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Abstract

Background: Mobile health monitoring using wearable sensors is a growing area of interest. As the world’s

population ages and locomotor capabilities decrease, the ability to report on a person’s mobility activities

outside a hospital setting becomes a valuable tool for clinical decision-making and evaluating healthcare

interventions. Smartphones are omnipresent in society and offer convenient and suitable sensors for mobility

monitoring applications. To enhance our understanding of human activity recognition (HAR) system performance for

able-bodied and populations with gait deviations, this research evaluated a custom smartphone-based HAR classifier

on fifteen able-bodied participants and fifteen participants who suffered a stroke.

Methods: Participants performed a consecutive series of mobility tasks and daily living activities while wearing

a BlackBerry Z10 smartphone on their waist to collect accelerometer and gyroscope data. Five features were

derived from the sensor data and used to classify participant activities (decision tree). Sensitivity, specificity

and F-scores were calculated to evaluate HAR classifier performance.

Results: The classifier performed well for both populations when differentiating mobile from immobile states

(F-score > 94 %). As activity recognition complexity increased, HAR system sensitivity and specificity decreased

for the stroke population, particularly when using information derived from participant posture to make classification

decisions.

Conclusions: Human activity recognition using a smartphone based system can be accomplished for both

able-bodied and stroke populations; however, an increase in activity classification complexity leads to a decrease in

HAR performance with a stroke population. The study results can be used to guide smartphone HAR system

development for populations with differing movement characteristics.

Keywords: Activities of Daily Living, Monitoring, Ambulatory/instrumentation, Cellular Phone, Movement,

Accelerometry/instrumentation

Background
Mobile health monitoring using wearable sensors is a

growing area of interest. As the world’s population

ages and locomotor capabilities decrease, the ability

to monitor a person’s mobility activities outside a

hospital setting becomes valuable for clinical decision-

making. Human Activity Recognition (HAR) systems

combine wearable sensor and computing technologies

to monitor human movement in the person’s chosen

environment.

HAR systems typically use accelerometer and gyro-

scope sensors since these are small, affordable, and gen-

erally unobtrusive [1]. Other HAR systems combine

sensor types, such as accelerometer and ECG [2], or

use multiple sensor locations, such as sternum and

thigh [3], or thigh and chest [4]. However, multiple sen-

sors can be cumbersome and inconvenient for reliable

implementation in everyday life. Smartphones are ubi-

quitous, carried by most individuals on a daily basis,

and many devices contain integrated accelerometer and
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gyroscope sensors, which are commonly used to measure

posture and movement [5].

HAR systems typically follow a machine learning

structure [6]. Raw sensor signals are collected, pre-

processed, and segmented into time windows. Feature

extraction is then performed to retrieve relevant infor-

mation from sensor signals over each window. Features

are abstractions of raw data; such as statistical calcula-

tions (mean, variance etc.) or frequency domain fea-

tures that describe the signal’s periodic structure. Since

many features could be used in a model, a selection

process is typically used to reduce the data’s dimension-

ality. Feature selection methods may be filter-based,

which evaluate features characteristics without a classi-

fier, or wrapper based, which use classifier accuracy to

evaluate features [7]. Finally, a classifier is constructed

using training data and evaluated on testing data. The

literature has previously focused on offline human ac-

tivity recognition, although recent work is moving to-

wards algorithms that can be implemented in real time

using the onboard sensors and computational power of

a smartphone [8].

Many HAR systems have been developed for able-

bodied participants; however, few systems have been

tested on the elderly or people with disabilities [9]. A

recent study showed that an activity classification

model trained on an older cohort and tested on a

younger sample performed better than model training

with the younger cohort and testing on the older

sample. This suggested that a model trained on eld-

erly participants may be more generalizable and result

in more a robust classifier [10], since younger people

may perform activities of daily living with more inten-

sity than older or disabled people. Stroke is a leading

cause of disability among adults and can lead to limited

activities of daily living, balance and walking problems,

and a need for constant care [11]. For a clinician, reliable

data about a patient’s activity is important, particularly in-

formation about the type, duration and frequency of daily

activities (i.e., standing, sitting, lying, walking, climbing

stairs). This information can help therapists design re-

habilitation programmes and monitor progress of patients

outside of the hospital. An objective record of a patient’s

daily activities can avoid mistaken or intentionally mis-

leading self-reporting. Mobility monitoring could provide

large datasets with information about the mobility habits

of people who have suffered a stroke, guiding future re-

search in the field of healthcare and intervention.

