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Purpose: This work presents an improved algorithm for the generation of 3D breast software

phantoms and its evaluation for mammography.

Methods: The improved methodology has evolved from a previously presented 3D noncompressed

breast modeling method used for the creation of breast models of different size, shape, and com-

position. The breast phantom is composed of breast surface, duct system and terminal ductal lobular

units, Cooper’s ligaments, lymphatic and blood vessel systems, pectoral muscle, skin, 3D mammo-

graphic background texture, and breast abnormalities. The key improvement is the development of

a new algorithm for 3D mammographic texture generation. Simulated images of the enhanced 3D

breast model without lesions were produced by simulating mammographic image acquisition and

were evaluated subjectively and quantitatively. For evaluation purposes, a database with regions of

interest taken from simulated and real mammograms was created. Four experienced radiologists

participated in a visual subjective evaluation trial, as they judged the quality of the simulated

mammograms, using the new algorithm compared to mammograms, obtained with the old model-

ing approach. In addition, extensive quantitative evaluation included power spectral analysis and

calculation of fractal dimension, skewness, and kurtosis of simulated and real mammograms from

the database.

Results: The results from the subjective evaluation strongly suggest that the new methodology for

mammographic breast texture creates improved breast models compared to the old approach. Cal-

culated parameters on simulated images such as � exponent deducted from the power law spectral

analysis and fractal dimension are similar to those calculated on real mammograms. The results for

the kurtosis and skewness are also in good coincidence with those calculated from clinical images.

Comparison with similar calculations published in the literature showed good agreement in the

majority of cases.

Conclusions: The improved methodology generated breast models with increased realism com-

pared to the older model as shown in evaluations of simulated images by experienced radiologists.

It is anticipated that the realism will be further improved using an advanced image simulator so that

simulated images may be used in feasibility studies in mammography. © 2010 American Associa-

tion of Physicists in Medicine. �DOI: 10.1118/1.3491812�
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I. INTRODUCTION

Breast cancer is the most common cancer in women. In Eu-

rope, one in ten women develops this type cancer in her

lifetime, while in the United States, it is the second leading

cause of cancer death. Currently, the best method for its early

detection before it becomes clinically palpable is x-ray mam-

mography. European studies have shown that breast cancer

mortality is reduced by about 37% in women 50–69 yr of

age who are subjected to screening mammography,
1

while in

the United States, this number varies from 28% to 65%.
2

The

latter is a result of a large study involving a consortium of

investigators that developed seven statistical models of

breast cancer incidence and mortality to investigate the con-

tribution of screening mammography and adjuvant treatment

to the reduction of breast cancer mortality in the period from

1975 to 2000.

The optimization of digital mammography is of critical

importance as we make the transition from film to digital

detectors and eventually to tomographic and 3D imaging of

the breast. Emerging technologies include tissue perfusion

imaging,
3

digital breast tomosynthesis,
4

and cone beam

breast computer tomography.
5

The performance of these new
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techniques should be assessed and optimized before clinical

deployment. Clinical studies, however, can be expensive and

time consuming. Three-dimensional phantoms are needed for

the evaluation of image quality and the accurate depiction of

fine anatomic detail. However, anatomically realistic physi-

cal phantoms are not widely available and the manufacturing

of such phantoms is an extremely difficult task with the cur-

rent technology. The use of computer modeling for the gen-

eration of computer or “virtual” phantoms offers an expedi-

ent and a potentially more effective alternative to physical

phantoms.

Simulation and computer modeling offers a cost effective,

practical, and flexible alternative approach to design experi-

ments for the assessment and optimization of image quality

of forthcoming x-ray breast imaging systems, prior to clini-

cal deployment or for quality assurance purposes. Computer

models mimic the anatomy and shape of the female breast

and simulate the x-ray projection. Simple mathematical

phantoms have been used very effectively for radiation do-

simetry, optimization of acquisition geometry, x-ray spec-

trum, and detector optimization.
5–12

The breast is usually

modeled in the form of a cylinder, half-ellipsoid, or simply

parallelepiped with adjustable size and glandular to adipose

tissue ratio. They are simulated as a homogeneous mixture of

glandular and adipose tissue surrounded by an adipose layer.

Tissue compositions are usually taken from Hammerstein

et al.
13

More complex phantoms can be generated by simu-

lating 3D breast tissue distribution, obtained by applying the

concept of 3D power law noise.
14,15

Advanced breast models with 3D realistic breast tissue

distribution and anatomical features
16–18

have been devel-

oped in order to carry out feasibility studies with 2D and 3D

x-ray breast imaging techniques, including optimization of

image number and dose per image in digital breast tomosyn-

thesis and breast dual energy,
10,15,18–20

as well as to perform

accurate breast dosimetry,
21

evaluate nonrigid mammogram

registration techniques,
22

calculate the properties of the digi-

tal mammograms
23

and investigate the effect of digital breast

tomosynthesis acquisition parameters on computer-extracted

texture features.
24,25

These models offer complex breast tis-

sue simulation and allow the generation of realistic synthetic

mammograms which resemble the real ones. Recently, Ma et

al.
18

reported an advanced new breast model suitable for

work with general purpose Monte Carlo codes for simulation

of x-ray projection images.

Synthetic mammograms are calculated utilizing basically

two approaches. The most popular approach is to simulate

the beam transport through the mammographic system, as

the transmitted intensity through the breast is calculated on

the basis of exponential attenuation of incident

beams.
16,17,23,26

This approach produces images quite quickly

but is limited to the simulation of primary radiation effects

only. In order to account for the photon noise under realistic

conditions, quantum noise is added. Monte Carlo simulation

programs
18,27,28

that simulate the beam interaction including

the scattered radiation have been developed.

