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RESEARCH ARTICLE
10.1002/2013JC009710

Evaluation of altimetry-derived surface current products using

Lagrangian drifter trajectories in the eastern Gulf of Mexico

Yonggang Liu1, Robert H. Weisberg1, Stefano Vignudelli2, and Gary T. Mitchum1

1College of Marine Science, University of South Florida, St. Petersburg, Florida, USA, 2Consiglio Nazionale delle Ricerche,

Area Ricerca CNR, Pisa, Italy

Abstract Lagrangian particle trajectory models based on several altimetry-derived surface current prod-

ucts are used to hindcast the drifter trajectories observed in the eastern Gulf of Mexico during May to

August 2010 (the Deepwater Horizon oil spill incident). The performances of the trajectory models are

gauged in terms of Lagrangian separation distances (d) and a nondimensional skill score (s), respectively. A

series of numerical experiments show that these altimetry-based trajectory models have about the same

performance, with a certain improvement by adding surface wind Ekman components, especially over the

shelf region. However, their hindcast skills are slightly better than those of the data assimilative numerical

model output. After 3 days’ simulation the altimetry-based trajectory models have mean d values of 75–83

and 34–42 km (s values of 0.49–0.51 and 0.35–0.43) in the Gulf of Mexico deep water area and on the West

Florida Continental Shelf, respectively. These satellite altimetry data products are useful for providing essen-

tial information on ocean surface currents of use in water property transports, offshore oil and gas opera-

tions, hazardous spill mitigation, search and rescue, etc.

1. Introduction

The Gulf of Mexico (GOM) became of national and international interest in spring-summer 2010 as a conse-

quence of the Deepwater Horizon incident, the largest offshore oil spill in U.S. history. The complex, time

varying ocean circulation of the region played an important role in advecting the oil from the spill site [e.g.,

Liu et al., 2011a]. On the northern side of the eastern GOM, the shelf currents are generally weaker and

mostly wind-driven [e.g., Mitchum and Sturges, 1982; Weisberg et al., 2001, 2005; Morey et al., 2005]; however,

on the southern side, deep ocean currents, embodied by the GOM Loop Current system (i.e., the Loop Cur-

rent and its eddies), are much stronger [e.g., Sturges and Lugo-Fern�andez, 2005 and the chapters therein;

Chang and Oey, 2013]. Thus, the Loop Current system (Figure 1) posed a threat to the potential expansion

of the Deepwater Horizon disaster [e.g., Weisberg, 2011]. The Deepwater Horizon oil spill highlighted the

need to build more complete, sustained and integrated coastal ocean observation systems, and to be pre-

pared for rapid response to similar incidents in coastal oceans [Liu et al., 2011c, Weisberg, 2011]. Many

observing tools—in water or in space—are required to collect data for both deep and coastal oceans.

In particular, radar altimeters from satellites are of beneficial use in ocean observing systems [e.g., Fu and

Chelton, 1984; Cipollini et al., 2010; Benveniste, 2011]. They provide accurate estimates of the Sea Surface

Height (SSH) for the world’s ocean, through the analysis of echoes bounced back from the sea surface.

Altimeter-derived Sea Level Anomaly (SLA) data are often used to infer surface geostrophic current anoma-

lies, which are believed to be good approximations of surface current anomalies in deep ocean regions

[e.g., Lagerloef et al., 1999; Willis and Fu, 2008]. There are several such altimetry-derived surface velocity

products freely available for use, e.g., the Archiving, Validation and Interpretation of Satellite Oceanographic

Data (AVISO) gridded product [e.g., Pascual et al., 2006], the Ocean Surface Currents Analyses Real-time

(OSCAR) [e.g., Bonjean and Lagerloef, 2002; Dohan and Maximenko, 2010], and the Geostrophic and Ekman

Current Observatory (GEKCO) [Sudre et al., 2013]. Some of these products are used to study large-scale circu-

lation in the world’s oceans [e.g., Le Traon and Morrow, 2001; Lagerloef et al., 2003; Johnson et al., 2007] and

its semienclosed seas [e.g., Cipollini et al., 2008].