The current research compared the performance of a

smartphone-based wearable mobility monitoring sys-

tem (WMMS) between able-bodied participants and

people who had suffered a stroke. By studying differ-

ences in classifier performance between populations,

we addressed the hypothesis that a WMMS developed

using sensor data from able-bodied participants would

perform worse on a population of stroke participants

due to differences in walking biomechanics. This re-

search also identified where the classifier performed

poorly, thereby providing guidance for future research

on HAR for populations with mobility problems.

Methods

Population

A convenience sample of 15 able-bodied participants

(age 26 ± 8.9 years, height 173.9 ± 11.4 cm, weight 68.9 ±

11.1 kg) and 15 stroke participants (age 55 ± 10.8 years,

height 171.6 ± 5.79 cm, weight 80.7 ± 9.65 kg) partici-

pated in this study. Stroke participants were recruited at

the University Rehabilitation Institute in Ljubljana,

Slovenia, and able-bodied participants were recruited at

the Ottawa Hospital Rehabilitation Centre in Ottawa,

Canada. Stroke participants were identified by a physical

and rehabilitation medicine specialist as capable of safely

completing the mobility tasks and able to commit to

the time required to complete the evaluation session

(approximately 30 min). Six stroke patients had left

hemiparesis and nine had right hemiparesis. Thirteen

stroke patients had ischemic stroke, one subarachnoid

hemorrhage and one had impairment because of a benign

cerebral tumor. Six stroke patients used one crutch, two

had one arm in a sling, and one used an ankle-foot orth-

osis. The stroke event averaged 9.6 months before the

study and the average FIM score was 107 points. The

study was approved by the Ottawa Health Science

Network Research Ethics Board and the Ethics Board of

University Rehabilitation Institute (Ljubljana, Slovenia).

All participants provided informed consent.

Equipment

Accelerometer, magnetometer, and gyroscope data were

collected with a Blackberry Z10 smartphone using the

TOHRC Data Logger [12] in both the Ottawa and

Ljubljana locations. Smartphone sampling rates can

vary [13], therefore the Z10 sensors were sampled at

approximately 50Hz, with a mean standard deviation of

15.37Hz across all trials. The WMMS used the Blackberry’s

gravity and linear acceleration output to calculate fea-

tures. Linear acceleration is the Z10 acceleration minus

the acceleration due to gravity. On the BlackBerry Z10,

the inertial measurement unit fuses the accelerometer,

gyroscope, and magnetometer sensors and splits accel-

eration components into applied linear acceleration and

acceleration due to gravity (the gravity signal); however,

the device manufacturer does not report how this is

accomplished.

Since the phone’s orientation on the pelvis can differ

between individuals due to a larger mid-section or differ-

ent clothing, a rotation matrix method was used to
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correct for phone orientation [14]. Ten seconds of accel-

erometer data were collected while the participant was

standing still and a 1-s data segment with the smallest

standard deviation was used to calculate the rotation

matrix constants. The orientation correction matrix was

applied to all sensor data.

While the WMMS application can run entirely on the

smartphone, for the purposes of this research, the raw

sensor output was exported as a text file and run in a

custom Matlab program to observe WMMS algorithm

performance in detail and calculate outcome measures.

WMMS algorithm

Raw sensor data from the smartphone were converted

into features, over 1 s data windows. Data interpolation

was not used and, since the results remained accept-

able, this method was not sensitive to within window

sampling rate variability with a standard deviation of

15.37 Hz.”. The features were used to classify move-

ment activities. The features derived from acceleration

due to gravity, linear acceleration, and gyroscope sig-

nals are displayed in Table 1. Features were selected

based on the literature and observing feature behaviour

from pilot data with the target activities.

A custom decision tree used these features to classify

six activity states: mobile (walk, stairs) and immobile

(sit, stand, lie, and small movements). The decision tree

structure is shown in Fig. 1.

The WMMS has three activity stages. The first stage

used a combination of three features (L-SMA, SOR,

SoSD: Table 1) to identify if the person was mobile

(walking, climbing stairs) or immobile (sitting, stand-

ing, lying down, or small movements). All thresholds

were determined using a separate experimental set of

able-bodied participant data, collected for this purpose.