Previously, we described a computer model of the breast

that allows simulation of the internal structures under normal

and compressed conditions.
17,29

This model is limited to low

resolution due to computational and methodological limita-

tions. Efforts were focused on the development of a new

algorithm for a very realistic mammographic tissue texture

generation. This paper reports on the improved methodology

for 3D breast model generation and specifically presents a

new algorithm for this task. The paper also focuses on the

evaluation of the improved breast model for its application in

mammographic studies. This has been accomplished by sub-

jective and quantitative evaluation of synthetic mammo-

grams obtained by simulating mammography imaging. In the

subjective evaluation, experienced radiologists judged the

quality of mammograms synthesized with the new and old

methodology for the creation of breast models, while the

objective evaluation involved comparison of texture features

extracted from simulated and real mammograms as well as

with published data. The results indicate that images of

breast models, synthesized using the new methodology for

mammographic breast texture creation, reach a high degree

of similarity to real mammograms.

II. MATERIALS AND METHODS

II.A. Breast model

Briefly described, the breast phantom is a composite

model of the female breast and includes the breast shape, the

mammary duct system, the Cooper’s ligaments, the pectoral

muscle, vessels, skin, mammographic texture, and breast ab-

normalities. The breast surface is modeled as a combination

of two geometrical primitives: An elongated semiellipsoid

and an elongated semihyperboloid. The duct system is simu-

lated using a network of cylinders, probabilistically arranged

in the breast as branches in a treelike arrangement, starting

from the nipple and restricted by the external breast contour.

The mammographic texture simulates the presence of adi-

pose, fibrous, and connective tissues, as well as other non-

glandular tissue types that are not explicitly modeled. Coo-

per’s ligaments are modeled as a set of thin ellipsoid shells,

originating at randomly sampled positions in the breast

model, while the pectoralis muscle is approximated as a cone

shaped object. Breast abnormalities are modeled with round,

ovoid, elongated, and irregular shapes. The lymphatic system

is modeled as a set of cylinders, originating at sampled po-

sitions in a surface hyperboloid layer and in the medial edge

of the semiellipsoid, while the lymph nodes are simulated as

bean-shaped objects varying in size from several millimeters

to several centimeters in diameter. Blood vessels are simu-

lated in a similar way as the lymph vessels. The skin is

represented as a surface layer of thickness 1–2 mm. All geo-

metrical primitives are transformed to voxel values of the

final breast matrix. The lymphs, the blood vessels, and the

skin are new features introduced in the model. Finally, the

mammographic texture that represents breast structures that

are not explicitly modeled is synthesized.
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The previous approach for mammographic texture simu-

lation used generation of a set of 2D synthetic images from

2D power law noise.
17

The 3D mammographic texture was

obtained by mapping each image pixel gray-level value into

this matrix at a height related to the pixel’s gray-level value,

while the other two coordinates were considered the same.

The voxel value was obtained by averaging the gray values

of the synthetic pixel and the previous value of the matrix

voxel.

The steps of the new algorithm for generation of mammo-

graphic texture are shown in Fig. 1. Initially, the texture ma-

trix is filled with random walks, calculated using the concept

of the “fractional Brownian motion �fBm� model.” This was

prompted by the fact the fBm has a Gaussian nature that

allows long-range correlations and has strong scaling prop-

erties and features observed in mammograms.
30

A short de-

scription of the fBm process is given in the Appendix. The

algorithm for the initial filling of the breast matrix with

three-dimensional random walks is outlined in Fig. 2. Three-

dimensional random walks are simulated with coordinates

�xi ,yi ,zi� selected randomly around the nipple origin and

anywhere in the breast matrix. Further on, each random walk

moves to another voxel that has a position �xi+1 ,yi+1 ,zi+1�,
calculated from the voxel positions, determined in the previ-

ous stage �xi ,yi ,zi� as they first are displaced by the addition

of a variable obtained from the multiplication of the incre-

ment t and a random variable GD�1,0� with a Gaussian dis-

tribution with standard deviation and mean value equal to

one and zero, respectively,

xi+1 = xi + t � GD�1,0�

yi+1 = yi + t � GD�1,0�

zi+1 = zi + t � GD�1,0�

,
t = hH

i = 0,1,2, . . . . . . �Nsteps − 1�
,

�1�

where H is a parameter related to the fractal dimension of a

fractal object and is called Hurst exponent, h is the step

increment in mm, while Nsteps is the number of steps that a

random walk may take. The process described by Eq. �1� is

repeated until the random walk reaches either the matrix

boundary or the end of the number of steps Nsteps. Similarly

simulated are all random walks �Nwalks� whose number is

assigned by the user. The increment h is by default set to the

size of the voxel in one dimension, while H can vary be-

tween 0 and 1 �Appendix�. The matrix obtained from the

random walk operations, denoted as random walk matrix

Random walks

Empty matrix

Dilation

Gaussian FilteringFit to the shape

Low Pass Filtering

FTM

RWM DM

LPMGM

+ +

+

+
+

FIG. 1. The main steps in composing the mammographic texture. The im-

ages are slices extracted from a breast matrix with size of 75 mm in each

direction and voxel dimension of 150 �m. The texture matrix was created

using the following parameters: Number of random walks Nwalks=1500,

number of steps per walk Nsteps=2000, increment h=0.1, and Hurst expo-

nent H=0.95. Additionally, a 3�3�3 mask was used to perform the low

pass filtering and dilation, while the standard deviation ��� value for the

Gaussian filtering was set to 1.5. For better understanding, the names of the

matrices obtained after the steps are related with the imaging operation

performed, namely, RWM: Random walk matrix; DM: Dilation matrix;

LPM: Low pass filtering matrix; GM: Gaussian matrix; and FTM: Final

texture matrix.

FIG. 2. Algorithm for random walks generation. Nwalk and Nsteps are the

number of three-dimensional random walks and the corresponding random

steps per walk.
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�RWM�, may be further subjected to additional 3D imaging

morphological operations as dilation and smoothing that aim

to improve the realism of the 3D breast tissue distribution in

the model. These operations are optional and selected by the

user.

