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ABSTRACT 

The analytical calibration of an instrumental method is very important, being considered as a key point 

in method validation. There are different validation guidelines; showing that analytical calibration 

process variety prevails in terms of nomenclature, methodology employed and acceptance criteria. 

Very common mistakes in the analytical calibration process are the use of correlation and/or 

determination coefficients as a test for linearity, the negligence in the heteroscedasticity of the 

experimental data and selection of appropriate weighting factor, misunderstanding about the 

regression through the origin and using zero-point calibration. Once the calibration function is 

established, their linearity can be confirmed by using different procedures such as graphical plots, 

statistical significance tests and numerical parameters. In particular, deviation from back-calculated 

concentrations expressed in the form of percentage of relative error (%RE) can be considered very 

useful for unambiguous linearity evaluation. Some case studies were included to explain the linearity 

assessment from a practical viewpoint.  
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linearity; SLO, slope; SQT, significance of quadratic term; STA, statistically; SWGTOX, scientific working group 

for forensic toxicology, TOST, two-one sided test; US FDA, United States food and drug administration; USP, 

United States pharmacopeia; VFAs, volatile fatty acids; WF, weighting factor ; WLS, weighted least squares; ZPC, 
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1. Introduction 

The validation is required in analytical chemistry to demonstrate the performance of 

the method and the reliability and consistency of the analytical results. Therefore, 

before an analytical method can be implemented for routine use, it must first be 

validated to demonstrate that it is suitable for its intended purpose. Several chemical 

organizations have developed at national or international level different validation 

guidelines in the field of analytical chemistry. Among them, some international well 

known validation references are provided by the Association of Official Analytical 

Chemists (AOAC) [1], the International Union of Pure and Applied Chemistry 

(IUPAC) [2], the analytical chemistry group EURACHEM [3,4] and the European 

Medicines Agency (EMA) [5]. On the other hand, some validation guidelines have 

been published at national level by regulatory authorities such as US FDA (the 

United States Food and Drug Administration) [6], USP (the United States 

Pharmacopeia) [7], ANVISA (National Health Surveillance Agency of Brazil) [8], 

INAB (Irish National Accreditation Board) [9] and NATA (National Association of 

Testing Authorities of Australia) [10]. Also it is possible to find specific validation 

guidelines published by analytical companies such as Agilent Technologies 

(authored by Huber) [11]. Moreover some guidelines are specific for particular 

research areas such as the food contact materials (FCM) (authored by Bratinova and 

co-workers belonging to European Commission-EC/Joint Research Center-

JRC/Institute for Health and Consumer Protection-IHCP) [12] and the scientific 

working group for forensic toxicology (SWGTOX) [13]. Although there is a general 

agreement among these validation guidelines, diversity prevails in terms of 

nomenclature, methodology employed and acceptance criteria [14]. In addition, 

analytical chemists mostly are familiar with the validation guidelines relating to their 

research area but experimental designs and acceptance criteria are different among 

diverse disciplines [15]. Specifically for the pharmaceutical field, representatives from 

the industry and regulatory agencies from Europe, USA and Japan tried to harmonize 

the terms and basic requirements for new pharmaceuticals trough the validation 

guideline so-called International Conference of Harmonization (ICH) [16]. 

The method validation procedure includes different performance parameters that 

have been defined and commented in the majority of international and national 

guidelines. It is important to consider that the analytical calibration of an instrumental 

method is a very important part of its development, therefore calibration process can 
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be considered as one of the key points in method validation. However, very often 

reviewing the scientific literature it is possible to conclude that currently there are 

some problems relating to analytical calibration. Firstly, there is ambiguous 

terminology (terms and definitions) dealing to calibration practice. Secondly, there is 

a lack of clear understanding about the analytical calibration procedure, from 

planning the experiments to fitting the experimental data. Thirdly, the use of 

correlation (r) and/or determination (R2) coefficients as a test for linearity, the 

negligence in the heteroscedasticity of the experimental data, misunderstanding 

about the regression through the origin (RTO) and using zero-point calibration (ZPC) 

and finally, the presence of curvilinearity can be considered as very common 

mistakes in the analytical calibration process. 

 

The objectives of this manuscript are: 

1) To summarize the analytical calibration guidelines issued by different chemical 

institutions for validation of analytical and bioanalytical methods. By this way, it 

is possible to report the inconsistencies among documents dedicated to 

calibration as part of the validation of instrumental methods. 

2) To explain theoretical and experimental concepts dealing to analytical 

calibration as a way to perform a suitable and complete calibration procedure, 

including the selection of the optimal calibration function and the clarification of 

the linearity concept. 

3) To understand the assessment of the linearity for calibration curves by using 

some examples or case studies. 
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2. Calibration of analytical methods  

2.1. Calibration: general concepts   

Calibration is a metrological operation formally defined as the operation that, under 

specified conditions, in a first step, establishes a relation between the quantity values 

with measurement uncertainties provided by measurement standards and 

corresponding indications with associated measurement uncertainties and, in a 

second step, uses this information to establish a relation for obtaining a 

measurement result from an indication [17]. Other general definition for calibration 

has been provided by IUPAC as the operation that relates an output quantity to an 

input quantity for a measuring system under given conditions [18]. These generic 

definitions have given rise to misunderstanding, as it is usual to find in the literature 

different names for the calibration operation on the one hand, and different types of 

calibration called by the same name, on the other. By this way, IUPAC distinguish 

between two different approaches to calibration in the analytical chemistry field: 

firstly, for species identification or qualitative analyses; and secondly for quantitative 

analysis [18]. In addition, in the last case depending on the relation between those 

quantities and the measuring system, different classifications of quantitative 

calibration can be considered such as direct (also known as absolute) and indirect 

(also known as relative). Additionally, the term calibration has been applied to 

equipments and processes [19].  

This document will be focused in the chemical calibration process, which means the 

quantitative indirect calibration process, also known as analytical calibration. The 

most frequent analytical calibration operations in chemical analysis are related to 

spectrophotometric or chromatographic procedures. In these cases, the value of the 

standard (reference value) is expressed in a quantity different from the output 

quantity; therefore the measurement and the measurand are different. The analytical 

calibration is traditionally carried out in order to establish a relationship between the 

instrumental responses and some different calibration standards characterized by a 

known value of the measurand. Using IUPAC definition, calibration in analytical 

chemistry refers to the operation that determines the functional relationship between 

measured values and analytical quantities, characterizing types of analytes and their 

amount [18]. That is, the estimation of a mathematical function that will relate the 

instrumental signal to the analytical property to be determined (usually the 

concentration). 
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2.2. Analytical calibration: stages 

In summary, analytical calibration involves the preparation of a set of standards 

containing a known amount of the analyte of interest, measuring the instrument 

response for each standard and establishing the relationship between the instrument 

response and analyte concentration. Taking into account that measurements are 

instrument specific, therefore, the analytical calibration process can be separated in 

two stages. Firstly, planning or designing the experiments for the calibration study; 

and secondly, fitting the experimental data. In the following, each stage will be 

described in more detail including some information compiled from 14 validation 

guidelines with relevance among the scientific community. Calibration information 

from these validation guidelines (Cal-VG) has been summarized in Table 1 for further 

evaluation.  