Since altimetry SSH maps provide essential information of large scale ocean thermodynamics, they are

assimilated into numerical ocean circulation models to improve ocean current simulation [e.g., Fox et al.,

2002]. There are several data assimilative numerical ocean circulation models in the GOM region, e.g., the
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Global Hybrid Coordinate Ocean Model (Global HYCOM) [Chassignet et al., 2007]. Some of these model

results are freely available for oceanographic applications. For example, the Global and GOM HYCOM out-

puts were employed in the surface oil trajectory modeling in response to the Deepwater Horizon incident

[e.g., Liu et al., 2011c]. It should be noted that the numerical ocean circulation model results have uncertain-

ties due to a variety of reasons, such as accuracies of numerical schemes, parameterizations, and bathyme-

try, as well as initial conditions, surface and open boundary forcing fields.

Without being assimilated into models, altimetry products themselves, such as AVISO, OSCAR, and GEKCO,

provide gridded surface current information with a temporal resolution of several days and spatial resolu-

tion of 1/3� or 1/4�. The altimetry data have also been used in describing the surface ocean circulation [e.g.,

Jacobs and Leben, 1990; Leben and Born, 1993; Alvera-Azc�arate et al., 2009], interpreting the movement of

the surface oil slicks [e.g., Liu et al., 2011b; Hamilton et al., 2011; Walker et al., 2011], and qualitatively validat-

ing the ocean circulation models [e.g., Miller and Kuhn, 2010] in the GOM. Since the altimetry products can

be made available online near real-time, it would be useful to know the feasibility and usefulness of such

operational applications.

The present analysis is a follow-on study of our trajectory modeling in response to the Deepwater Horizon

oil spill based on the surface velocity fields output from data assimilative models [Liu et al., 2011c]. It is also

continuation of our altimetry data evaluation using in situ ADCP and HF radar measurements in the eastern

GOM [Liu et al., 2012]. Here we present results from running a Lagrangian particle trajectory model based

on the altimetry-derived surface currents to hindcast the surface drifter trajectories in the eastern GOM

observed during summer 2010. The purpose is to examine the usefulness of the altimetry data products

themselves, relative to the numerical model outputs, in providing surface meso and large-scale ocean circu-

lation that are essential in offshore oil exploration and operations, oil spill mitigation, and coastal pollution/

property transport. The rest of the paper is arranged as follows: Data sets are described in section 2; trajec-

tory model and its evaluation methods are provided in section 3; results are reported in section 4, with a

summary in section 5.

Figure 1. Map of the eastern Gulf of Mexico showing topography with isobaths of 50, 200, and 1000 m. Also superimposed are mean sur-

face geostrophic currents derived from the mean dynamic topography of Rio et al. [2009].
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2. Data

2.1. Drifter Data

Satellite-tracked surface drifters are widely used in Lagrangian ocean observations [e.g., Davis, 1985; Winant

et al., 1999; Fratantoni, 2001; McClean et al., 2002]. Extensive drifter applications were previously made in

the GOM [e.g., Yang et al., 1999; Lugo-Fernandez et al., 2001; Fan et al., 2004; DiMarco et al., 2005; Price et al.,

2006], with many of these focusing on the Loop Current and its eddies [e.g., Kirwan et al., 1988; Hamilton

et al., 1999; Kuznetsov et al., 2002; LaCasce and Ohlmann, 2003]. Drifter trajectory data are also used for vali-

dating mesoscale circulation mapping by satellite altimetry [e.g., Le Traon and Hernandez, 1992] and inter-

preting Lagrangian Coherent Structures derived from altimetry data [Olascoaga et al., 2013].

As a part of its response to the Deepwater Horizon oil spill efforts, University of South Florida

(USF) deployed 18 satellite-tracked drifters in the GOM Loop Current region and on the West Flor-

ida Shelf (WFS) during May to August 2010, assisted by scientists from Florida Department of Envi-

ronmental Protection (FDEP), U.S. Coast Guard (USCG), Florida Wildlife Research Institute (FWRI),

Florida Institute of Technology (FIT), Woods Hole Oceanographic Institution (WHOI), and Northeast

Fisheries Science Center (NEFSC). The surface drifters (drogued at 1 m depth) transmitted data via

satellite in real time. The drifter trajectories are shown in Figure 2. Some of the drifters stayed on

the WFS for a long time, others got entrained into the GOM Loop Current and its eddies and

were transported eastward through the Florida Straits to the Atlantic coast. The locations of the

drifters were binned into hourly time series and archived. Detailed information about the drifter

data can be seen in Liu et al. [2011b]. This drifter data set was also used to assess the perform-

ance of a trajectory model that was employed to track the spilled oil [Liu and Weisberg, 2011], to

describe the ocean circulation along with altimetry-derived surface geostrophic currents and ocean

color imagery [Liu et al., 2011b; Hamilton et al., 2011], and to examine Lagrangian predictability

from HF radar observations and model output [Yaremchuk et al., 2014].