Three-dimensional dilation is used to dilate the initial 3D

texture in the neighborhood and to generate more data. For

this purpose, a customized dilation is applied to the 3D walks

to obtain the dilated matrix, denoted with DM in Eq. �2� and

Fig. 1. The voxels that are already filled are preserved, while

the neighbor voxels obtain values, sampled according to Eq.

�2�. The structuring element SEDM is a cube with a dimen-

sion assigned by the user �by default 3�3�3� and defined

in the following way:

SEDM�x,y,z� = �
i=−w/2

w/2

�
j=−w/2

w/2

�
k=−w/2

w/2

RWM�x + i,y + j,z + k� ,

DM�x,y,z� =
p2 + RWM�x,y,z�2

RWM�x,y,z� + p
� p = 0, SEDM�x,y,z� � 0.9

p � �0,1� , 0 � SEDM�x,y,z� � 0.9
� , �2�

where �x ,y ,z� is the current voxel coordinate in the dilated matrix, w is the size of the structuring element, and p is a randomly

generated value between 0 and 1.

Low pass filter is applied with a coefficient of 2 in the central voxel of the structuring element and a value of 1 in the

neighboring voxels, in order to smooth the boundaries of the texture. The matrix obtained from this operation is denoted with

LPM in Fig. 1 and the process is described by the following equations:

SELPM�x,y,z� =
1

w3 �
i=−w/2

w/2

�
j=−w/2

w/2

�
k=−w/2

w/2

g · DM�x + i,y + j,z + k� �g = 2, i = 0, j = 0,k = 0

g = 1, else
� ,

LPM�x,y,z� =
DM�x,y,z�

SELPM�x,y,z�
. �3�

In the above equations, the DM should be replaced by the

RWM matrix for the case where dilation is not performed.

More smoothing is achieved by applying a Gaussian fil-

tering �Eq. �4��. Smoother and more blurred breast slices can

be generated with higher standard deviation ���. This opera-

tion is applied for each slice of the breast matrix and may be

extended to a 3D case; however, this will not have a signifi-

cant influence of the final result.

GM�x = const,y,z�

=
LPM�x = const,y,z�

�
j=−w/2

w/2

�
k=−w/2

w/2

exp�−
��y + j�2 + �z + k�2�

2 � �2 	
, �4�

where the default size of the structuring element is w�w �by

default 3�3�. Similar to the previous operations, the nu-

merator of Eq. �4� should be data extracted from the texture

matrix obtained after dilation �DM� or random walks �RWM�
in case low pass filtering or dilation is not performed.

The mammographic texture matrix �TM�, obtained as a

result of Eqs. �1�–�4�, contains voxels with values in the

range 0–1. These values are converted to linear attenuation

coefficients for the specified incident photon energy E

to obtain the final texture matrix �FTM� using the following

relationship:

FTM�x,y,z� = ��gland�E�

− �adipose�E�� �

�TM�x,y,z� − TMmin�

�TMmax − TMmin�

+ �adipose�E�, cm−1, �5�

where �gland and �adipose are the linear attenuation coeffi-

cients of the glandular and adipose tissues, while TMmin and

TMmax are the minimum and maximum values of the whole

TM matrix. The voxel values in FTM represent linear attenu-

ation coefficients that may take any value from the linear

attenuation coefficient of the adipose tissue to the linear at-

tenuation coefficient of the glandular tissue. Finally, this

FTM is mapped to the volume, defined by the breast external

surface.

The FTM together with the generated duct system, Coo-

per’s ligaments, breast abnormalities, lymphatic and blood

vessels system, pectoralis muscle and skin compose the final

breast matrix. Final tissue differentiation is accomplished us-

ing the following concept: The matrix voxel values of the

final breast matrix that are linear attenuation coefficients are

converted into Hounsfield units �HUs� using the relationship
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BreastMatrix�x,y,z� = �FTM�x,y,z�

�water�E�
− 1	 � 1000, HU,

�6�

where �water is the linear attenuation coefficient of the water

for the incident energy E. This operation is applied for each

voxel. The HU data are then divided into six materials

groups with lower and higher HU limits specified in Table I.

These limits were derived from calculations performed for

each tissue in the simulated breast in the range 15–30 keV

using Eq. �6�.

II.B. Simulation of projection images

Projection images were synthesized using the

XRAYIMAGINGSIMULATOR.
31

Source-to-detector and source-

to-breast phantom entrance plane distances were set equal to

900 and 600 mm, respectively. These distances were chosen

for comparison purposes with our previous study. Their

choice was not critical since simulated imaging conditions

were near ideal. The transport of monochromatic 19 keV

beams was simulated through the breast phantoms using ana-

lytical relationships for x-ray matter interaction. An antiscat-

ter grid was not included in the simulations. The atomic

compositions of the simulated breast tissues are derived from

data of the International Commission on Radiation Units and

Measurements
32

and the International Commission on Radio-

logical Protection
33

for the lymphatic system. The attenua-

tion coefficients of the modeled tissues were taken from

Hubbell and Seltzer
34

and are summarized in Table I. A sta-

tionary detector was simulated as a photon counting detector

with a resolution of 10 pixels/mm, while the synthetic im-

ages, with size of 1200�1200 pixels, corresponded to cran-

iocaudal �CC� or mediolateral �MLO� views. For all simula-

tions, the incident air kerma at the surface of the breast

models was set to 7 mGy. The photon fluence was calculated

according to the relationship

Kc,air = 
�en

�
�

air

· E · 	 , �7�

where Kc,air is the incident air kerma, E is the energy of the

incident photons, 	 is the photon fluence, and ��en /��air is

the mass energy absorption coefficients for air, taken from

Hubbell and Seltzer.
34

Poisson quantum noise was also added to the original

ideal images, using a Gaussian random number generator,

with a variance set equal to the mean number of the photons

that strike each detector pixel.

