
Evaluation of
AMD's Advanced Synchronization Facility

Within a Complete Transactional Memory Stack

Dave Christie
Jae-Woong Chung

Stephan Diestelhorst
Michael Hohmuth

Martin Pohlack

Advanced Micro Devices, Inc.

Christof Fetzer
Martin Nowack
Torvald Riegel

Technische Universität
Dresden

Pascal Felber
Patrick Marlier
Etienne Riviere

Université de Neuchâtel

 2

Transactional Memory (TM)

● Multi-core everywhere, need parallel software
● Often, parallel threads need to synchronize over shared memory

● Current synchronization mechanisms (locks, ...) not really suitable
● Every programmer and every program is affected too difficult→
● Locks: deadlocks, relies on conventions, not composable

 3

Transactional Memory (TM)

● Multi-core everywhere, need parallel software
● Often, parallel threads need to synchronize over shared memory

● Current synchronization mechanisms (locks, ...) not really suitable
● Every programmer and every program is affected too difficult→
● Locks: deadlocks, relies on conventions, not composable

● TM: programmer declares, generic TM runtime system
implements
● C++: __transaction { x = map.remove(key); x.refCount--; }
● Compiler transforms code so that it uses TM for memory accesses
● TM runtime is a software/hardware/hybrid implementation

(STM/HTM/HyTM)

 4

Our contribution:
Realistic HTM in a realistic TM stack

● What can we expect from first-generation hardware TM (HTM) support?
● Properties of current systems shape first-gen HTM support!

 5

Our contribution:
Realistic HTM in a realistic TM stack

● What can we expect from first-generation hardware TM (HTM) support?
● Properties of current systems shape first-gen HTM support!

● Realistic HW support: AMD's Advanced Synchronization Facility (ASF)
● x86_64 extension for lock-free programming and TM
● Designed to be feasible to implement in high-volume microprocessors

 6

Our contribution:
Realistic HTM in a realistic TM stack

● What can we expect from first-generation hardware TM (HTM) support?
● Properties of current systems shape first-gen HTM support!

● Realistic HW support: AMD's Advanced Synchronization Facility (ASF)
● x86_64 extension for lock-free programming and TM
● Designed to be feasible to implement in high-volume microprocessors

● Realistic TM-aware system stack:
● C/C++ transaction statements (__transaction{})
● Dresden TM compiler, based on gcc + LLVM
● Generic TM library interface (ABI)
● TM library implemented using ASF

● Evaluation in near-cycle-accurate simulator
● Models x86 with ASF at a high level of detail

Simulator

ASF

ASF-TM

TM lib ABI

Compiler

Program with
__transaction{}

OS

 7

Advanced Synchronization Facility
(ASF)

● Proposal: Not announced for future products

● ASF provides Speculative Regions (SRs)
● Similar to transactions: SPECULATE, COMMIT
● Speculative (LOCK MOV) and nonspeculative

loads/stores allowed (selective annotation)

DCAS:
 MOV R8, RAX
 MOV R9, RBX
retry:
 SPECULATE
 JNZ retry
 MOV RCX, 1
 LOCK MOV R10, [mem1]
 LOCK MOV RBX, [mem2]
 CMP R8, R10
 JNZ out
 CMP R9, RBX
 JNZ out
 LOCK MOV [mem1], RDI
 LOCK MOV [mem2], RSI
 XOR RCX, RCX
out:
 COMMIT
 MOV RAX, R10

 8

Advanced Synchronization Facility
(ASF)

● Proposal: Not announced for future products

● ASF provides Speculative Regions (SRs)
● Similar to transactions: SPECULATE, COMMIT
● Speculative (LOCK MOV) and nonspeculative

loads/stores allowed (selective annotation)

● Speculative access
 ASF monitors cacheline (R/W, W/W conflicts)→

● SR aborts on conflicts, exceeded capacity,
far jumps, disallowed instructions

DCAS:
 MOV R8, RAX
 MOV R9, RBX
retry:
 SPECULATE
 JNZ retry
 MOV RCX, 1
 LOCK MOV R10, [mem1]
 LOCK MOV RBX, [mem2]
 CMP R8, R10
 JNZ out
 CMP R9, RBX
 JNZ out
 LOCK MOV [mem1], RDI
 LOCK MOV [mem2], RSI
 XOR RCX, RCX
out:
 COMMIT
 MOV RAX, R10

 9

Advanced Synchronization Facility
(ASF)

● Proposal: Not announced for future products

● ASF provides Speculative Regions (SRs)
● Similar to transactions: SPECULATE, COMMIT
● Speculative (LOCK MOV) and nonspeculative

loads/stores allowed (selective annotation)

● Speculative access
 ASF monitors cacheline (R/W, W/W conflicts)→

● SR aborts on conflicts, exceeded capacity,
far jumps, disallowed instructions

● Simple guarantees:
– Minimal capacity
– SR will eventually commit (unless

contention / exceeded capacity /
far jumps /disallowed)

DCAS:
 MOV R8, RAX
 MOV R9, RBX
retry:
 SPECULATE
 JNZ retry
 MOV RCX, 1
 LOCK MOV R10, [mem1]
 LOCK MOV RBX, [mem2]
 CMP R8, R10
 JNZ out
 CMP R9, RBX
 JNZ out
 LOCK MOV [mem1], RDI
 LOCK MOV [mem2], RSI
 XOR RCX, RCX
out:
 COMMIT
 MOV RAX, R10