Figure 2 shows plots of L-SMA, SOR, and SoSD that

demonstrate how these features change during immo-

bile and mobile activities.

In stage 2, if the person was in an immobile state,

trunk orientation was examined using the “difference to

Y” signal feature (Table 1). Based on thresholds, the clas-

sifier determined if the person was upright (standing),

leaning back (sitting), or horizontal (lying down). If the

person was standing, a weighting factor was calculated

based on how many of the stage 1 features passed

thresholds. If the weighting factor exceeded 1 for two

consecutive data windows and the person was standing

for more than 3 s, the person was considered to be per-

forming a small movement (i.e., standing and washing

dishes at a sink, etc.). Figure 3 shows how the DifftoY

feature changes when a person walks to a bed, lies down,

and stands up again to continue walking.

In stage three, the default classification was walking. If

the participant walked for more than 5 s and the slope

of G-SMAvar feature passed a threshold, then the activ-

ity was classified as climbing stairs. Figure 4 shows how

G-SMAvar changes when a person is walking and when

they are climbing stairs. The set of stairs used in this ex-

ample had a landing in the middle, corresponding to the

downward slope in G-SMAvar.

Protocol

Data collection took place under realistic but controlled

conditions. Participants follow a predefined path in The

Ottawa Hospital Rehabilitation Centre or University

Rehabilitation Institute, including living spaces within

the rehab centres, and perform a consecutive series of

mobility tasks: standing, walking, sitting, riding an ele-

vator, brushing teeth, combing hair, washing hands,

drying hands, setting dishes, filling the kettle with

water, toasting bread, a simulated meal at a dining

table, washing dishes, walking on stairs, lying on a bed,

and walking outdoors [15] Appendix.

Before the trial, participant characteristics were

recorded (i.e., age, gender, height, weight). Participants

wore the smartphone in a holster attached to their

right-front belt or pant waist, with the camera

pointed forward. Trials were video recorded using a

separate smartphone for activity timing comparison

and contextual information. Video time was synchro-

nized with the smartphone sensor output by shaking

the phone at the beginning and end of the trial, pro-

viding a recognizable accelerometer signal and video

event.

Table 1 Features derived from smartphone sensor signals. Acceleration due to gravity = (Xgrav, Ygrav, Zgrav), linear

acceleration = (Xlin, Ylin, Zlin), SD = standard deviation

Signal Feature Formula Abbreviation

Simple moving average of sum of range
of linear acceleration (4 windows)

Σ
4
i¼1 range Xlinið Þð Þ � range Ylinið Þð Þ � range Zlinið Þð Þ½ �

4

L-SMA

Difference to Y Ygrav–Zgrav–Xgrav DifftoY

Sum of range of linear acceleration (range(Xlini)) + (range(Ylini)) + (range(Zlini)) SOR

Sum of standard deviation of linear acceleration (SD(Xlini)) + (SD(Ylini)) + (SD(Zlini)) SoSD

Maximum slope of simple moving average
of sum of variances of gravity

SMAvar ¼ Σ
4
i¼1 Var Xgravð Þi � Var Ygravð Þi � Var Zgravð Þið Þ

4
max(SMAvar(2)–SMAvar(1), SMAvar(3)–SMAvar(2), SMAvar(4)–SMAvar(3))

G-SMAvar
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Gold-standard activity event times were manually iden-

tified from the video recordings. Each 1 s window was

considered an occurrence. For example, sitting for 5 s was

considered 5 occurrences. When segmenting the data, a

1 s window on either side of a change of state was consid-

ered part of the transition; to reduce error from inter-rater

variability in identifying the start of an activity. Transitions

were not considered when calculating outcomes. The

number of 1 s instances (class distribution) of each activity

is shown in Table 2. Since this is a realistic data sample

representing activities of daily living, class imbalances

occur. For example, there were more instances of walking

or sitting than climbing stairs or lying down.

Data analysis involved calculating the number of

true positives (TP), true negatives (TN), false positives

(FP) and false negatives (FN) in Matlab. Sensitivity,

specificity, and F-scores were calculated for each indi-

vidual, and the average and standard deviation of all

participants were calculated for each activity. F-score

was calculated as F = 2TP/(2TP + FP + FN). Results for

each data window were compared to the gold-standard re-

sults from the video recording using descriptive statistics.

Descriptive statistics and t-tests (p < 0.05) were used to

compare sensitivity, specificity, and f-scores between able-

bodied and stroke groups.