Figure 2. Satellite-tracked drifter trajectories collected by University of South Florida during May to August 2010 in the eastern Gulf of

Mexico. Drifter trajectories are differentiated with various colors. Triangles designate the drifter release locations. Superimposed are the

mean surface geostrophic currents derived from the AVISO gridded altimetry product during the same time period. The white dashed line

indicates the open boundary of the West Florida Coastal Ocean model (WFCOM). This figure is modified from Liu and Weisberg [2011].
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2.2. Altimetry Data

Several research groups reprocess altimetry data and produce altimetry-derived surface current velocity

data in regional and global domains. Among these groups, the AVISO, OSCAR, and GEKCO offer gridded sur-

face current data on global coverage, which allow us to extract data for the GOM region.

One of the AVISO altimetry products is the Ssalto/Duacs Gridded SLA and geostrophic velocity anomalies

on a global grid of 1/3� resolution. The weekly data are produced by Ssalto/Duacs by merging multisatellite

altimeter missions [e.g., Ducet et al., 2000; Le Traon et al., 2003]. All standard corrections were made by

AVISO to account for wet troposphere, dry troposphere, and ionosphere delays, inverted-barometer and

dynamic atmosphere responses, sea state bias, and ocean, solid earth and pole tides. The data are distrib-

uted by AVISO (http://www.aviso.oceanobs.com/duacs/), with support from the Centre National d’Etudes

Spatiales (CNES). Both delayed-time and near real-time versions of the gridded SLA are available. It is gener-

ally expected that the delayed-time data are more precise than the near real-time counterparts. The AVISO

products have been widely used to study ocean circulation variability at different scales [e.g., Han, 2007; Liu

et al., 2008].

The AVISO gridded SLA product needs to combine with a mean dynamic topography (MDT), mean sea sur-

face above geoid, to get absolute SSH. Rio et al. [2009] provided a combined MDT, called CNES-CLS09 MDT,

based on 4.5 years of GRACE data, 15 years of altimetry, in situ hydrologic, and drifter data [Rio et al., 2011].

This is an updated version of MDT series [e.g., Rio and Hernandez, 2004; Rio et al., 2007]. This MDT is added

to the AVISO gridded SLA to obtain absolute SSH for the eastern GOM region, from which we compute

absolute geostrophic current velocity at sea surface. The mean surface geostrophic currents derived from

the Rio et al. [2009] data are shown in Figure 1, which is an updated version of that inWeisberg et al. [2009].

Another MDT data set for the GOM region comes from the Miami Isopycnic Coordinate Ocean Model

(MICOM) [e.g., Bleck et al., 1992; Chassignet and Garraffo, 2001], which is used by the USF Ocean Circulation

Group in a near real-time regional SSH product. An automated surface geostrophic current and virtual

drifter trajectory analysis is available online (http://ocgweb.marine.usf.edu/Products/Drifters), beginning

with applications to advection of surface borne materials from Hurricane Katrina damage in September

2005. This product was used to examine the surface ocean circulation in the Caribbean Seas and GOM

region [Alvera-Azc�arate et al., 2009], to determine connectivity time scales between regions [e.g., Weisberg,

2011], and to study the GOM Loop Current and its eddies during the Deepwater Horizon oil spill incident

[Liu et al., 2011b]. This MICOM mean field is added to the AVISO delayed-time SLA to get the absolute SSH,

and then the surface absolute geostrophic current velocity.

The OSCAR product, developed at Earth and Space Research (ESR), provides near real-time ocean surface

velocities from satellite fields on global grid of 1/3� resolution with a 5 day interval [e.g., Lagerloef et al., 1999;

Johnson et al., 2007; Dohan et al., 2010]. This product is a direct computation of global surface currents using

satellite SSH, scatterometer winds, and both Advanced Very High Resolution Radiometer (AVHRR) and in situ

sea surface temperatures [Bonjean and Lagerloef, 2002]. Currents are calculated using a quasi-steady geostro-

phic model together with an eddy viscosity based wind-driven ageostrophic component and a thermal wind

adjustment. So the OSCAR sea surface currents are actually averaged over the top 30 m of the upper ocean.