 

2.2.1. Stage 1: Planning the experiments for the calibration study 

The most common calibration technique is the multipoint system, in which several 

different points on the calibration curve are used to calculate the response versus the 

concentration relationship. However, the design of multipoint calibration experiments 

strongly depends on the purpose of the experiment and on existing knowledge. It is 

important to note that the calibration study design must answer the main question: 

“how many experiments are needed?”. Due to time and other constrains, this 

question often translates into “what is the absolute minimum needed?”. The idea to 

suggest a minimum set of standards for calibration must be proposed with 

awareness, because it is assumed that only this minimum would then be carried out. 

It must be pointed out that the recommended number of calibration experiments 

varies in the literature. There is no one formula to fit all answers because every 

situation for analytical calibration is different. Some practical aspects such as cost 

and availability of material used to prepare the calibration curve may perhaps also 

influence the choice of the number of experiments. However, these aspects should 

not impair the accuracy of the experimental results generated. Analysts should use 

some form of systematic planning to obtain the experimental data to achieve the 

goals of the calibration. By this way, they should be able to answer the following key 

questions that will help to carry out an appropriate experimental calibration design. 
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2.2.1.1. “Which range of concentration must be covered by the calibration 

curve?”  

There is an agreement among Cal-VG that the calibration should cover a working 

range in which the usual content of real samples is expected. By this way, a working 

range between 0-150% can be considered as appropriate.   

 

2.2.1.2. “How many sequences of calibration will be carry out?”  

The information dealing to this question was not included in the majority of Cal-VG. 

Specifically, EMA [5] and NATA [10] suggested at least three sequences or rounds 

for calibration. A higher number, six, was suggested by JRC-FCM [12] but 

considering only single measurement, what is apparently equivalent to 2 or 3 

sequences using triplicate and duplicate measurements, respectively.  

Independently to the number of sequences, two important issues are the 

independency of standards and the stability of the instrumental signal over time. 

Firstly, the sequences should ideally be independent from each other, because 

replicate measurements on the same calibration standard give only partial 

information about the calibration variability. It would only cover the precision of the 

instrument used to make the measurements, and not the preparation of the 

standards. Therefore, each sequence should analyze “genuine” standards. Secondly, 

there are many factors which affect the magnitude of the instrument response that 

could vary considerably from day to day. Then, the different sequences must be 

obtained in a well planned study carried out over at least 2-3 different weeks of 

analytical work. 

 

2.2.1.3. “How many points (calibration levels) are necessary for a calibration 

curve?” 

A sufficient number of calibration standards is needed to define the response profile 

in relation to concentration. In general, the more points exist in the calibration curve 

the better. However, different number of calibration levels can be found in the 

literature, ranging from 3 to 10. Specifically, for Cal-VG there is an agreement that 5-

6 calibration standards are necessary to carry out an appropriate calibration.   
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2.2.1.4. “How should the calibration levels be distributed?” 

Another issue related to the number of standards is their distribution over the whole 

working range. Evenly distributed or equidistant concentrations could be considered 

as the best option. For short calibration ranges, to distribute the calibration standards 

to be equidistant is relatively easy to design. However, for a wide calibration range 

the application of calibration designs based on standard concentrations that 

correspond to multiples of the next concentration is frequently found in practise. This 

approach should be strongly discouraged because the relatively broad spacing of the 

upper standards in such geometric series could mask the situation where the 

detector is reaching saturation and the instrument’s responses are levelling off 

somewhere between the last two standards. Therefore, it is preferable to use a 

partial arithmetic series, where the concentrations of the upper standards differ by 

a constant amount, not by a constant factor. As example, for a calibration range 

between 10-1000 mg/L, an acceptable 7 point series should be 10, 50, 100, 250, 

500, 750 and 1000 mg/L.     

 

2.2.1.5. “How many replicates are necessary for each calibration point?” 

Replication of calibration standards is an excellent way to minimised the random 

calibration error and then increase the precision of the values predicted from 

measurements of real samples. However, only some of the selected Cal-VG 

recommended carrying out replicate analyses for calibration curves (IUPAC [2], EMA 

[5], INAB [9], and SWGTOX [13]). They suggest a replication pattern of two, three or 

more. Triplicate measurements of each standard can be found in many experimental 

calibration curves for research studies. It is important to note that more than six 

replicates do not provide additional benefit from the statistical point of view [20]. 

Therefore, considering the advantages of replicate measurements against the time 

necessary and other economic issues, three replicates at each concentration level 

can be considered as an appropriate quantity of replicates.  

 
2.2.1.6. “Which calibration (quantification) mode, external or internal standard 

(ESTD/ISTD) methodology, should be used?”  

This subject is directly related to the quantitation principle or methodological 

calibration approach [21]. In ESTD, the response signal of the analyte alone is 

plotted against concentration to generate a calibration curve. In contrast, ISTD 
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requires a structural analogue of the analyte to be measured which is added to 

calibration standards and also to samples. In this case, the response signal ratio 

between analyte/IS is plotted versus analyte/IS concentration or alternatively only 

versus analyte concentration. Although ISTD is generally beneficial for classical 

instrumentation techniques, the experimental data should be cautiously checked 

before to take a choice to the methodology to be used from the quantitative viewpoint 

[22].  

 

2.2.2. Stage 2: Fitting the experimental data by regression triplet 

In statistic science, the term regression is used to describe a group of methods that 

summarize the degree of association between one variable (or set of variables) and 

another variable (or set of variables) [23]. Regression and correlation play an 

important part in the interpretation of quantitative analytical methods and also for 

comparative purposes. The concepts of correlation and regression are intimately 

related because the calculation and handling of data are similarly based on least-

squares method. Nevertheless, correlation and regression must be interpreted totally 

different [24]. Correlation may be described as the degree of association between 

two random variables, whereas regression expresses the form of the relationship 

between specified values of one (the independent) variable and the means of all 

corresponding values of the second (the dependent) variable. An important 

application of regression is the case of analytical calibration where both variables 

(instrumental response and concentration of analyte in calibration standards) 

normally show a direct relation. In summary, linear regression methods try to 

determine the best linear relationship between experimental data points while 

correlation assesses the association between them.  

An important concept in this manuscript for fitting the calibration data is the so-called 

regression triplet, which include method, model and fitting technique. The application 

of calibration functions requires a mathematical equation that relates the instrumental 

response and the concentration of the calibration standards to predict the 

concentration of unknown samples. Although this procedure is very common among 

analysts, a significant source of bias and imprecision in analytical measurements can 

be caused by the inadequate choice of the regression triplet for the standard curve 

that finally will transform signal measurements of samples into concentration units. 

Therefore, it is important to note that the regression triplet must be selected carefully. 
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2.2.2.1. Regression method: Least-squares 

There are various regression methods such as ranked regression, multiple linear 

regression, nonlinear regression, principal-component regression, partial least-

squares regression. The most common statistical method used is the least-squares 

regression, which works by finding the “best curve” through the data that minimizes 

the residual sum of squares.  