II.C. Implementation

The software application called BREASTSIMULATOR runs

under both Microsoft Windows and Linux operating systems.

In order to generate higher resolution matrices, the 64-bit

editions must be used. Moreover, in order to increase the

speed of breast simulation, the code was parallelized on a

Linux cluster using the message passing interface for inter-

processor communication implemented through MPICH2.
35

Large and medium breast size phantoms are generated with

the parallel code. For this purpose, a Dell dual-quad-core

workstation with 32 GB RAM and seven slave processors

was used.

III. EVALUATION

The new approach for breast model generation was evalu-

ated subjectively and quantitatively. For this evaluation, a

database with regions of interest �ROIs� extracted from syn-

thetic and real mammograms was created.

III.A. Database

III.A.1. Clinical images

Two sources of clinical data were used to collect real

images. Initially, 30 images, digitized at 200 �m pixel size,

were chosen from the MIAS Mini Database
36

that contains

images of compressed and uncompressed breasts. The se-

lected 30 images are mammograms taken from women with

ten fatty, ten glandular, and ten dense breasts. The breast

tissue density classification has been decided by experienced

radiologists for each image contained in this database and is

included in the readme file. Thirty ROIs with size of 256

�256 pixels were extracted from the central part of these

mammograms and placed in the database. In addition, digital

mammograms of women who had routine screening mam-

mographic examination in Greece were used retrospectively.

The images, acquired with GE Senograph 2000D full-field

digital detector, were “processed” images obtained at 12-bit

per pixel and a pixel pitch of 100 �m. One hundred mam-

TABLE I. Attenuation coefficients at 19 keV incident energy. In the same table, the lower and upper limits of the

HUs for the simulated tissues are specified.

Tissue

Attenuation coefficient

�cm2 g−1�
�

�g cm−3�
Attenuation coefficient

�cm−1� Lower HU Upper HU

Adipose tissue 0.630 0.95 0.5985 
500 
251

Glandular tissue 0.772 1.02 0.7874 
250 
50

Cooper ligaments 0.772 1.02 0.7874 
250 
50

Breast skin 0.732 1.09 0.7979 
49 30

Lymph 0.935 1.03 0.9631 31 60

Pectoralis muscle 0.926 1.05 0.9723 61 70

Blood 0.934 1.06 0.9900 71 90
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mograms taken from 25 patients were used to extract the

ROIs for evaluation. Three to four ROIs per image were

selected depending on the size of the breast. The size of the

ROI was chosen 400�400 pixels based on literature

review.
37,38

From these, 300 ROIs, 120 were free of breast

abnormities and placed in the database for the purposes of

this study. Forty of these ROIs were extracted from mammo-

grams of breasts that were characterized by the radiologists

as dense breasts while the rest encompass the fatty and fatty-

glandular breast density. An example of selection of ROIs

from a clinical mammogram is shown in Fig. 3.

III.A.2. Synthetic images

In order to create a database with synthetic images, sev-

eral breast phantoms were designed to represent woman

breasts with different glandularity. This was calculated by

taking into account the percent of the glandular voxels in the

central area of the breast phantom. The creation of fatty,

glandular, or dense breasts was influenced by the various

combination of the values of the following modeling param-

eters: The number of walks �Nwalks�, the number of steps per

walk �Nsteps�, the Hurst exponent �H�, the increment �h�, the

number of Cooper elements, and the ducts density. In order

to find the range of values assigned to each of these param-

eters, an extensive simulation work with the new algorithm

has been carried out. These simulations included the synthe-

sis of replicating small, medium, and large simulated breast

models with different parameters in order to define the set of

values of each of these parameters corresponding to the cre-

ation of models with different dimension and glandularity.

Default values for the creation of various breasts with differ-

ent density and corresponding dimensions are summarized in

Table II. The voxel dimension of the synthesized breast mod-

els varied from 0.1 to 0.15 mm, as the former was assigned

to small and medium breasts, while the second voxel size

was used for large breast models. The breast dimensions cor-

respond to that of the elongated semiellipsoid.

Thirty breast phantoms �ten large, ten medium, and ten

small� with no pathology included were selected. Simulated

projection images of these breast phantoms were obtained at

CC and MLO view. Quantum noise was added according to

Sec. II B. Examples of simulated mammographic images of

fatty, glandular and dense breasts are shown in Fig. 4. In this

figure, �a�–�d� show mammograms of simulated fatty, �e�–�i�
glandular, and �j�–�l� dense breast models. In images a, b, d,

e, f, h, i, and l, parts of the duct tree can be observed, while

in �c� and �l�, simulated blood and lymph vessels are visible.

One hundred twenty ROIs were extracted from these simu-

lated images and placed in the database. The ROIs corre-

sponded to a rectangular area of 400 pixels, located in dif-

ferent areas of the mammograms, similar to the clinical case.

III.B. Subjective evaluation

In the qualitative approach, four radiologists �two from

Greece and two from the United States� each with more than

10 yr experience in the field of clinical mammography ex-

amination participated. The purpose of this evaluation was to

evaluate the realism of the synthetic mammograms obtained

from the improved breast model in comparison to mammo-

grams simulated for the evaluation of the previous approach.

FIG. 3. Example of defining ROIs on a mammogram.

TABLE II. Default values for the creation of breast models of different glandularity and dimensions. F: Fatty

breast; G: Glandular breast; D: Dense breast matrix size is in three dimensions.