The OSCAR data are also freely available through two data centers operated by NOAA and NASA JPL Physical

Oceanography DAAC, respectively. Johnson et al. [2007] compared the OSCAR sea surface currents with in situ

data from moored current meters, shipboard current profilers, drifters, and velocity output from a data-

assimilating ECCO model (Estimating the Circulation and Climate of the Ocean) for the near-equatorial region.

The comparison with drifter data is in terms of Eulerian velocity components. Recently, Robinson [2011] also

evaluated the OSCAR product with in situ data from tide gauges, moored and shipboard ADCP measurements

in the Intra-American Seas, including the eastern GOM. The OSCAR product has also been used to study

ocean circulation variability at different scales [e.g., Picaut et al., 2002; Legeckis et al., 2004; Lumpkin et al.,

2010], including an application in the Tropical Atlantic [Helber et al., 2007].

The GEKCO product, developed in the Centre de Topographie des Oc�eans et de l’Hydrosphère (CTOH) at

LEGOS, France, is another altimetry-derived surface current velocity data set [Sudre and Morrow, 2008; Sudre

et al., 2013]. The velocity data are on global grid of 1/3� resolution with daily time stamp. Similar to the

OSCAR data, the GEKCO total surface velocity data include surface geostrophic and wind Ekman compo-

nents. The Ekman currents are derived from wind estimates from QuickSCAT satellite, and the geostrophic

Journal of Geophysical Research: Oceans 10.1002/2013JC009710

LIU ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 2830

http://www.aviso.oceanobs.com/duacs/
http://ocgweb.marine.usf.edu/Products/Drifters


currents from the AVISO altimetry, with mean geostrophic currents derived from Rio et al. [2007]. Recently,

the GEKCO estimates were compared with independent observations from both Lagrangian and Eulerian

perspectives [Sudre et al., 2013].

Auxiliary data include winds reanalysis product from the NOAA National Centers for Environmental Predic-

tion —North American Mesoscale model (NCEP NAM) [Rogers et al., 2009]. The surface Ekman velocity com-

ponents will be added to the surface geostrophic velocity of the AVISO products to determine total surface

currents, with the assumption that the near-surface velocity field can be decomposed into a geostrophic

component and a wind-driven part. The surface Ekman current components (ue, ve) are calculated as

ue5
0:0127
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin ð/Þ
p U10cos ðh2p=4Þ

ve5
0:0127
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin ð/Þ
p U10sin ðh2p=4Þ;

(1)

where U10 and h are the 10 m wind speed and direction, respectively, and u is the latitude [Stewart, 2008].

2.3. Model Output

Several numerical ocean circulation model outputs were used in the nowcast/forecast of the oil spill trajec-

tories in a rapid response to the Deepwater Horizon oil spill incident [Liu et al., 2011c]. Among these models,

the Global HYCOM, the GOM HYCOM, and the Intra America Seas Nowcast/Forecast System (IASNFS) [Ko

et al., 2003] are data assimilative, and the model outputs are still freely available online.

The Global HYCOM, combined with the Navy Coupled Ocean Data Assimilation (NCODA) system [Cummings,

2005], provides daily snapshots of ocean currents hindcast on a 1/12� horizontal grid. The NCODA assimi-

lates available along-track satellite altimetry data, satellite and in situ sea surface temperature data as well

as available in situ vertical temperature and salinity profiles from XBTs, ARGO floats and moored buoys. Sur-

face forcing, including wind stress, wind speed, heat flux, and precipitation comes from Navy Operational

Global Atmospheric Prediction System (NOGAPS) [Rosmond et al., 2002]. The Global HYCOM1NCODA anal-

ysis system is a popular source of open boundary forcing for limited-domain coastal ocean circulation mod-

els [e.g., Barth et al., 2008]. The GOM HYCOM is similar to the Global HYCOM but focuses on the GOM region

with higher horizontal resolution (1/25�). Both the Global and GOM HYCOM outputs are freely available at

the HYCOM Consortium website (www.hycom.org).

The IASNFS is an experimental real-time ocean nowcast/forecast system developed based on the Navy

Coastal Ocean Model (NCOM) and one-way nested within the Global NCOM [Ko et al., 2003, 2008; Barron

et al., 2006]. It has a horizontal grid of 1/24� degree (�6 km), combines with the NCODA data assimilative

system, and uses surface forcing from the NOGAPS. It is operated at the Naval Research Laboratory with

daily model output served through the Northern Gulf Institute (northerngulfinstitute.org).