 

2.2.2.2. Regression model: Linear 

There are a number of least-squares regression models such as linear, logarithmic, 

exponential and power. The most common measurement model is the one described 

by the simple linear function because it has many advantages, among them, 

simplicity and ease of use. Therefore, historically many analytical methods have 

relied on linear models for the calibration relationship, where calibration data (pairs of 

analyte concentrations-xi, and instrument responses-yi) are used as an input to the 

least-squares regression.  

The literature is plenty of information relating to linear regression. Among the 

interesting information it is possible to highlight a book fully dedicated to this topic by 

Montgomery et al. [25]. More recently, Andrade-Garda et al. published and excellent 

chapter devoted to classical linear regression by least-squares method [26]. Taking 

into account the information included in these references and from general texts and 

books, in this manuscript only fundamental information dealing to linear regression 

will be covered.    

The linear regression analysis yield an equation that gives the best fit to the data 

points. This calibration function can be defined as the mathematical relationship for 

the chemical measurement process, relating the expected value of the observed 

signal or response variable to the analyte amount. An observation on the ith unit in 

the population, denoted by yi, is: 

                              Yi = β0 + β1·xi + εi                                                                          (1) 

where the parameters β1 and β0 are usually called regression coefficients. These 

coefficients have a simple and often useful interpretation; β1 is the slope of the 

regression line, β0 is the intercept of the regression line and εi is the difference 

between the observed value of Y and the value on the true regression line that 

corresponds to x = xi. 
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It is also important to define the prediction equation:  

ŷi = b0 + b1·xi + ei                     (2) 

where ŷi is the predicted value of Y for xi, b0 and b1 are the estimators of regression 

coefficients and ei are the residuals (ei = yi - ŷi), representing the difference between 

the observed and predicted value of Y. Each fit to calibration data can be carried out 

using modern statistical software packages and the typical output from a linear 

regression analysis includes the necessary statistical parameters for calculation such 

as slope (b1), intercept (b0) and their corresponding standard error (SE) or standard 

deviation (SD) such as SEb1 and SEb0, for the slope value and the y-intercept value, 

respectively. Additional information such as r, R2, residual standard error (RSE), F or 

Fisher-Snedecor statistic, degrees of freedom (DOF) and different sum of squares 

(SS) values can be also obtained from a typical regression analysis [27]. It is 

important to note that the estimators of the regression coefficients obtained using the 

best regression model should be unbiased, but they have confidence intervals (C.I) 

around their mean values, which vary following the confidence level (normally at 

95%). Therefore, a calibration line should be described appropriately using the mean 

values but also their associated errors [28] 

 

2.2.2.3. Regression fitting technique 

There are two fitting techniques for linear regression model using least-squares 

method such as ordinary least-squares (OLS) and weighted least-squares (WLS) 

[29]. This classification is based in the behaviour of the response’s standard 

deviations or variances over the selected working range of the calibration curve. 

There are several statistical tests that could be used to check for the 

homogeneity/heterogeneity of standard deviations or variances. They were described 

in different papers and general textbooks and were reviewed by Sayago et al. [30]. In 

spite that is a normal that most of reports in the literature refer to OLS, it is important 

to note that OLS should be only used when experimental data have constant 

variance (homoscedasticity) while WLS is more appropriate when the variance varies 

(heteroscedasticity). Normally, the fitting technique choice will depend on the range 

of concentrations of interest. When a narrow range is considered, an ordinary or 

unweighted linear model is usually adapted, while a larger range may require a more 

complex or weighted model.  
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2.2.2.3.1. Ordinary least-squares: assumptions 

OLS regression is often selected for a mathematical fit of the relation between 

concentration and instrumental response. It is usually the first guess and the starting 

point for the selection of regression curve. There are some basic assumptions 

necessary for OLS to be valid: (i) relationship between y and x variables is linear; (ii) 

x is without error or less than one-tenth of the error in y; (iii) errors in y are normally 

distributed; (iv) error in y is homoscedastic; and (v) errors associated with different 

observations are independent [25]. It is important to note that all the assumptions are 

not routinely checked, but their verification using different statistical tests in flowchart 

mode was proposed by de Souza and Junqueira [31]. Considering that OLS 

provides statistically accurate estimates only when all assumptions are fulfilled, in 

any other case, when some assumptions are not satisfied, OLS can not be 

considered as the best fitting technique. Nevertheless, from a general point of view, 

violation of the main assumption relating to variance homogeneity is very frequent 

due to the fact that many analytical methods produce heteroscedastic data, situation 

in which every calibration point does not have equal impact on the regression [32]. 

Then deviations at high concentrations will influence the regression line more than 

deviations at low concentrations. In fact, the assumption of constant variance for 

instrumental analysis is normally incorrect. Instead of the variance, the RSD is the 

constant parameter over a considerable range for many analytical methods. In this 

case, OLS is not totally adequate for fitting regression and provides biased 

estimators of regression coefficients (slope and intercept), mainly sensitive to 

extreme data points [33]. In consequence, concentration values for unknown 

samples could be incorrectly estimated [34].  

 

2.2.2.3.2. Weighted least-squares: weighting factors  

Heteroscedasticity must not be neglected in the analytical calibration process. The 

solution for non-constant variance is to use an alternative regression procedure such 

as WLS, which is similar to OLS but defines weights to the calibration data [35]. 

Relating to Cal-VG information, the majority of guidelines (9 out of 14) includes some 

information about WLS in cases of heteroscedasticity. By this way, in spite of their 

extra complexity, WLS is now becoming rather more common fitting technique for 

calibration purposes of inductive coupled plasma (ICP) [36] and chromatographic 

techniques [37, 38]. The general concept of WLS is well understood; the principle of 
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weighting is to provide more importance to data points with a low variance and less 

importance to data points with high variance. Therefore, an optimal weighted model 

will balance the regression line to generate an evenly distributed error throughout the 

calibration range.  

On the other hand, given the evidence of heteroscedasticity, the major problem is the 

proper assignment of the weighting factors (WF/wi). The question about which 

weights to apply does not have a simple answer and different WF may be 

appropriate in different situations depending on the characteristics of the calibration 

data set. The most reported procedure is to weight according to the inverse of the 

variance in the response at that point (WF as function of 1/s2) [35]. However, this WF 

is generally impractical because it requires several determinations for each 

calibration point and also because a fresh calibration line should be performed each 

time the method is used. Alternatively, the variance can be modelled as a direct 

function of x or y values. Therefore, WF as function of 1/x0.5, 1/x, 1/x2 and 1/y0.5, 1/y, 

1/y2 have been evaluated as approximations of variance and used to establish 

regression functions [39]. The selection of WF based in 1/x2 as best function was 

suggested in the literature [40] and also has been justified with scientific reasoning 

[41].  

 

2.2.2.3.3. Common mistakes in regression  

There are a couple of very common mistakes in the application of least-squared 

linear regression. They will be described in detail to avoid them in the routine 

analytical laboratory work.     