Matrix size Nwalk Nsteps h H Breast density

Breast size

�mm� Breast type

700 1000 �1–3��103 0.1 0.8 D 40�40�40 Small

1000 300–500 �1–3��104 0.1, 0.2 0.8, 0.9 F

1000 500–1000 �1–2��104 0.1 0.9, 0.95 G

1000 5000 2�104 0.1 0.9 D

1200 500–1000 2�105 0.1 0.9 D 50�50�80 Medium

1500 1000 �1.5–2��105 0.1 0.9 G 70�70�100 Large

1500 1000 �1–1.5��105 0.1 0.9 F
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For this evaluation, 15 ROIs extracted from simulated mam-

mograms obtained with the new methodology and 13 ROIs

extracted from simulated mammograms obtained with the

previous algorithm were mixed and placed in a PowerPoint

presentation, with two ROIs per slide. A comparison of simu-

lated images obtained with the new and previous methodol-

ogy is shown in Fig. 5. The radiologists were asked to evalu-

ate the realism of the simulated ROIs in terms of appearance

with grades from 1 to 3. Grade 1 was used for images that

are not realistic at all, grade 2 for images of medium realism,

and grade 3 for images that look like real mammograms. The

images were displayed in a dark room at the radiologists

work. In one of the cases, a mammography viewing station

was not available. Therefore, in order to conduct the subjec-

tive evaluation of the images under the similar conditions, a

high quality flat panel PC screen was used. There was no

restriction on the viewing time and distance to the screen.

III.C. Objective evaluation

The quantitative evaluation of the breast model included

comparison of four texture features extracted from simulated

and real ROIs: Histogram skewness and kurtosis, the expo-

nential parameter � of the power law spectrum, and fractal

dimension. Figure 6 shows examples of ROIs extracted from

real �upper row� and simulated �lower row� mammograms.

All simulated and real ROIs were involved in this study.

III.C.1. Skewness and kurtosis

These features characterize the shape and the asymmetry

of the histograms showing the distribution of gray values of

the pixels in the ROIs. The skewness and kurtosis are the

third and the fourth moment distribution about the mean gray

value of the pixels in the ROIs. For a ROI containing N

pixels, the kth moment mk of the histogram is given by

mk =

�
i=0

imax

�hi�i − imean�
k�

N
, k � 1, �8�

where N=�i=0
imaxhi, hi is the number of pixels at gray level i,

and imean=�i=0
imax�ihi /N� is the mean gray value of the distri-

bution. The normalized third and fourth moments are given

by

(e) (f) (g) (h)

(i) (j) (k) (l)

(a) (b) (c) (d)

FIG. 4. Examples of simulated mammograms at CC and MLO view ob-

tained from ��a�–�d�� fatty breast models, ��e�–�i�� models of glandular

breasts, and ��j� and �l�� dense breast models.

(a) (b) (c)

(d) (e) (f)

FIG. 5. Examples of simulated mammograms with ��a�–�c�� the new and

��d�–�f�� the old algorithm for 3D mammographic texture.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

FIG. 6. Examples of ��a�–�f�� real and ��g�–�l�� simulated ROIs used in the

evaluation.
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S =
m3

m2
3/2

K =
m4

m2
4/2

. �9�

III.C.2. Power law spectral analysis

The power law spectral analysis is based on the power

spectrum of real and simulated ROIs. The power spectrum of

the ROIs was calculated by integrating the power spectrum

density over concentric rings in the 2D frequency plane us-

ing the method developed by Heine and Velthuizen.
39

The

power spectrum �P�f�=B / fß� of an image f�a ,b� is com-

puted from the discrete Fourier transform

P�f� = �F�k,l��2, �10�

F�k,l� =
1

MN
�
a=0

M−1

�
b=0

N−1

f�a,b�exp
− 2�i� ka

M
+

lb

N
	� ,

k = 0,1, . . . ,M − 1 l = 0,1, . . . N − 1, �11�

where k and l are the spatial frequencies in the two directions

and M �N is the image size of f�a ,b�.
The concentric rings represent an octave sectioning of the

frequency plane. The ring width is half the width of the

adjacent ring that covers higher frequency information, as

the first octave corresponds to the highest frequency ring.

The highest frequency is the Nyquist one. The total power

spectrum per concentric ring is further transformed to log2

�total power spectrum� and plotted versus the octave number.

The plot is almost linear and the data are fitted to a line

obtained using linear regression analysis. The slop of the line

m is related to exponential parameter � as following:

m = � − 2. �12�

Therefore, this approach of calculating � was preferred to

the one that uses equally spaced rings and results in non

linear plots. In this study, the number of the concentric rings

was five. For example, in case of mammograms with pixel

resolution of 0.1 mm, the width of the rings corresponded to

�2.5–5�, �1.25–2.5�, �0.625–1.25�, �0.312–0.625�, and

�0.156–0.312� cycles/mm. The region around the zero fre-

quency �0–0.156� was excluded in the analysis in order to

avoid any influence due to the dc component of the power

spectrum that usually varies from image to image and de-

pending on the x-ray imaging system used for image acqui-

sition. Before applying Fourier methods to the ROIs, data

windowing with a Hanning window was performed.

III.C.3. Fractal dimension

The fractal dimension �FD� indicates how rough a surface

is. There are several methods to measure the fractal dimen-

sion of an image such as variance method and box-counting

technique, methods based on fast Fourier transform, thus

producing a different estimate of the fractal dimension.
40,41

In this study, the fractal dimension was deducted from the �

exponent from the power spectrum analysis using the follow-

ing relationship:
42,43

FD =
8 − �

2
. �13�

This method has proved to be accurate and effective across

different imaging modalities.
44

For comparison purposes with other studies, the fractal

dimension was evaluated as well with the conventional box-

counting technique
45

described in detail in the Appendix.

Five pixel sizes ��� were synthesized by averaging the pixels

gray levels in squares of 1�1, 2�2, 4�4, 8�8, and 16

�16 adjacent pixels. The exposed surface A��� was then

calculated as described in the Appendix and the fractal di-

mension was computed from the plot of the log�A���� versus

log���.