Recently, the USF Ocean Circulation Group implemented a West Florida Coastal Ocean model (WFCOM) by

nesting the unstructured grid, Finite Volume Coastal Ocean Model (FVCOM) [Chen et al., 2003] in the

HYCOM to downscale from the deep ocean, across the continental shelf and into the estuaries without the

need for multiple nesting [Zheng and Weisberg, 2012]. The WFCOM presently uses the GOM HYCOM for its

open boundary forcing. The horizontal grid size varies from �6 km near the open boundary to �150 m in

the estuaries. Surface forcing comes from the NOAA NCEP NAM reanalyzed winds and surface heat. It also

includes eight tidal constituents as forcing along the open boundary. Hourly model hindcast outputs are

archived for further analysis [e.g., Weisberg et al., 2014].

3. Lagrangian Trajectory Model and Evaluation

Lagrangian particle-tracking is often found in oceanographic applications [e.g., Edwards et al., 2006; Barron

et al., 2007; Sotillo et al., 2008; Abascal et al., 2009; Wei et al., 2014]. A Lagrangian trajectory model, based on

the surface velocity fields output from six numerical circulation models, played an important role in the

rapid response to the Deepwater Horizon oil spill [e.g., Liu et al., 2011c, 2011d]. The model uses a trilinear

interpolation scheme in longitude, latitude, and time to interpolate the surface velocity time series. It
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simulates particle positions using a fourth-order Runge-Kutta algorithm for time integration [e.g., Hofmann

et al., 1991]. Two measures will be used to quantitatively evaluate the trajectory hindcast: (1) the Lagrangian

separation distance (d), defined as the separation distance between the end points of the simulated and

observed Lagrangian trajectories and (2) the skill score (s):

s5
12

c

n
; ðc � nÞ

0; ðc > nÞ

;

8

<

:

(2)

as proposed in Liu and Weisberg [2011], where n is a tolerance threshold, c is a normalized cumulative

Lagrangian separation distance, i.e., the cumulative Lagrangian separation distance (d) divided by the

cumulative length of the observed trajectory (l)

c5
X

N

i51

di

�

X

N

i51

li ; (3)

where i5 1, 2, . . ., N, and N is the total number of days. As discussed in Liu and Weisberg [2011], the toler-

ance threshold n defines the expectations/requirements to the model. A larger n value corresponds to a

lower expectation, while a smaller n value indicates a stricter requirement. In assessing performance of a

model, it is important to reassess the model’s aim and scope, and properly select performance criteria [Ben-

nett et al., 2013]. We follow the suggestion of Liu and Weisberg [2011], and select the tolerance threshold

n5 1. Thus, the skill score is simplified as

s5
12c; ðc � 1Þ

0; ðc > 1Þ
:

(

(4)

In this case, model simulations with c >1 are flagged to be no skill (s5 0), which corresponds to a criterion

that, to be acceptable, the cumulative separation distance should not be larger than the cumulative length

of the trajectory. The highest score (s5 1) indicates perfect skill.

This nondimensional skill score correctly indicates the relative performance of the Global HYCOM in model-

ing the strong currents of the GOM Loop Current and the Gulf Stream and the weaker currents on the WFS.

In contrast, the Lagrangian separation distance (d) alone gives a misleading result [Liu and Weisberg, 2011].

This skill score is particularly useful when the number of drifter trajectories is limited and neither a conven-

tional Eulerian-based velocity nor a Lagrangian based probability density function may be estimated [e.g.,

Garaffo et al., 2001; Toner et al., 2001; Griffa et al., 2007; Ohlmann and Mitarai, 2010]. The skill assessment is

solely based on the drifter trajectories, and thus prior knowledge of the ocean circulation in the interested

region or additional climatological data of the mean circulation patterns are not required [e.g., €Ozg€okman

et al., 2000]. These features make the skill score a practical index for model evaluation. Recently, it finds

applications in assessing numerical ocean circulation models [e.g., Mooers et al., 2012; Halliwell et al., 2014].

It also gains popularity in evaluating trajectory models for oil spill and search and rescue operations [R€ohrs

et al., 2012; Ivichev et al., 2012; De Dominicis et al., 2013; Sayol et al., 2014; Janeiro et al., 2014]. Recently, it

has been extended to use a cluster of particles to get a mean skill score in the evaluation of an altimetry-

derived currents [Bouffard et al., 2014]. This skill score is a good addition to the model performance meth-

ods summarized by Bennett et al. [2013].