Results
The WMMS performed similarly with able-bodied and

stroke populations when detecting immobile and mobile

states (stage 1), with all sensitivity and specificity results

greater than 0.92 and F-scores greater than 0.94

(Table 3). No significant differences were found between

groups for stage 1, although sensitivity and F-score for

the stroke population were lower for immobile states

and specificity was higher for mobile states.

In stage 2, specificity and F-scores for stroke partici-

pants were significantly lower for stand detection, but

specificity was greater than 0.94 for both groups

(Table 4). Specificity for lie detection was significantly

greater for stroke participants, but results for both

groups were greater than 0.97. Sitting sensitivity and

F-Score were lower than the other activities, with re-

sults for both groups less than 0.68.

In stage 3, stand F-scores for stroke participants were

significantly lower than the able-bodied group (Table 5).

Lie specificity was significantly greater for stroke partici-

pants, but outcomes for both groups were greater than

0.98. For the stroke group, walk sensitivity and F-score

were lower. Specificity was significantly lower for stair

recognition and sensitivity and small movement recogni-

tion was poor for both groups.

Discussion
This research demonstrated that a smartphone-based

HAR approach can provide relevant information on

human movement activities for both able-bodied and

stroke populations, at a broad level of detail; however,

sensitivity and specificity decrease as the classification

Fig. 1 WMMS Decision Tree Structure
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tasks become more complex. Thus, our hypothesis that

the WMMS would perform worse for stroke participants

was valid at higher detail levels, but invalid at a broad

classification level.

For stage 1, mobile and immobile activity states

were well classified for both able-bodied and stroke

populations. From the accelerometer-based HAR lit-

erature, activity classification accuracy ranged from 71

to 97 % [6, 16], with studies in the past two years

typically reporting results from 92 to 96 % for able

bodied [17, 18] and 82-95 % for older people [19].

Since this stage has only 2 classes, and the feature

differences are large, thresholds can be set such that

variability between people and populations has less of

an effect on classification accuracy. Classification er-

rors at stage1 may not be purely due to WMMS is-

sues. For example, annotating gold-standard video can

be difficult for small movements, such as washing

dishes, since the person may move their body enough

to be classified in a mobile state but human interpret-

ation of the video could indicate an immobile state.

The WMMS may provide a more consistent method

of assessing an appropriate movement threshold for

daily activity assessment since human raters could

Fig. 2 Plots of L-SMA, SOR and SoSD showing how these features change during mobile and immobile activities
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differ in their interpretation of movement-type and

movement-onset during activities of daily living.

In stage 2, classification algorithm performance de-

creased when identifying if an immobile person was

standing, sitting, or lying down. Specificity and F-score

were significantly lower for stand detection and the algo-

rithm performed poorly for sit identification, for both

populations. Classification was based on static thresholds

from a single feature (DifftoY). Since stroke can cause

posture asymmetry during standing [20] and the stroke

population was much older than the able-bodied sample,

with posture changing with age [21], the DifftoY feature

and threshold may not be sufficient to identify standing

across populations, and could benefit from a combin-

ation of multiple features. In addition, inaccurate results

could occur if the phone shifted or changed orientation

during the trial. The therapist manually repositioned the

phone during the trial for two stroke participants, one

stroke participant unintentionally moved the smart-

phone with her paretic hand, and another participant

intentionally re-adjusted his phone. The changed pos-

ition may have affected application performance for

activities that require a consistent phone orientation

(i.e., standing, sitting, lying).

Inclination angle is typically used to classify posture

when using a single accelerometer location [22]. In this

case, sit identification relies on the pelvis tilting slightly

back while sitting, which was not always the case in this

study. For example, when a person sits at the dinner

table they often lean forward to reach for objects or

when eating. If the person did not sit back enough to

pass the threshold before leaning forward, sitting was

not identified. In many cases, stroke participants were

detected as standing during the dinner table sequence.

Fig. 3 Plot of DifftoY showing how this feature change during waling and lying down activities

Fig. 4 Plot of Sum of variance, SMAvar and G-SMAvar showing how these features change during waling and stair climbing activities
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This reduced sitting sensitivity and standing specificity.