IV. RESULTS

IV.A. Subjective evaluation

The results of the subjective evaluation are summarized in

Table III. More than half of the synthetic mammograms ob-

tained with the previous methodology obtained grade 1 by

radiologists. The evaluators observed that all images simu-

lated with the old algorithm were blurred and therefore not

realistic. There were few images synthesized with the im-

proved algorithm that were rated with grade 1. These cases

were commented by the radiologists as having either a high

contrast �as, for example, the ROIs shown in Figs. 6�i�–6�k��
or wrong anatomy �Fig. 4�d��. In addition, the radiologists

evaluated the whole synthetic mammograms obtained with

the two approaches and shared their observation for the re-

alism of the mammograms. Similar to the evaluation of the

ROIs, all simulated projections obtained from breast models

created with the previous approach were not realistic. Radi-

ologists remarked that simulated projection images obtained

with the new algorithm are featured with improved image

quality and realistic mammographic texture and concluded

that efforts should be directed toward improvements of the

mammographic appearance at the edges of the breast model.

TABLE III. Results from the radiologists’ evaluation. A three grade scale is

used in the evaluation. Grade 1: Images are not realistic at all, grade 2:

Images of medium realism, and grade 3: Images look like real mammo-

grams.

ROIs Grade 1 Grade 2 Grade 3

Reviewer 1 New 3 8 4

Old 12 1 0

Reviewer 2 New 5 10 0

Old 12 1 0

Reviewer 3 New 1 5 9

Old 13 0 0

Reviewer 4 New 1 8 6

Old 8 4 1
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IV.B. Objective evaluation

The exponential parameter � of the power law spectrum,

the fractal dimension, skewness, and kurtosis were computed

for each simulated and real ROI. An example of feature

evaluation is depicted in Fig. 7, which shows a comparison

between calculated features for ROIs, extracted from simu-

lated �Fig. 7�a�� and clinical �Figs. 7�b� and 7�c�� mammo-

grams of glandular breasts. The linear trends for the � expo-

nent and histogram distributions for the skewness were

compared in Figs. 7�a�–7�c� �the second and third column�.

(a) ROI from simulated mammogram: β = 2.82, R = 0.98, FD = 0.59, S = 0.37, K = 2.42

(b) ROI from digital mammogram: β = 2.81, R= 0.98, FD = 2.60, S = 0.44, K = 2.30

(c) ROI from mdb007: β = 2.99, R = 0.99, FD = 2.51, S = 0.07, K = 2.71

FIG. 7. �a� Examples of ROIs and their corresponding calculated � exponent, skewness �s�, kurtosis �k�, and fractal dimension �FD� from a simulated image;

a clinical mammogram obtained with �b� GE Senograph 2000D and �c� taken form MIAS Mini Database mdb007.
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Overall, similar linear trends of the log2 �total power spec-

trum� versus the octave number, � exponents and histogram

distributions are observed for the ROIs extracted from real

and simulated images.

The overall quantitative evaluation of simulated images

against calculations performed on real images is summarized

in Table IV. In the same table, data published in the literature

are presented as well.

Further, the distributions of the � values calculated from

the power spectrum analysis for ROIs extracted from simu-

lated and real mammograms are presented in Figs. 8�a�–8�c�
�the first column�. The mean value and standard deviation for

the entire set of simulated images is 
��=2.90
0.08 �Fig.

8�a��, while the mean value and standard deviation, calcu-

lated for ROIs extracted from real mammograms acquired

with GE Senograph and taken from MIAS MiniDatabase is


��=2.78
0.07 �Fig. 8�b�� and 
��=2.96
0.05 �Fig. 8�c��,
respectively. Additionally, for each image, the correlation co-

efficient �R� for the least square fit between the log2 �total

power spectrum� and the octave number was calculated. His-

togram distributions of these correlation coefficients for

simulated and clinical images are shown in the same figure

�the second column�. In case of simulated images, the aver-

age correlation coefficient is 
R�=0.982
0.009, while for

ROIs extracted from mammograms acquired with GE Seno-

graph and taken from MIAS MiniDatabase, this coefficient

corresponds to 
R�=0.975
0.011 and 
R�=0.983
0.001,

respectively. Overall, a good agreement between � value for

simulated and real data is observed, while the correlation

coefficient for all linear fits is higher than 0.975.

The results of the power law spectral analysis are also in

good agreement compared to the published data by Castella

et al.
46

for real and simulated images and studies with real

images.
37,39,47

These results differ from those reported by Bo-

chud et al.
48

that are higher compared to the results of this

and other published studies. This is attributed to the use of

constant ring width approach and that the authors used the

linear part of the fit to estimate the � value.

The power spectrum analysis was used to calculate the

fractal dimensions of simulated and real ROIs. The mean

value and the standard deviation of calculated fractal dimen-

sion of simulated images �
FD�=2.55
0.07� is in the range

of the calculated fractal dimensions obtained for the two real

sets of mammograms 
FD�=2.51
0.03 and 
FD�
=2.62
0.04, respectively, for the MIAS Mini Database and

digital mammograms. Fractal dimension was also calculated

with the box-counting technique, showing a good agreement

between calculated fractal dimension of simulated �
FD�
=2.59
0.18� and clinical images �
FD�=2.54
0.12 and


FD�=2.67
0.11�. In addition, the calculated average frac-

tal dimension for simulated images is in agreement with pub-

TABLE IV. Results from the quantitative evaluation and comparison with results from literature.