For each drifter trajectory, a virtual particle is released/reinitialized daily at the observed location, and

tracked in the model based on the altimetry-derived current velocities. For each reinitialization, both the

Lagrangian separation distance (d3) and the skill score (s3) are calculated after 3 days simulation, following

Liu and Weisberg [2011]. This results in daily series of d3 and s3 along a drifter trajectory. Figure 3 shows an

example of simulated particle trajectories and the corresponding model skill scores s3. Generally, higher skill

scores (s3 � 0.8) correspond to better agreement between the simulated and the observed trajectories,

which is seen during 12–18 June 2010 (Figure 3). The lower skill scores (s3< 0.1) are found for 23–24 June

2010 near the shelf break where the simulated particle tends to drift away from the observed drifter
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trajectory, even in the opposite

direction (Figure 3). So the skill

score s3 properly indicates the

trajectory model performance

during the 3 day period.

4. Results

We perform a series of Lagran-

gian trajectory model simula-

tions based on the surface

currents derived from the altim-

etry products and output from

the data assimilative numerical

ocean circulation models. The

numerical experiments are

listed in Table 1. The altimetry-

based trajectory models include

the two versions (near real-time

and delayed time) of AVISO

gridded data in combination

with a mean SSH or MDT (the

MICOM model mean SSH or the

Rio 2009 MDT), the OSCAR, and

the GEKCO products. Note that

both the OSCAR and the GEKCO

current products include wind

Ekman components, while the

AVISO products do not. Surface Ekman currents are added to the surface geostrophic currents to examine

whether there are improvements in the surface trajectory simulation in the Loop Current region. The data-

assimilative model-based trajectory simulations include the Global and GOM HYCOM, and the NCOM

IASNFS. The WFCOM is also used to simulate the trajectories on the WFS.

4.1. Altimetry Products

Figure 4 shows the spatial distribution of the skill scores (s3) of the altimetry based trajectory models. For

the AVISO1MICOM mean SSH product (Figure 4a), the skill scores are generally higher (s3> 0.4) in the

deep water area in the center of the GOM, with the highest skill scores (s35 0.8–0.9) located in the western

part of the GOM Loop Current anticyclonic eddy. Although sporadic high skill scores are also seen on the

Figure 3. Observed (black) and simulated (magenta) trajectories along a drifter path in

the eastern Gulf of Mexico. The trajectory model reinitializes daily from the observed

drifter locations. Open circles represent daily simulated drifter locations and closed circles

(color-coded) designate the model skill scores after 3 days’ simulation (s3).

Table 1. Trajectory Model Performances After 3 Days Simulation

Mean Separation Distance

(d3) (km) Mean Skill Score (s3)

Trajectory Model Type Ocean Shelf Ocean Shelf

(1) AVISO (near real-time)1MICOM mean 83 42 0.49 0.36

(2) AVISO (delayed time)1MICOM mean 83 42 0.49 0.37

(3) AVISO (delayed time)1MICOM mean1 Ekman 75 34 0.50 0.43

(4) AVISO (delayed time)1 Rio2009 mean 78 41 0.50 0.35

(5) AVISO (delayed time)1 Rio2009 mean1 Ekman 76 36 0.50 0.41

(6) OSCAR 79 39 0.49 0.37

(7) OSCAR (maximum mask) 78 40 0.50 0.36

(8) GEKCO 76 37 0.51 0.38

(9) Global HYCOM 88 39 0.41 0.36

(10) Gulf of Mexico HYCOM 91 41 0.38 0.33

(11) IASNFS 105 38 0.34 0.36

(12) WFCOM 38 0.39
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WFS, the skill scores in the shallow water area toward the WFS are generally lower than those in the deep

water area. Since the skill score difference between the near real-time and the delayed time AVISO products

is visually unnoticeable, only the results of the delayed time AVISO product are shown in Figure 4a. The

Figure 4. Spatial distribution of the trajectory model skill scores (s3) in the eastern Gulf of Mexico based on different altimetry-derived surface current products: surface geostrophic

velocity derived from (a) the AVISO (delayed-time) SLA plus MICOM model mean dynamic topography, (b) the AVISO (delayed-time) SLA plus mean dynamic topography produced by