2.2.2.3.3.1. Regression using zero-point calibration  

A particularized problem in analytical chemistry is to include the ZPC (0, 0) as data 

on the constructed calibration curve before to apply for the regression fitting 

technique. Unfortunately, this procedure could be a source of error. Firstly, the 

majority of analytical instruments have an inputted background signal or noise which 

is expected to be non-zero. Secondly, the closest way to measure the zero-point 

calibration is by running a true blank. But even in this case, random noise signal 

detection is obtained; and only exceptionally, for some chromatographic techniques 

the blank sample can be considered as a real ZPC. The only way in which ZPC can 

be added to a regression data set is when a real standard zero-point has been used 

and the observed response is either zero or too small and then reasonably can be 
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interpreted as zero [42]. If the ZPC subject is not considered, the calibration curve 

used will include a fictitious extra calibration point, being the final effect on reliability 

results variable depending of the experimental calibration design (levels, replicates, 

range, and distance of first calibration point to zero). Anyway, the ZPC should not be 

considered as a true measured data point and therefore, it should be never included 

falsely to calibration curves [43].       

The regression using ZPC is only covered in one guideline of Cal-VG. Specifically, 

SWGTOX [13] states briefly that “the origin shall not be included as a calibration 

point”, although no further explanation is included. 

 

2.2.2.3.3.2. Regression through the origin  

RTO is a special case of linear regression where the absence of constant term 

(intercept) is a simplification of the statistical model [44]. Although linear regression is 

one of the most familiar statistical tools, RTO has been scarcely treated in textbooks. 

In addition, when this subject has been treated, it was in controversial mode with no 

clear statement about their use [45]. By one hand, it is possible to find some advice 

that dropping the constant term from a regression could diminish the model’s fit to the 

calibration data. On the other hand, from the theoretical point of view, there are some 

circumstances under the studies in which RTO looks suitable or even required. For 

example, in a chemical reaction in which there is not input (x=0) there will not be 

output (y=0). However, although theory forbids a constant term value in the 

regression equation careful consideration of data should be necessary. By this way, 

to know theoretically that y=0 when x=0 can not be considered enough justification to 

apply RTO. In addition, it is important to note that the majority of instrumental devices 

include software packages to allow creating a calibration curve that is forced through 

the origin (for example, by specifying removal of the intercept or selecting a zero 

constant option) [42]. In this case, the regression parameters that will be used to 

estimate the concentration of unknown samples are obtained using different 

equations to the best line through the centroid (point which is the average of the 

given x and y values) [28]. However, a calibration curve must not be forced trough 

the origin unless it is demonstrated that the intercept is not significantly different from 

zero. Therefore, once it has been established that a linear fit of the data is 

appropriate, it should be very useful to test whether the intercept significantly differs 
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from zero or contrarily is totally negligible. There are different statistical ways to 

check the significance of intercept values:  

 One approach is by means of Student’s test statistic (t-test) or the 

corresponding p-value. Considering the null hypothesis b0=0 (usually at 95% 

confidence level). If the intercept is not significantly different from zero, then 

the t-experimental value will be lower than the t-critical value. In the same line, 

the p-value will be higher that the specified 5% significance level (usually 

comparing with 0.05) [42]. 

 Another simplest approach is by means of the confidence interval for the 

intercept. If this spans zero, the constant value can be considered as 

statistically not significant [42].  

 Alternatively, the SE of the intercept (SEb0) can be compared with the intercept 

value to know if the curve passes through the origin. If intercept value is higher 

than SEb0, the constant value can be considered statistically significant. If 

intercept value is lower or equal than SEb0, the constant value can be 

considered statistically not significant [46]. 

Nevertheless, it is important to consider that the statistical justification to drop a non-

significant intercept is not enough when the practical relevance of this action is 

considered. Some important information that should be known about RTO is [44]: i) 

the residuals will not sum to zero; ii) the line may not necessarily pass through the 

regression centroid and then affecting the confidence band for the regression line 

(does not expand from the centre of the line).  

In summary, RTO is a statistical assumption and not an underlying principle for 

reporting results. Forcing the regression line through the origin is generally not in 

agreement with the main objective of the regression, which is assessing the best 

prediction model to fit the data. Therefore, using RTO either arbitrarily or statistically 

sounds may unfavourably impact quantitative results, highly in the beginning and 

softly at the end of the linear calibration range. 

The RTO issue is briefly treated in only two of Cal-VG. Firstly, IUPAC guideline 

suggests that “a test for intercept significantly different from zero can also be made” 

[2]. Secondly, Huber considers helpful RTO. He states the following sentence: “A 

linear regression equation applied to the results should have an intercept not 

significantly different from zero. If a significant nonzero intercept is obtained, it should 

be demonstrated that this has no effect on the accuracy of the method” [11]. 
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3. Linearity as validation performance parameter 

3.1. General approach 

3.1.1. Linear versus non-linear regression models 

Linear regression is perhaps the most used statistical model in calibration due to be 

considered as the easiest way to fit experimental data. Therefore, the preliminary 

evaluation of one analytical method is routinely considered from the linear calibration 

point of view. Unfortunately, linear regression can be also considered as an abused 

statistical method taking into consideration the common mistake to presume linear 

relationship onto any set of experimental calibration data. However, systematically 

force a function using the linear regression model to fit any set of calibration 

standards is not required, often irrelevant and may lead to large errors in the 

measured results for real samples [47]. In fact, the straight-line model is never valid 

for some instrumental methods while for others only in a limited interval range, and 

above it a significant departure from linearity is present. Particularly, very often 

occurred in practice for wide calibration ranges, the calibration plot is linear at low 

analyte concentrations, but a close examination reveals that curvature exists at 

higher analyte levels. In looking the use of the right model one important question 

arise: At what point does curvature become so severe that linear calibration is not 

useful? [48]. On the other hand, fitting by non-linear least squares can be 

challenging, but quadratic (second degree polynomial) least squares model fit 

appropriately the experimental data when a calibration curve has a smoothly curving 

nature. In fact, the majority of Cal-VG includes some information relating to the 

possibility of applying non-linear regression for calibration curves. Therefore, 

calibration data must be analyzed with care to evaluate if the non-linear regression 

model provides a better fit than the linear one [49].  

 
3.1.2. Clarification of linearity concept  

The terminology dealing to linearity is somewhat confusing because there are 

different ways of thinking about linear functions. From the systems theory, the 

linearity criterion refers to the relationship between the quantity introduced (input) 

and the quantity back-calculated from the calibration curve (output). The response 

function term looks more suitable because it is used to describe the relationship 

between the instrumental response and the concentration. As it was explained 

before, a linear dependence of the signal and the analyte concentration is certainly 
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the most convenient case and commonly used in chemical analysis. However, there 

are some analytical techniques with a clear non-linear response [50]. Therefore, the 

terms analytical response or response function or standard curve would have been 

more appropriate for this validation characteristic [47]. 

