GA and SQP alg
rithms, results for the analytical test problems were very diffe
from those obtained inf5g using different GA and SQP impleme
tations. With seven mutation and four crossover operators, th
algorithm used inf5g was obviously much more complex than
one used here. In contrast, both SQP algorithms were highl
veloped commercial implementations. Poor performance
gradient-based algorithm can be difficult to correct even with
sign variable scaling and careful tuning of the FDSS. These
ings indicate that specific algorithm implementations, rather
general classes of algorithms, must be evaluated to reac
conclusions about algorithm robustness and performance on
ticular problem.

6 Conclusion
In summary, the PSO algorithm with dynamic inertia and

locity updating provides another option for difficult biomecha
cal optimization problems with the added benefit of being s
independent. There are few algorithm-specific parameters t
just, and standard recommended settings work well for most
lems f60,85g. The algorithm’s main drawback is the high cos
terms of function evaluations because of slow convergence
final stages of the optimization, a common trait among gl
search algorithms. In biomechanical optimization problems, n
multiple local minima, and design variables of different scale
limit the reliability of gradient-based algorithms. The PSO a
rithm presented here provides a simple-to-use off-the-shelf
native for consideration in such cases.
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