Rio et al. [2009], (c) same as (a) but with surface wind Ekman currents, (d) same as (b) but with surface wind Ekman currents, (e) the OSCAR product, and (e) the GEKCO product.
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AVISO1 Rio 2009 MDT product has a similar skill score pattern as the AVISO1MICOM mean SSH product,

and the difference between the two products is minor and mainly located in the eastern part of the trajecto-

ries (Figure 4b). Adding surface Ekman components to the AVISO products generally increase the skill scores

for the WFS area where the water depths are generally shallow (Figures 4c and 4d). An example of such

improvement in trajectory modeling is shown in Figure 5. Along this drifter trajectory, we see more positive

changes of the skill scores on the shelf than in the deep ocean area. Both the OSCAR and the GEKCO prod-

ucts have similar skill score patterns as the AVISO products, i.e., generally higher skill scores in the deep

water area and lower skill scores on the WFS (Figures 4e and 4f).

4.2. Data Assimilative Models

Figure 6 shows the spatial distribution of the skill scores (s3) of the trajectory simulation based on the sur-

face currents output from the three data assimilative ocean circulation models (the two HYCOMs and the

IASNFS). Similar to those of the altimetry-based trajectory models, the skill scores are generally higher in

the GOM Loop Current eddy region and lower on the WFS to the east. A major difference is the lower skill

scores (s3< 0.2) appearing in the transition area from the deep ocean to the shelf (Figures 6a,–6c). Their

counterparts in the altimetry-derived products are generally high (s3> 0.7). A closer examination of the

simulated trajectories based on the currents derived from the altimetry product and output from the

numerical ocean circulation model confirmed the differences in model skills (Figure 7). During the 12

days’ period (8–20 June 2010), the AVISO-based trajectories generally tend to follow the direction of the

observed drifter path in the along-slope direction, while the Global HYCOM-based trajectories tend to

Figure 5. The skill score differences (Ds3) between the altimetry (AVISO1 Rio2009) derived surface geostrophic currents with and without

the surface Ekman currents. Positive values of Ds3 indicate improvement of the trajectory simulation after winds are included. The trajec-

tory is labeled every 10 days since 11 June 2010.
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deviate from the observed drifter moving direction. This finding suggests that the data assimilative mod-

els may need some improvement for this transition region. It may be due to inadequate coverage of data

being assimilated into the models. It should be noted that conventional altimetry data are not reliable

near the coasts [e.g., Vignudelli et al., 2011; Birol and Delebecque, 2014], and the cutoff of the altimetry

data in coastal region may be too large.

4.3. Deep Ocean Versus Shelf

The dominant ocean circulation dynamics are different in the open ocean area and on the shelf. In the

GOM Loop Current region, the currents are much stronger (by an order of magnitude) than those on the

shelf and the geostrophic component may be dominant in the surface currents [e.g., Oey et al., 2005; Liu

et al., 2011b]. In contrast, the weaker currents on the shelf may at times be mostly driven by local winds

[e.g., Weisberg et al., 2005; Liu and Weisberg, 2005, 2007]. It is necessary to examine the model performance

separately for the two dynamically distinct regions. The observed drifter trajectories are roughly classified

into two categories (deep ocean and shelf) in terms of the open boundary line of the WFCOM. The drifter

trajectories within the WFCOM domain are regarded as on the shelf, while those outside of the shelf model

domain are treated as in the ocean. Both mean Lagrangian separation distance (d3) and mean skill score (s3)

after 3 days simulation are calculated for each numerical experiment (Table 1). These mean values quantify

the relative performance of the trajectory models.

Figure 6. Spatial distribution of the trajectory model skill scores (s3) in the eastern Gulf of Mexico based on the surface currents output from different ocean circulation models: (a) the

Global HYCOM, (b) the Gulf of Mexico HYCOM, (c) the IASNFS, and (d) the WFCOM. Note that only the drifters located within the WFCOM domain are shown in (d).
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All the altimetry-based trajectory models have about the same performance, with mean d3 values of 75–83

km (34–42 km) and mean s3 values of 0.49–0.51 (0.36–0.43) in the deep ocean area (on the shelf). Those

based on the numerical ocean circulation models have mean d3 values of 88–105 km (38–41 km) and

mean s3 values of 0.34–0.41 (0.33–0.36) in the deep ocean area (on the shelf). Note that smaller d3 and

larger s3 indicate better model performance. According to d3, these models have better performance on

the shelf than over the deep ocean, while in terms of s3, these models have better skills over the deep

ocean than on the shelf. The skill score is a more acceptable metric in assessing the model in a region of

distinct ocean dynamics [Liu and Weisberg, 2011]. Note that conventional altimetry products may not be

reliable near the coast [e.g., Vignudelli et al., 2011], also their temporal sampling (weekly maps) is not high

enough to resolve synoptic variation of the coastal circulation [e.g., He et al., 2004]. Thus, the comparison

will be mainly focused on the deep ocean region. It is interesting that the altimetry-based trajectory mod-

els perform slightly better, i.e., they have smaller d3 and larger s3 values, than those based on the data

assimilative ocean circulation models.