The same confusion in concept between response function and linearity of results 

can be found in the scientific literature, with the majority of guidelines, text and 

papers dealing to validation including the term linearity. This should be the reason 

why many analysts still continue to use the linearity terminology when referring to the 

response function of calibration curves. Exceptionally, some Cal-VG such as EMA 

[5], FDA [6] and ANVISA [8] do not contain the word linearity, it was replaced by 

calibration or standard curve. Similarly, Eurachem [4] and SWGTOX [13] guidelines 

used alternative terms such as working range and calibration model, respectively.   

On the other hand, another source of confusion dealing to linearity is the different 

meaning from graphical against mathematical points of view. By this way, graphically 

should be possible to distinguish two shapes such as straight-line and non-linear. 

However, a quadratic model showing clearly a parabola or curved graph may be 

really a linear calibration. This is due to algebraically speaking only the coefficients of 

the mathematical function are considered.  

 

3.2. Evaluation of linearity 

Considering that the scope of this manuscript is restricted to analytical methods 

dealing to real linear relationship and associated plots, the linearity concept will be 

maintained. Once the calibration function is established, it should be tested 

(validated) for total conformance to the regression model. Therefore, the linearity 

assessment of the calibration function should be checked before its use. As can be 

seen from Cal-VG, the linearity assessment, as a required performance in method 

validation, has always been subject to different definitions and interpretations. The 

same problematic is present in published papers [49, 51-54]. This is due to the 

recommendations that are sometimes complicated or controversial and do not detail 

the experimental designs, the statistical calculations and the respective assumptions 

that need to be checked. In addition, there are very limited applicable implementation 

procedures that can be followed by analysts for assessing linearity. This manuscript 

was planned as a way to establish a practical approach to evaluate the linearity 

range applied to in-house validated methods. Therefore, linearity can be further 
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confirmed by using alternative procedures such as graphical plots, statistical tests 

and numerical parameters that were previously reported in the analytical literature. 

They have been compiled to facilitate comparisons of analytical methodologies from 

the linearity assessment point of view and, some of them, should be proposed as 

formal acceptance criteria. Table 1 summarizes the different linearity tests included in 

the Cal-VG for decision making. Following the different linearity procedures will be 

described in detail.   

 

3.2.1. Graphical mode 

The first step for linearity assessment should be plotting the paired data and to carry 

out the visual inspection of the experimental data provided by the calibration plot. By 

this way, it is possible to quickly identify problems with the data showing the general 

shape of the curve and how well the curve fits the calibration standards. This 

suggestion was included in the majority of Cal-VG. More specific plots to check 

linearity are detailed following. 

 

3.2.1.1. Residuals plot 

Linearity can be tested informally by examination the plot of residuals produced by 

linear regression of the responses on the concentrations in an appropriate calibration 

set. A visual evaluation of the pattern of the residuals plot is very simple and 

straightforward. In spite of their usefulness, a residual plot can not be considered as 

a potent tool to identify deviations from the linear regression model. This is due to no 

statistical test is involved and some experience may be necessary for the 

interpretation of these plots. The residual plot is useful for the judgement of linearity 

as per the sign sequence. A residual plot shown random behaviour in a constant 

range, without systematic pattern is indicative of the correct linearity. However, 

residuals values fairly distributed between positive and negative values have been 

suggested as indicator of the deviation in relation to the linearity assumption [25, 31]. 

The majority of Val-VG includes implicitly the residuals plot as a way to check the 

linearity of calibration curves. 

 

3.2.1.2. Linearity plot  

The sensitivity of the analytical instrumental was suggested by Dorschel et al. to be 

useful to check the linearity of the calibration curves [55]. This approach was also 
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included in a validation paper published by Huber [56], and then sometimes is 

termed in the literature as Huber’s linearity test [57]. In this method, the sensitivity is 

easy to calculate as the ratio between the individual response values and the 

corresponding concentrations. Specifically for chromatographic techniques, the linear 

range was defined as the range of concentration over which the sensitivity (slope of 

calibration curve) in the form of response factor (RF) for ESTD or relative response 

factor (RRF) for ISTD can be considered as constant within a defined tolerance. A 

tolerance limit of ±5% was suggested by IUPAC to evaluate the linearity of 

chromatographic calibration curves [58]. Considering that visual examination can 

help to evaluate the data, usually the assessment is carried out by figures referred as 

linearity or sensitivity plots, representing the sensitivity versus concentration 

(expressed using logarithmic scale for wide calibration ranges). By this way, the 

median value of slope is selected instead the average value taking into account that 

the median value is an estimator robust to outliers. Tolerance limits are determined 

multiplying the median value by constant factors of 0.95 and 1.05 for lower and upper 

limits, respectively. The calibration range is considered to be within the linear range if 

no results are outside of the tolerance limits. In the same way, the data points should 

form a straight line with very low or zero slope. 

This plot methodology was only included in two guidelines of Cal-VG, INAB [9] and 

Agilent [11], as a way to check appropriately the linearity of calibration curves.  

 

3.2.2. Non-graphical mode 

Unfortunately, linearity cannot be demonstrated over a given working range by 

simple visual observation of calibration and residuals plots because both processes 

are subjective. The US FDA validation guideline includes that “the simplest model 

that adequately describes the concentration–response relationship should be used” 

[6]. 

 
3.2.2.1. Statistical significance tests 

The quality of linear fit must be evaluated using significance tests to check if the 

equation defining a calibration standard is appropriate. Although the calculations 

differ, the significance tests are carried out in similar way stating the null (H0) and 

alternative hypotheses (HA). The H0 is usually that there no difference between the 

values being compared. There are many types of significance tests useful to examine 
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different statistical parameters, being very common the t-test (comparing mean 

values) and the F-test (comparing variances). Four significance tests have been 

reported in the literature for linearity testing, all of then based on Fisher-Snedecor or 

F-distribution corresponding to the comparison between the tabulated (Fcrit) and the 

experimental (Fexp) F-values.  

 

3.2.2.1.1. Analysis of variance (ANOVA) test 

This routine statistical test was suggested by Danzer and Currie [18]. The 

experimental value is given by: 

Fexp = (sy/x / sy)
2                       (3) 

where sy/x is RSE and sy is the pure error (PE). Therefore, this test considers useful to 

check whether the residual variance is larger than the squared PE from the study of 

genuine replicate samples. 

In spite that this test is an IUPAC recommendation, it was not considered by none of   

Cal-VG.  

 

3.2.2.1.2. Analysis of Variance lack-of-fit test (ANOVA-LOF) 

The ANOVA-LOF or simply LOF test has been recommended previously as a sound 

test applied to calibration experiments as sole basis [59, 60]. The LOF is a statistical 

test derived from the analysis of variance applied to regression. This test is based on 

the comparison of the variability of a set of calibration measurements and is relatively 

simple. It can be easily implemented on much spreadsheet software. Specifically, 

RSE can be divided in two components: i) PE or random experimental error, 

corresponding to the variability of replicates around their common means; ii) LOF 

error, which is the variability of the group means around the regression line. In this 

case the null hypothesis means that no significant LOF is present.  