Improvements in sit detection from one pelvis-worn

sensor location could be achieved by using additional

features or expanding the duration of sit analysis beyond

the 1-s data window to compensate for forward-back

transitions when sitting and performing daily activities

(eating, office work, etc.). The DifftoY threshold setting

was also attributed to classification problems for three of

the able-bodied participants, for whom some sit periods

were classified as lie. This outcome also demonstrated

the importance of assessing HAR systems across a range

of daily activities since the results would have been

much better if only “pure” sit, stand, and lie tasks were

included.

In stage 3, lower walk detection sensitivity and F-score

were observed for the stroke group. The smartphone

was worn on the right side of the pelvis and nine of the

participants had right hemiparesis, thereby reducing

pelvis movement on the right side and affecting sensor

and feature output. In most cases, the people with right

hemiparesis had slightly lower outcomes than those with

left hemiparesis (<0.18 % difference in sensitivity and

specificity), however the differences were not significant

(p < 0.05). Many stroke participants wore the phone with

cotton pants that had an elastic waist strap, which may

have provided an inferior anchor point for the phone’s

holster (i.e., as compared with a leather belt or fitted

pants). This may have increased sensor signal variability

for stroke participants. All able-bodied participants

had a belt or more rigid pant waist. When used in

practice, a viable HAR system must deal with mount-

ing inconsistencies.

Stair specificity for the stroke group was significantly

lower than the able-bodied group, and the algorithm

performed poorly for stair recognition for all partici-

pants. F-score was low for both populations due to the

high number of false positives detected, lowering the

precision of classification. For five able-bodied people,

the WMMS briefly detected “stairs” when lying down,

then correctly re-identified the state as lie. This occurred

because the feature used to detect stair climbing (covari-

ance) increased during the stand-to-lie movement. Inter-

estingly, this did not occur for stroke participants,

perhaps due to a difference in bed height or a difference

in mobility techniques when transitioning into a supine

position. As with sitting, error correction over a longer

duration would eliminate incorrect stair classification

during the stand-to-lie transition. Stroke participants

tended to rely more on the railing while climbing stairs.

Multiple threshold settings for differing the stair ascent

methods, or user-specific thresholds for stair identifica-

tion, could be explored as a means of improving classi-

fication results. For example, one stroke participant

ascended and descended the stairs in a step-by-step

fashion that placed both feet on a single stair, thereby

changing the sensor signals and hence affecting stair rec-

ognition. This is a common stair climbing strategy for

the stroke population and persons with other mobility

and walking limitations.

Small movements were not well classified for either

population, resulting in a sensitivity of 0.09 for able-

bodied participants and 0.15 for stroke participants. The

small movements included in the trial (making toast,

washing dishes, eating a meal etc.) did not always cause

pelvis accelerations. Thus, accelerometer and gyroscope

sensors located on the hip were not appropriate for de-

tecting all activities. Other small movements, such as

Table 2 Class distributions at each level

Activity Able bodied Stroke Both

Stand 114 (27.1) 131 (37.0) 122 (32.9)

Sit 45 (6.6) 93 (26.9) 68.9 (30.8)

Lie 32 (7.0) 36 (4.3) 34 (6.0)

Walk 361 (32.9) 768 (239.4) 565 (266.5)

Upstairs 17 (2.5) 49 (25.9) 33 (24.4)

Small moves 95 (14.1) 135 (31.8) 115 (31.8)

Table 3 Average, standard deviation (in brackets), and differences

between able-bodied and stroke groups for sensitivity, specificity,

and F-score at stage 1

Activity Sensitivity Specificity F-score

Stand Stroke 0.920 (0.076) 0.997 (0.006) 0.944 (0.053)

Able-bodied 0.963 (0.048) 0.997 (0.005) 0.975 (0.028)

p-value 0.08 0.95 0.06

Large Moves Stroke 0.997 (0.005) 0.920 (0.076) 0.994 (0.006)

Able-bodied 0.997 (0.006) 0.963 (0.048) 0.993 (0.008)

p-value 0.95 0.08 0.68

Table 4 Average, standard deviation (in brackets), and

differences between able-bodied and stroke groups for sensitiv-

ity, specificity, and F-score at stage 2

Activity Sensitivity Specificity F-score

Stand Stroke 0.826 (0.133) 0.940 (0.053) 0.701 (0.176)

Able-bodied 0.903 (0.168) 0.987 (0.024) 0.917 (0.137)

p-value 0.17 0.01 0.00

Sit Stroke 0.533 (0.361) 0.987 (0.021) 0.568 (0.265)