We use the daily snapshots of the surface currents output from three data assimilative models in the trajec-

tory models, in which tidal and inertial variations are not represented. To better examine the trajectory sim-

ulation on the shelf, we use the hourly surface currents output from the WFCOM realistic hindcast.

Comparing Figures 6b and 6d, we can see that the WFCOM based trajectory model has higher skill scores

than the GOM HYCOM based model in the inner and middle shelf areas. Similar improvement in the

WFCOM based model is also seen in terms of the Lagrangian separation distances (Figure 8). Little improve-

ment is seen in the zone near the open boundary, because the WFCOM is one-way nested within the GOM

HYCOM, and the surface currents in that zone remain similar to those of the outer model. Despite the low

Figure 7. Comparison of observed (red) and simulated surface drifter trajectories based on the surface currents derived from the AVISO

product (magenta) and output from the Global HYCOM (cyan), respectively. The open circles designate daily simulated drifter locations.

The observed drifter trajectory is labeled every 3 days from 24 May to 20 June 2010.
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skill scores near the open boundary, the WFCOM based trajectory model has an overall improvement than

the GOM HYCOM based model, with the mean separation distance d3 reduced from 41 to 38 km, and the

mean skill score s3 increased from 0.33 to 0.39 (Table 1). This improvement would be more significant if we

only focus on the inner and middle shelf.

5. Summary

A series of altimetry-derived surface current products (OSCAR, GEKCO, and AVISO1 different mean fields)

are used to hindcast the drifter trajectories in the eastern Gulf of Mexico during May to August 2010. The

performances of the trajectory models are gauged against the observed drifter trajectories in terms of

Lagrangian separation distances (d3) and a nondimensional skill score (s3), respectively.

These altimetry-based trajectory models have about the same skills. After 3 days’ simulation, the altimetry-

based trajectory models have mean d values of 75–83 and 34–42 km (s values of 0.49–0.51 and 0.35–0.43)

in the Gulf of Mexico deep water area and on the West Florida Continental Shelf, respectively. Adding sur-

face wind Ekman components improves the AVISO-based model skills, especially over the shelf region.

Particularly within the transition zone from the deep ocean to the shelf, the altimetry-based trajectory mod-

els have higher skill scores than those based on the numerical models (s35 0.8 versus s35 0.3). This sug-

gests that there may be benefit from additional data assimilation for the operational Global HYCOM, GOM

HYCOM, and NCOM IASNFS in that transition zone.

Despite their limited temporal sampling, the altimetry-based trajectory models perform slightly better than

those based on the data assimilative ocean circulation models in the deep ocean area of the GOM. This sug-

gests that the altimetry products are useful for providing essential information on ocean surface currents

for exploitation in water property transport, offshore oil and gas operations, hazardous spill mitigation,

search and rescue, etc. With the development of a new generation of altimeters with higher resolution

capabilities than their predecessors (e.g., CryoSat-2, AltiKa, Sentinel-3; SWOT) as well as the improvement of

reprocessing in the coastal zone [see e.g., Cipollini et al., 2013 for a review], the altimetry products will find

more practical applications of societal importance.

The altimetry-derived surface currents can describe only the present and past state of the surface currents,

while ocean models can forecast the future state. This capability is needed in some applications, such as

search and rescue and rapid response to oil spill emergencies [e.g., Liu et al., 2011c, 2011d]. Limited by data

Figure 8. Spatial distribution of the Lagrangian separation distances (d3) on the West Florida Shelf based on the surface currents output

from (a) the Gulf of Mexico HYCOM and (b) the WFCOM. Note that smaller separation distances indicate better model performances.
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availability, only model hindcasts are used in this analysis. It would be useful to assess the predictive skills

of the models using model forecast, which warrants future studies.
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