This test can be carried out in two ways [61]: 

 Fisher-Snedecor test. This is a conventional F-test between the two components 

of RSE, specifically the ratio between the so-called LOF and PE variances. The 

model is adequate (assumption of absence of LOF) if Fexp is lower than Fcrit. 

 p-value test. This is a statistical parameter that represents the probability. It is 

important to note that a high p-value means that the starting assumption 

(absence of LOF) cannot be rejected. Therefore, a p-value greater than 0.05 (at 
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95% confidence level) must be obtained to fail reject (accept) the starting 

assumption about the LOF for the linearity of the calibration curve. 

Unfortunately, this test has some drawbacks that make it not necessarily conclusive, 

fail to be quantitative and then affecting its usefulness in general application [62, 

63]: 

 Sufficient replicates of calibration during the validation of the analytical method 

are required. It exist the possibility that data may be judged nonlinear if an 

inadequate number of replicates are employed in the data analysis. However, 

replicate requirement should not be a practical limitation in most cases. Most 

important is the fact that true replicates must be used to avoid overestimates 

failing the test due to using simple replication of the calibration standard. 

 A major problem of this test is that it depends on the precision of the method. By 

this way, for precise data the test is very sensitive and less likely to pass it. 

Similarly, when imprecise data are processed, the test can fail to detect 

apparently large deviations from linearity. 

 If the null hypothesis is not rejected, it does not mean that the linear model is 

correct, only that the model is not contradicted by the data or that insufficient 

data exist to detect the inadequacies of the model. In addition, there are causes 

of LOF other than non-linearity that can arise in calibration curves.  

This statistical test was included in 4 of the Cal-VG, but in a different form. By short 

way, IUPAC [2] included that a test of significance can be undertaken by comparing 

LOF variance with that due to PE, including the explanation that non-linearity is not 

the only reason for LOF. INAB [9] stated that “a LOF test may be utilised to underpin 

the visual assessment”. Also, SWGTOX [13] briefly suggested to apply LOF as 

alternatively evaluate unweighted calibration model. On the other hand, JRC-FCM 

[12] explained widely the LOF test following the ISO 11095 approach [60]. 

 

3.2.2.1.3. Mandel´s test 

This test is useful to make a decision about linearity by seeing whether a straight line 

or quadratic curve fits the calibration data better [64]. Mandel´s test compares the 

RSE of both models by an F-test with a null hypothesis that there are not significant 

differences between the residual variances of both models. For this test, if Fexp is 

lower than Fcrit means that the quadratic model did not provide a significantly better fit 
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than the straight line model. Therefore, in this case the quadratic or second degree 

polynomial model cannot be selected on statistical grounds. 

It is important to note that this test was also suggested by IUPAC [18], but this 

approach included a simplified formula when compared to the original one given by 

Mandel:  

FIUPAC = [(Sy/x)
2
LIN   – (Sy/x)

2
NON-LIN)] / (Sy/x)

2
NON-LIN            (4) 

FMandel = [(N-2)·(Sy/x)
2
LIN  – (N-3)· (Sy/x)

2
NON-LIN)] / (Sy/x)

2
NON-LIN       (5) 

where N is the overall number of standards necessary to calculate DOF. It was found 

that the IUPAC simplification is not valid in general although it can be used safely 

when the variances of the linear and alternative models are very similar, typically 

when they differ by less than 10%. Another drawback of Mandel´s test is that a 

higher number of calibration standards, compared to routine calibration, are 

necessary to detect non-linearity correctly [65].    

This test was suggested only in one of Cal-VG. By this way, JRC-FCM [12] includes 

a wide explanation according to IUPAC suggestion [18].  

 

3.2.2.1.4. Significance of the quadratic term (SQT) test 

This is another approach to evaluate the presence of systematic curvature for 

calibration data. Similarly to Mandel´s test, SQT compares a straight-line regression 

model with a second-order regression model based on comparison of mean squares 

(MS) values of quadratic term and residuals. In this case, deviation from linearity is 

detected when MS are different, and then Fexp exceeds the Fcrit value and the QT can 

be considered as significant [42].  Alternatively, deviation from linearity is detected 

when the second-order regression coefficient (b2) is significantly different from zero, 

than means that b2 interval does not include the zero value [66].   

This test has a low prevalence in Cal-VG. Only SWGTOX [13] cited the use of SQT 

as alternative test for calibration model assessment.  

 

3.2.2.2. Numerical parameters 

This section includes different numerical parameters used for evaluating the 

goodness of fit (GOF) of the calibration curves, which means how well a linear 

regression model fits the calibration standards.    
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3.2.2.2.1. r and/or R2 

Both coefficients are regression parameters commonly used when performing 

analytical calibration assessments as indicators for GOF. These coefficients are very 

popular among scientific community, probably due to the simple communication and 

suggestive interpretation of concepts and also quickly availability from statistical 

software and calculators. Considering their wide use it is important to define briefly 

both coefficients: r is an indicator of the degree of correlation between both variables, 

while R2 is an indicator of the proportion of variability in the response explained by 

the regression. In practice, calibration curves should be dealt with R2 rather than r 

since R2 shows the proportion by which the variance of the dependent variable is 

reduced by knowledge of the corresponding independent variable. However, r values 

have been extensively reported for GOF of calibration curves. In addition, 

erroneously both coefficients have been used interchangeably [12, 34]. In any case, 

the use of r and/or R2 is a subject of much controversy and it is clearly reflected in the 

information of Cal-VG dealing to this issue. Firstly, the linearity evaluation of analytic 

methods reported in some guidelines such as USP [7], Agilent [11] and ICH [16] 

suggest that r values should be reported. Secondly, ANVISA [8] includes an 

acceptance criterion that relies in r. Finally, IUPAC [2], Eurachem [3,4], INAB [9], 

NATA [10] and SWGTOX [13] criticize those analytical methods reporting high 

values of r and/or R2, close to unity, that considering linearity as appropriate without 

further evaluation. It is important to consider the meaning of both coefficients to state 

that correlation or response variability and linearity are only loosely related. 

Therefore, these statistical parameters should be considered misleading in the 

context of testing the linearity. In fact, the use of r and/or R2 as linearity test can be 

considered as the most frequently reported misconception about linear regression. 

Unfortunately, this is a topic of high relevance over the time with no definitive solution 

among scientific community. Maximum relevance should be provided by analysts 

engaged in the validation of analytical methods to definitively avoid the use of r 

and/or R2 as proof of linearity. To highlight this idea, Table 3 compiles some 

published articles dealing to calibration curves in which previously was included 

some information about the misleading use of r and/or R2 for linearity evaluation [34, 

51, 53, 59, 67-90].    
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3.2.2.2.2. The residual standard error (RSE)  

This statistical parameter is also known as the standard error of regression (SER) or 

residual standard deviation (SDres) and represented by sy/x. It is a measure of the 

average residual or deviation of the data from the fitted regression line. It is used to 

calculate many useful regression statistics including significance test of the intercept 

and the slope, some outlier test and the C.I. values. In addition, it should also be 

used as another way to check the GOF of the calibration, considering that it provides 

a quantification of the spread of the data around the regression line [91]. The smaller 

the RSE, the closer are the measured data point to the calculated calibration curve. 