Fractal dimension Skewness Kurtosis Power Spectrum

Real Simulated Real Simulated Real Simulated Real Simulated

Bliznakova et al.
a

2.36
0.10
b

2.39
0.10
b

0.02
0.17 0.06
0.15

Li et al.
c �2.30, 3.00�d

2.47
0.20

2.92
0.28

Li et al.
e �2.3, 2.93�b �
2.0, 2.0�

Li et al.
f �2.50, 2.93�b

Bakic et al.
g

2.32
0.10 2.36
0.10

Heine and Velthuizen
h

2.76
0.12

Georgsson et al.
i �2.34, 2.70�b

Byng et al.
j �2.23, 2.54�b �
0.30, 0.20�

Caldwell et al.
k �2.20, 2.50�b

Bochud et al.
l

−0.10
0.80 0.10
0.40 2.50
1.00 2.60
0.40 �3.40, 4.0�

Castella et al.
m

3.02
0.02 2.92
0.01

Heine et al.
n

2.94
0.10

Turasi et al.
o

2.71
0.08
d

Kontos et al.
p �2.45, 2.8�d

This study 2.51
0.03
d,q

2.62
0.04
d,r

2.55
0.07
d

−0.22
0.64
q

0.03
0.33 3.33
1.36
q

2.75
0.48 2.96
0.05
q

2.90
0.08

2.54
0.12
b,q

2.59
0.18
b

0.23
0.49
r

3.41
0.90
r

2.78
0.07
r

2.67
0.11
b,r

a
Reference 17.

b
Fractal dimension calculated with box-counting technique.

c
Reference 37.

d
Fractal dimension calculated with power spectral analysis.

e
Reference 49.

f
Reference 50.

g
Reference 53.

h
Reference 39.

i
Reference 51.

j
Reference 52.

k
Reference 45.

l
Reference 48.

m
Reference 46.

n
Reference 47.

o
Reference 44.

p
Reference 25.

q
Results for mammograms from MIAS MiniDatabase.

r
Results for digital mammograms.
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lished calculations performed on real images using the power

spectrum and the box-counting techniques.
25,37,49–51

Other

published results for the fractal dimension differ slightly

from the results of this study.
17,44,45,52,53

The calculations for the histogram skewness �0.03
0.33�
are also in the range of the results obtained for clinical im-

ages used in this study �0.23
0.49 and −0.22
0.64 for

digital mammograms and mammograms taken from the

MIAS Mini Database�. The histograms of the calculated

skewness values are shown in Figs. 8�a�–8�c� �the third col-

umn�. Skewness values calculated for clinical images have a

wider range of fluctuations compared to simulated images, a

fact that has been observed by Bochud et al.
48

Good agree-

ment is observed with data published by the same author
48

for both simulated and real ROIs �0.10
0.40 and

−0.10
0.80�, as well as with the data provided by Li et al.
49

and Byng et al.
52

for real images.

The histograms of the calculated kurtosis are shown in the

last column in Figs. 8�a�–8�c�. Similar to the skewness, the

kurtosis has more variations in the clinical images compared

to simulated images. Data for histogram kurtosis from simi-

lar calculations performed by Bochud et al.
48

agree well with

our calculations.

Finally, a two-sample t-test was performed between the

results for skewness, kurtosis, and fractal dimension using

the new and previous methodology for creation of breast

models to identify the difference between the two set of

simulated images. Results show that the Pearson’s correla-

tion coefficient �the p value� for the skewness and the fractal

dimension was much less than 0.001, while for kurtosis, the

p value corresponded to 0.4.

V. DISCUSSION

The new methodology for generation of 3D mammo-

graphic texture, and therefore the 3D breast phantom synthe-

sis, is more flexible compared to the previous methodology

and allows the generation of breast models with various

glandularity. This algorithm also contributes significantly to

the generation of synthetic mammograms that visually and

quantitatively approach the real ones. The observer study by

radiologists confirmed that the new algorithm for mammo-

graphic texture is superior compared to the previous ap-

proach. The subjective evaluation of the entire set of syn-

thetic mammographic images suggested that efforts should

be directed toward improvements of the mammographic ap-

pearance at the edges of the breast model for superior real-

ism.

The quantitative analysis suggests that the new methodol-

ogy generates improved breast models and the texture char-

acteristics obtained from the simulated mammograms are

close to those calculated on real mammograms. The results

from the two-sample t-test indicated that the new algorithm

differs significantly from the previous approach. Generally,

(a) simulated

(b) digital mammograms

(c) MIAS MiniDatabase
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FIG. 8. Distribution of 
�� values, correlation coefficients 
R� from the linear regression analysis, as well as distribution of skewness and kurtosis for ROIs

extracted from �a� simulated images and real mammograms taken from �b� a private patient database and �c� MIAS MiniDatabase.
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there is a good coincidence between calculations performed

in this study and published data as well.
25,37–39,41,46–52

The comparison of extracted texture features from real

and simulated mammograms shows that simulated results are

between the calculated values for the two real mammogram

sets. For example, the power spectrum analysis showed that

the average � exponent for simulated images is higher than

the average � exponent calculated for real images acquired

with GE Senograph 2000D. This is attributed to the presence

of noise in the real images coming from the scattered radia-

tion and detector characteristics. From the other side, the

average � exponent for simulated images is lower than the

one calculated for real images from MIAS Mini Database.

This is explained with the resolution of the images. Simu-

lated images are generated with higher resolution and images

with higher resolution exhibit slightly higher fractal dimen-

sion than those characterized by lower resolution due to the

influence of small details.

Difference between various fractal dimensions published

in the literature are eventually due to the use of different

approach in the calculation of this parameter �for example,

the use of variance techniques
53�, the image acquisition sys-

tem, the mammographic view at which images are acquired,

or the limited number of images used in the study.
17,44,45,52

Results for the skewness calculated from simulated im-

ages are between the calculated skewness from clinical data

from the two different sources. The data from the MDB were

acquired from ten fatty, ten glandular, and ten dense breasts.

Regions of interest with more dense and glandular tissue

yield negative skewness as calculated from Eqs. �8� and �9�,
while ROIs with more fatty breast tissue are characterized

with positive skewness values. Therefore, the skewness val-

ues obtained from images taken from MIAS Mini Database

are negative. In case of digital mammograms, the ROIs con-

tained predominantly fatty and fatty-glandular tissue; there-

fore, the mean value for the skewness is positive. From the

other hand, the almost zero mean value of the skewness cal-

culated for simulated images indicates equally distributed

fatty and dense mammographic densities from the selected

ROIs.