Able-bodied 0.646 (0.408) 0.983 (0.036) 0.673 (0.405)

p-value 0.43 0.71 0.41

Lie Stroke 0.794 (0.347) 1.000 (0.000) 0.824 (0.337)

Able-bodied 0.943 (0.086) 0.979 (0.038) 0.871 (0.165)

p-value 0.13 0.05 0.64

Walk Stroke 0.997 (0.006) 0.961 (0.035) 0.993 (0.006)

Able-bodied 0.997 (0.005) 0.966 (0.041) 0.989 (0.011)

p-value 0.95 0.70 0.27
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washing dishes or brushing teeth, caused the person to

move their hips enough for the WMMS to classify a

mobile state. The poor performance related to the diffi-

culty in categorizing daily living human movements

and difficulty setting small movement onsets when

labeling gold-standard video. In future work, better

methods are needed for gold file annotation, taking into

account individual differences in how small movements

are performed.

These results show that, while mobile and immobile

classifications can be achieved with a relatively similar

degree of accuracy for able-bodied and stroke partici-

pants, the WMMS had more difficulty with classification

as the activity detail level increased, especially for the

mobility affected stroke population. More research with

pathological movement populations are required to

understand how HAR algorithms need to be modified to

accommodate for group and individual differences when

performing activities of daily living.

Limitations in the current work include a moderate

sample size from each population (15 people). The

stroke group was not age matched to the able bodied

group; therefore, age-related differences may have

accounted for some differences in WMMS performance.

However, the average ages for both groups were less

than 60 years, which is not considered a senior popula-

tion, thereby minimizing potential age effects. Stroke

participants were in the sub-chronic phase and were

capable of completing 30 min of walking. In the

community, post-stroke populations may have lower

mobility levels that could introduce greater movement

variability, thereby decreasing WMMS performance.

Since this study only used one smartphone model for

testing. future work could evaluate algorithm perform-

ance with other smartphone based systems.

Conclusions

In this paper, it was demonstrated that human activity

recognition using a smartphone based system can be ac-

complished for both able-bodied and stroke populations.

However, an increase in activity classification complexity

leads to a decrease in WMMS performance with a stroke

population. This validates the hypothesis that a HAR

system developed using only able-bodied sensor data

would perform worse when used to classify activities in

a stroke population.

Sensor data and features produced by the different

populations affected WMMS performance. The algo-

rithm performed reasonably well for both stroke and

able-bodied participants when differentiating between

sit, stand, lie, and walk and between mobile and immo-

bile states. When stair climbing and small movements

were added to the classification, algorithm performance

decreased. Additional features are recommended to

more accurately identify sitting, standing, and lying, as

well as stair identification, since stair signals are similar

to level walking for many individuals. These features

should be selected using data from people with

Table 5 Average, standard deviation (in brackets), and differences between able-bodied and stroke groups for sensitivity, specificity,

and F-score at stage 3

Activity Sensitivity Specificity F-score

Stand Stroke 0.759 (0.163) 0.883 (0.051) 0.512 (0.145)

Able-bodied 0.878 (0.169) 0.886 (0.044) 0.728 (0.128)

p-value 0.06 0.89 0.00

Sit Stroke 0.533 (0.360) 0.978 (0.037) 0.529 (0.262)

Able-bodied 0.646 (0.408) 0.975 (0.049) 0.660 (0.400)

p-value 0.43 0.88 0.30

Lie Stroke 0.794 (0.347) 1.000 (0.000) 0.824 (0.337)

Able-bodied 0.943 (0.086) 0.982 (0.033) 0.871 (0.165)

p-value 0.13 0.05 0.10

Walk Stroke 0.514 (0.161) 0.903 (0.074) 0.646 (0.123)

Able-bodied 0.643 (0.226) 0.932 (0.052) 0.734 (0.162)

p-value 0.08 0.22 0.10

Stairs Stroke 0.622 (0.260) 0.672 (0.107) 0.101 (0.085)

Able-bodied 0.711 (0.384) 0.805 (0.123) 0.168 (0.142)

p-value 0.46 0.00 0.13

Small Movements Stroke 0.154 (0.156) 0.987 (0.016) 0.209 (0.179)

Able-bodied 0.091 (0.102) 0.994 (0.01) 0.149 (0.163)

p-value 0.20 0.23 0.35
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differing mobility levels, so as not to over-fit the classi-

fier to a young population with potentially more intense

movements. The study results can be used to guide

HAR system development for populations with differ-

ing movement characteristics.