Unfortunately, it is affected by the choice of units and their value can only be used to 

compare the results obtained from the same instrument system. Thus, it is not totally 

appropriate for comparison because results are depending on the arbitrary units for 

signal measurement. However, NATA guideline [10] suggests their use as a 

measure of GOF considering the repeatability precision of y values. 

 

3.2.2.2.3 The relative standard deviation of the slope (%RSDSLOPE) 

This mathematical measure of linearity was suggested by Cuadros-Rodriguez et al. 

[92]. The %RSDSLOPE value is characteristic for the analytical calibration method and 

independent of the instrument used. It should be used as a mathematical measure of 

GOF and as a comparison criterion for the dispersion of the experimental data 

around the regression or calibration line. Expressed as percentage, the equation to 

calculate this parameter is:  

%RSDSLOPE = (SEb1 / b1) *100                (6) 

This parameter is scarcely used in Cal-VG, being only reported in JRC-FCM [12]. 

This guideline suggests high tolerance values, 5% for classical chromatography 

techniques and 8% for more specialised techniques (mass spectroscopy detection). 

These values contrast with RSDSLOPE values for an appropriate GOF of experimental 

results around 1-2% as showed the examples included in the reference paper [92].  

 

3.2.2.2.4. Quality Coefficients (QC) 

Different quality coefficients (QC) were reported in the literature for the GOF 

assessment of calibration lines based on calibration curve deviation from either x or y 

values [93]. Hu et al. [94] defined the QC using the relative residual (RR) values as:  

QC (Hu) = [(Σ % RR)2 / (n-1)] ½                (7) 
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                           %RR = [residuals / ymeas] = [(ymeas-ypred) / ymeas ]·100     (8) 

where measurement deviations or residuals are calculated from the difference 

between ymeas (the measurement at each data point) and ypred (the measurement 

predicted by regression model). This parameter can be expressed more 

appropriately as percentage to comparative purpose. The limit of acceptable quality 

for calibration curves using atomic spectroscopy was set at 5%. These QCs accepts 

that RSD is constant and measure the average relative deviation of the 

measurements from the model: the better the model fit to the experimental points, the 

smaller the QC. Unfortunately, little deviations in the lower sector of the calibration 

line may result in high relative errors and thus in elevated QC values. As 

consequence, calibration lines with problems at the highest concentrations may 

possibly pass unobserved, while small deviations at the lowest concentrations may 

be considered as unacceptable. In order to deal with this issue an alternative QC 

using instrumental signal average (ȳ) and based on the acceptance of a constant 

variance was proposed [93]: 

 QC (mean) = [(Σ % RR)2 / (n-1)] ½               (9) 

                           %RR = [residuals / ȳ] = [(ymeas-ypred) / ȳ]·100        (10) 

The alternative QC eliminated the effect of a different location of a similar residual in 

the calibration curve and then being more robust because relates each residual with 

the mean signal response value.  

The QC factor has null influence in the information compiled from Cal-VG, because it 

was never reported as useful parameter to check for linearity criterion.  

 
3.2.2.2.5. Deviation from back-calculated concentrations (DEV) 

An aspect very important in analytical chemistry is the fit-for-purpose principle [3, 4, 

48, 85]. The primary goal of an analytical procedure is to give accurate 

measurements in the future for real unknown samples; so deviations of model fit with 

regard to standard calibration concentrations are of primary interest and they must be 

evaluated. For each standard curve there is an optimal design to obtain the most 

accurate back-calculated results. By this way, the models should be retained or 

rejected based on the accuracy of the back-calculated (BC) results regardless of 

other statistical properties or numerical parameters that could be considered only 

informative and barely relevant for the objective of the assay [47]. In order to assess 

the linearity, comparing directly the back-calculated concentrations with the 
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theoretical or nominal values of the calibration standards is a simple way to become 

aware of the error contribution from the whole regression range [39, 95]. The 

deviations from the proposed linear calibration model can be expressed as relative 

error (RE) of the estimated regression line:  

%RE= [(xmeas-xtheo)/xtheo]·100               (11) 

where xmeas is the measured or experimental value and xtheo is the theoretical or 

nominal concentration. For each calibration point, a negative or positive deviation can 

be obtained by simple calculation. Σ%RE is an overall parameter defined as the sum 

of absolute values that was proposed to select the best fitting technique for 

regression [39, 96]. The mean disadvantage of this sum parameter is similar to RSE, 

it can only be used to compare results obtained from the same instrument. On the 

contrary, one advantage of %RE parameter is their usefulness to check individually if 

appropriate fitting for all the calibration points is carried out, at both high and low 

concentration levels. Alternatively, this parameter should be useful as a plot. %RE 

versus concentration values using log units has been previously reported as valuable 

indicator of linearity [97]. As novelty in the present manuscript, with the purpose of 

further accuracy evaluation using this numerical parameter, two different 

complementary parameters have been proposed. By one hand, %REAVER, as the 

overall error from the whole calibration curve. On the other hand, %REMAX, as the 

maximum specific error at any point of the calibration curve also should be 

considered.  

Some of Cal-VG included acceptability criterion for linearity relating to deviation from 

regression line. By one hand, Agilent [11] and ICH [16] only states that analysis of 

deviation should be helpful for evaluating linearity. On the other hand, US FDA [6], 

ANVISA [8], JRC-FCM [12] clearly specify the conditions to be met in developing a 

calibration curve such as 20% to the low limit of quantification (LLQ) and 15% to the 

rest of nominal concentrations. In addition, EMA [5] suggests the same deviations 

limits of 15-20%, but clearly specifies that deviation should be presented as back-

calculated concentrations of the calibration standards.  

 

 

 

 

 



 28 

3.2.2.3. Deviation from linearity tests 

Recently quadratic and higher-order polynomial models have been used more 

frequently as functional relationship for calibration curves. As a result, more 

sophisticated parameters to evaluate the linearity have been described in the 

literature. Among them, Akaikes information criterion (AIC), average deviation from 

linearity (ADL), sum of squares of deviations from linearity (SSDL), coefficient of 

variation of deviations from linearity (CVDL) and two-one sided test (TOST) are the 

most used. As it was previously stated, this manuscript is dealing specifically to linear 

regression and further explanation about the new parameters is out of the scope of 

this manuscript and can be found elsewhere [98-104]. 

 

4. Evaluation of linearity: Case studies 

The literature is plenty of theoretical information dealing to validation procedures. 

However, there is in general a lack of practical information, particularly to calibration 

practice and linearity assessment. Employing some of the criterion for assessing 

linearity in isolation can be a risk because they are only partly addressed to real 

linear calibration. To increase the knowledge about this important issue, this section 

provides some case studies (CS) to explain in detail different ways to check linearity 

from the practical analytical viewpoint. Therefore, illustrative examples were selected 

from the literature as approaches that best suited the typical problems dealing to 

linearity. Table 4 includes CS 1-7 in which the regression data output were obtained 

using the software package Statgraphic® Plus 5.0. Table 5 summarizes the same 

regression parameters and additionally the %RE information for CS 8-10. 