There are several applications where BREASTSIMULATOR

can be successfully used, including digital breast tomosyn-

thesis, breast cone beam computed tomography, and subtrac-

tion mammography to mention but a few. However, there are

still several issues that require further development and ad-

justment in order to achieve better results and these mainly

concern the x-ray image simulation chain. For the purposes

of improving and testing the algorithm for creation of 3D

breast models, the simulated mammograms were obtained

with monochromatic incident beams, ideal detector, and

simulation of primary radiation only. These are therefore the

main limitations of the conducted study and were prompted

by the large size of the breast matrices. Simulation of Cooper

ligaments and other fine breast tissue structures require the

use of large matrices with a voxel size in the order of

50 �m. This will guarantee their visualization in the mam-

mograms and will contribute considerably to the synthesis of

more realistic mammographic images. Due to the large size

of these matrices, the use of Monte Carlo techniques to simu-

late in detail the x-ray interactions in the breast models is not

efficient. Further on, modeling of detector characteristics and

propagation of x rays in the detector would further compli-

cate the current work, which at this stage is addressing the

improvement and test of the proposed algorithm. For the

purposes of this work, the analytical method for image

simulation
31

is fast and flexible and therefore convenient for

accomplishing the tests and optimization operations.

Undoubtedly, the simulation of x-ray interactions in the

whole imaging chain �x-ray source, breast model, and detec-

tor� will result to the inclusion of noise mainly in the form of

x rays scattered in the breast model and detector noise. This

may further improve the realism of the simulated images and

influence slightly the qualitative and quantitative evaluations.

In the latter case, it is expected that the inclusion of scattered

radiation from the breast model and the introduction of the

detector model will result in lower � values �and therefore

higher values for the fractal dimension as in real images
39,41

and will better match the computed texture features with

digital mammograms.

The improved algorithm for creation of breast models is

currently used in a feasibility study that aims to compare the

performance of three novel detectors for digital mammogra-

phy. In this study, a Monte Carlo code
54

is exploited to simu-

late x-ray interactions in the breast models and in the detec-

tors. In addition, clinical conditions are simulated taking into

account acquisition geometry and typical mammography

x-ray spectra.

These additional studies will further improve the com-

puter models of the female breast and x-ray imaging chain

and will establish the practical importance of this software

model in carrying out feasibility studies in the field of breast

x-ray imaging.

VI. CONCLUSIONS

This paper described an improved methodology for gen-

erating realistic computer generated breast phantoms and its

extensive evaluation for research purposes in mammography.

The observer study with radiologists as observers and the

feature measures suggest that the algorithm for creation of

3D breast models has been improved in terms of simulation

of female breast models with improved realism. The use of

these models with x-ray imaging simulation contributes to

the simulation of mammograms with improved realism. The

application of such anthropomorphic phantoms that closely

resemble the breast anatomy and reflects the radiographic

properties of the breast tissue may be suitable for the design

and evaluation of new digital mammography systems and

with further adaptations potentially for tomosynthesis and

dedicated breast computed tomography systems.
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APPENDIX: FRACTAL ANALYSIS OF IMAGES

I. Fractional Brownian motion

fBm, introduced by Mandelbrot in 1977,
55

is a generali-

zation of the classical Brownian motion that is also called a

random walk. Shortly described, the fBm model regards

naturally occurring rough surfaces as the end results of ran-

dom walks and utilizes a random iteration algorithm to pro-

duce fractal patterns.
56

In fBm, the change or increment from

one moment to the next is random and normally distributed,

so the present is not correlated with the past. A single param-

eter H� �0,1�, called Hurst exponent, characterizes fBm. A

fBm is a stochastic process X�t� having increments X�t+h�
−X�t� that are normally distributed with mean zero and stan-

dard deviation �=hH, i.e., the mean and the variance are


X�t + h� − X�t�� = 0,


�X�t + h� − X�t��2� � �t + h − t�2H. �A1�

t+h and t are two arbitrary points in the space.

The Hurst exponent is related to the fractal dimension of a

fractal object and provides an indication of how rough a

surface is and is given with the following relationship:

FD = 2 − H . �A2�

A small Hurst exponent is related to a higher fractal dimen-

sion and a rougher surface. A larger Hurst exponent is related

to a smaller fractional dimension and a smoother surface.

Various models of fBm simulation have been reported in

the literature such as Poison faulting, Fourier spectrum, mid-

point displacement, successive random additions, and sum-

ming band-limited noises. The approach we followed to gen-

erate fBm is related to an algorithm called successive

random additions. This approach has four basic advantages:

Simplicity, flexibility �for implementation and control�, easy

user understanding, and easy to implement.

II. Fractal Analysis

The fractal dimension of image surface can be calculated

as

A��� = ��2−D, �A3�

where A��� is the area of the surface measured with a square

of side �, � is a scaling constant, and D is the surface’s

fractal dimension. The area A��� is calculated using the tech-

nique suggested by Caldwell et al.
45

Each pixel in the two-

dimensional image is considered as a skyscraper with the

length and width equal to the pixel dimensions and the

height equal to the pixel’s gray value, thus obtaining a col-

lection of adjacent “skyscrapers.” The area of the surface is

obtained by sum of the area of the roofs plus the sum of the

areas of the exposed lateral sides of the skyscrapers

A��� = �
x,y

�2 + �
x,y

���I�x,y� − I�x + 1,y��

+ �I�x,y� − I�x,y + 1��� , �A4�

where I�x , y� is the height of a “column,” found for a par-

ticular value of � by averaging the values stored in adjacent

image array elements to produce pixels with a side length of

�. The area A��� is recalculated for different sizes of � by

averaging adjacent pixels together in order to obtain new

images with varying pixel size �. The fractal dimension D is

then related to the slope of a plot of log�A���� versus log���.
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