Appendix A: Activity Circuit
The Ottawa Hospital Rehabilitation Centre, Ottawa, Ontario

Follow the participant and video their actions, on a

second smartphone, while they perform the following

actions, spoken by the investigator.

� From a standing position, shake the smartphone to

indicate the start of the trial.

� Continue standing for at least 10 s. This standing

phase can be used for phone orientation calibration.

� Walk to a nearby chair and sit down.

� Stand up and walk 60 m to an elevator.

� Stand and wait for the elevator and then walk into

the elevator.

� Take the elevator to the second floor.

� Turn and walk into the home environment

� Walk into the bathroom and simulate brushing teeth.

� Simulate combing hair.

� Simulate washing hands.

� Dry hands using a towel.

� Walk to the kitchen.

� Take dishes from a rack and place them on the

counter.

� Fill a kettle with water from the kitchen sink.

� Place the kettle on the stove element.

� Simulate placing bread in a toaster.

� Walk to the dining room.

� Sit at a dining room table.

� Simulate eating a meal at the table.

� Stand and walk back to the kitchen sink.

� Rinse off the dishes and place them in a rack.

� Walk from the kitchen back to the elevator.

� Stand and wait for the elevator and then walk into

the elevator.

� Take the elevator to the first floor.

� Walk 50 m to a stairwell.

� Open the door and enter the stairwell.

� Walk up stairs (13 steps, around landing, 13 steps).

� Open the stairwell door into the hallway.

� Turn right and walk down the hall for 15 m.

� Turn around and walk 15 m back to the stairwell.

� Open the door and enter the stairwell.

� Walk down stairs (13 steps, around landing, 13 steps).

� Exit the stairwell and walk into a room.

� Lie on a bed.

� Get up and walk 10 m to a ramp.

� Walk up the ramp, turn around, then down the

ramp (20 m).

� Continue walking into the hall and open the door

to outside.

� Walk 100 m on the paved pathway.

� Turn around and walk back to the room.

� Walk into the room and stand at the starting point.

� Continue standing, and then shake the smartphone

to indicate the end of trial.

University Rehabilitation Institute, Ljubljana Slovenia

Follow the participant and video their actions, on a

second smartphone, while they perform the following

actions, spoken by the investigator.

� From a standing position, shake the smartphone to

indicate the start of the trial.

� Walk down the hall to a chair in another room and

sit down.

� Stand up and walk into the hall.

� Walk around the lobby and into the home

environment

� Walk up to the sink and simulate brushing teeth.

� Simulate combing hair.

� Simulate washing hands.

� Dry hands using a towel.

� Walk to the kitchen.

� Take dishes from a table and place them on the

counter.

� Fill a kettle with water from the kitchen sink.

� Place the kettle on the stove element.

� Simulate placing bread in a toaster.

� Walk to the dining room.

� Sit at a dining room table.

� Simulate eating a meal at the table.

� Stand and walk back to the kitchen sink.

� Rinse off the dishes and place them in a rack.

� Walk from the kitchen to the elevator.

� Stand and wait for the elevator and then walk into

the elevator.

� Take the elevator to the third floor.

� Walk down the hall to a stairwell.

� Open the door and enter the stairwell.

� Walk up stairs (11 steps, around landing, 11 steps).

� Open the stairwell door into the hallway.

� Walk down the hall.

� Open the door and enter a room.

� Lie on a bed.

� Get up and walk to the door.

� Open the door and walk back down the hallway.

� Open the door and enter the stairwell.

� Walk down stairs (11 steps, around landing, 11 steps).

� Exit the stairwell and walk down the hallway back

to the elevator.

� Stand and wait for the elevator and then walk into

the elevator.
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� Take the elevator to the first floor.

� Walk to the exit and walk outside.

� Walk through the parking lot to the underground

parking entrance.

� Stand at the top of the ramp.

� Walk down the ramp, turn around, then walk up

the ramp.

� Walk through the parking lot back to the entrance.

� Walk inside and back to the elevator.

� Stand and wait for the elevator and then walk into

the elevator.

� Take the elevator to the second floor.

� Walk down the hall and stand at the starting point.

� Continue standing, and then shake the smartphone

to indicate the end of trial.
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