 10

Constraints for ASF's design

● Realities in the development of high-volume microprocessors
● Costs of chip area and verification
● Only incremental changes feasible
● Existing CPUs are complex: out-of-order execution, ...
● HTM touches many sensitive areas
● All corner cases have to be handled
● Backward/forward compatibility (code, architecture)

 11

Constraints for ASF's design

● Realities in the development of high-volume microprocessors
● Costs of chip area and verification
● Only incremental changes feasible
● Existing CPUs are complex: out-of-order execution, ...
● HTM touches many sensitive areas
● All corner cases have to be handled
● Backward/forward compatibility (code, architecture)

● High-level ASF design constraints
● No change to cache-coherence protocol
● No transaction virtualization
● Don't change behaviour of nonspeculative code (e.g., loads/stores)
● Keep instruction set additions small
● Keep cost of first-generation TM extensions small
● Enable further use cases (minimal capacity for lock-free programming)

 12

ASF Implementations

● Dedicated storage: Locked Line Buffer (LLB)
● Augmented cache: Speculative load/store bits for cachelines
● Different capacity limitations:

● LLB size vs. cache size/associativity

● Our study:
● LLB, optionally use L1 cache for loads

 LLB-8, LLB-256→
 LLB-8 w/ L1, LLB-256 w/ L1→

● Providing ASF's guarantees is nontrivial
● Capacity: mispredicted branches leading to additional loads
● Progress: Pagefaults abort SRs, but OS should see pagefaults

 13

Dresden TM Compiler (DTMC)

● Compiler instruments only accesses to shared memory
● Exploits ASF's selective annotation (no capacity wasted for stack)

● Generic TM ABI important
● Allows cross-vendor compatibility + dynamic linking

● Compiler uses link-time optimization (LTO)
● Can do whole-program analysis/transformation/optimization

Source code Transformed to use TM ABI Binary after LTO
extern long cntr;
void increment() {
 __transaction {

 cntr = cntr + 5;

 }}

extern long cntr;
void increment() {
 _ITM_beginTransaction(...);

 long l_cntr = _ITM_R8(&cntr);
 l_cntr = l_cntr + 5;
 _ITM_W8(&cntr, l_cntr);
 _ITM_commitTransaction(); }

; mem1 for cntr

SPECULATE
JNZ handle_abort
LOCK MOV RCX, [mem1]
ADD RCX, 5
LOCK MOV [mem1], RCX
COMMIT

 14

ASF-TM

● TM runtime library
● Uses either ASF or simple software fallback (serial execution)

● Some TM functions need software aids
● Begin: ASF SPECULATE + software setjmp + support for nesting, serial
● Commit: ASF COMMIT + support for nesting, serial
● Load/store functions: just use ASF's speculative accesses

 15

ASF-TM

● TM runtime library
● Uses either ASF or simple software fallback (serial execution)

● Some TM functions need software aids
● Begin: ASF SPECULATE + software setjmp + support for nesting, serial
● Commit: ASF COMMIT + support for nesting, serial
● Load/store functions: just use ASF's speculative accesses

● Calling libraries: Memory allocator as an example
● Asynchronous aborts of SRs: Can't use malloc/free/... as is even though

they're thread-safe
● Currently we use custom pre-allocation
● We could as well let the compiler instrument malloc with ASF-TM

 16

Evaluation: Simulator

● PTLSim with ASF extensions
● Highly detailed x86_64 simulation (out-of-order execution, …)
● Close to AMD and Intel architectures

● Single-socket 2.1GHz 8-core simulated
● All experiments performed in the simulator
● Microbenchmarks, STAMP TM benchmark suite

(use __transaction{}, compiled with DTMC)

 17

Microbenchmarks: Scalability
Be

tt
er

 (
tx

n/
us

)

 18

Microbenchmarks: Scalability
Be

tt
er

 (
tx

n/
us

)

 19

Microbenchmarks: Scalability
Be

tt
er

 (
tx

n/
us

)

 20

Microbenchmarks: Scalability
Be

tt
er

 (
tx

n/
us

)

 21

STAMP Benchmark Suite: KMeans
● Scales well, very few aborts
● STM is pretty good compared to sequential

Be
tt

er

 22

STAMP Benchmark Suite: Genome
● STM overhead is much larger
● LLB-8 has not enough capacity
● LLB-8/256+L1 also have capacity aborts (cache associativity)

Be
tt

er

 23

STAMP Benchmark Suite: Vacation
● LLB-8(+L1): more than 8 modified cachelines per transaction
● LLB-256+L1 scalability limited by cache associativity

Be
tt

er

 24

Conclusions

● ASF is a proposal by industry for realistic first-gen HW TM support
● Often sufficient to get good TM performance
● Lots of systems work on higher layers (TM library, compiler, …)
● Full-stack TM research necessary to build ready-to-use TM systems
● Open source releases: PTLSim-ASF, Dresden TM Compiler

http://amd64.org/research/multi-and-manycore-systems.html
http://tm.inf.tu-dresden.de

http://tmware.org
http://velox-project.eu

http://amd64.org/research/multi-and-manycore-systems.html
http://tm.inf.tu-dresden.de/
http://tmware.org/
http://velox-project.eu/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