To understand the experimental designs of the different CS is necessary to define 

some abbreviations: N as the total number of calibration data; j as the number of 

calibration levels; k as the number of replicates for each calibration level; and PAR as 

peak area ratio. 
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4.1. Linearity Plots 

Case study 1. Determination of Ibuprofen (1A) and Biochanin (1B) by HPLC [49]  

4.1.1. Experimental design  

CS 1A: Matrix = mix of water-acetonitrile (50:50); N=14, j=7; k=2 

CS 1B: Matrix = mix of water-acetonitrile (67:33); N=14, j=7; k=2 

 
4.1.2. Calibration data: X (amount-mg/tablet) versus Y (signal-arbitrary units) 

CS 1A: 103.9/265053; 103.9/261357; 139.3/345915; 139.3/345669; 180.1/445684; 

180.1/445753; 200.3/494700; 200.3/493846; 219.9/540221; 219.9/539610 

278.1/683881; 278.1/ 683991; 305.7/755890; 305.7/754901. 

 
CS 1B: 0.158/0.1212; 0.158/0.1211; 0.315/0.4036; 0.315/0.4152; 0.631/1.8395; 

0.631/1.8351; 1.261/3.8405; 1.261/3.8461; 2.522/8.5235; 2.522/8.5399; 

5.045/16.8070; 5.045/16.6986; 10.090/34.0687; 10.090/33.9168 

 
4.1.3. Sensitivity values:  

CS 1A: Median = 2471; Tolerance range (±5%) = 2348-2595 

CS 1B: Median = 3.0478; Tolerance range (±5%) = 2.8954-3.2002  

 
4.1.4. Linearity evaluation 

Linearity plots derived from experimental data are represented in Figure 1. It is 

important to note that although the same high values of R2 (0.9998) were obtained, 

the Figures 1a&b noticeably show two different trends. Then confirming one more 

time the lack of reliability of R2 as a proof of linearity. By this way: 

 CS 1A represents the ideal case where all the sensitivity values (response 

factors) are between ±5% tolerance limits. According to the trend of Figure 1c 

the relationship between drug amount and instrumental signal can be 

considered as a linear regression in the whole calibration range.  

 CS 1B represents an unfavourable example where the majority of sensitivity 

values (response factors) are outside of ±5% tolerance limits. Therefore, the 

trend of Figure 1d shows that regression clearly deviates from a straight-line 

model.  
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4.2. ANOVA test 

Case study 2. Determination of iron by Spectrophotometric method [59, 105] 

4.2.1. Experimental design  

Matrix= not specified; N=12, j=6, k=2 

 
4.2.2. Calibration data: X (mg/mL) versus Y (absorbance units) 

64/138; 64/142; 128/280; 128/282; 192/423; 192/425; 256/565; 256/567; 320/720; 

320/725; 384/870; 384/872 

 
4.2.3. Calculation of variances 

(Sy/x)
2 = 28.05; (Sy)

2 = 4.75 

 
4.2.4. F-test values 

Fexp= 5.91 (Equation 1); Fcri (0.05, 10, 6) = 4.06 

 
4.2.5. Evaluation of linearity 

Taking into account that Fexp is higher than Fcrit in this CS the statistical H0 (there is 

no difference between variances) would be rejected at 95% confidence level and 

regression should be considered as non-linear. 

 

4.3. LOF test 

Case study 3. Serotonin measurement by reverse-phase HPLC and fluorescence 

detection [53] 

4.3.1. Experimental design 

Matrix = Planaria sp.; N=18, j=6, k=3 

 
4.3.2. Calibration data: X (amount-ng) versus Y (PAR of serotonin/IS) 

CS 3A: 0.35/0.0956; 0.35/0.0948; 0.35/0.0934; 0.5/0.1356; 0.5/0.1393; 0.5/0.1361; 

1.0/0.2575; 1.0/0.2551; 1.0/0.2535; 2.0/0.5028; 2.0/0.4962; 2.0/0.4940; 5.0/1.2605; 

5.0/1.2534; 5.0/1.2516; 7.0/1.6706; 7.0/1.6950; 7.0/1.6928.  

 
CS 3B: 0.35/0.0914; 0.35/0.0948; 0.35/0.0976; 0.5/0.1356; 0.5/0.1361; 0.5/0.1423; 

1.0/0.2475; 1.0/0.2551; 1.0/0.2635; 2.0/0.4820; 2.0/0.4962; 2.0/0.5148; 5.0/1.2216; 

5.0/1.2534; 5.0/1.2905; 7.0/1.6206; 7.0/1.6928; 7.0/1.7450.  
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4.3.3. Error sum squares calculation (see reference 53)  

CS 3A: Residual (SSRES) = 4.84·10-3; Pure error (SSPE) = 0.47·10-3; Lack-of-fit 

(SSLOF) = 4.37·10-3 

CS 3B: Residual (SSRES) = 0.0153; Pure error (SSPE) = 0.0109; Lack-of-fit        

(SSLOF) = 0.0044 

 
4.3.4. Degrees of freedom calculation (see reference 53) 

CS 3A&B: Residual (DOFRES) = 16; Pure error (DOFPE) = 12;     Lack- of-fit    

(DOFLOF) = 4 

 
4.3.5. Calculation of associated variances (σ2=SS/DOF) 

CS 3A: Residual (σ2
RES)=3.03·10-4; Pure error (σ2

PE) = 0.38·10-4; Lack-of-fit           

(σ2
LOF) = 1.09·10-3 

CS 3B: Residual (σ2
RES)=9.6·10-4; Pure error (σ2

PE) = 9.1·10-4; Lack-of-fit                 

(σ2
LOF) = 1.1·10-3 

 
4.3.6. F-test values 

CS 3A: Fisher ratio (σ2
LOF/ σ2

PE): Fexp = 27.97; Fcrit (0.05, 4, 12) = 3.259 

CS 3B: Fisher ratio (σ2
LOF/ σ2

PE): Fexp = 1.202; Fcrit (0.05, 4, 12) = 3.259 

 

4.3.7. Linearity evaluation 

In this CS the statistical hypotheses are the null (H0) if there is not LOF (regression is 

linear), whereas the alternative (HA) means that LOF is present and therefore non-

linear model should be selected. To check hypotheses, both F values, one obtained 

experimentally versus the critical one, are compared to obtain a statistical decision 

about linearity of calibration curves. Unfortunately, LOF is a statistical test that 

depends of instrumental signal precision. To evaluate the influence of the precision, 

the calibration data of CS 3A were fictitiously modified in such way that CS 3B are 

three replications providing the same average value but higher SD and RSD. 

Specifically, average RSD of true data was lower than 1.0% while for the modified 

data increased to 3.3%. The results obtained demonstrated that precision is a key 

factor in the LOF test. By one hand, for original precise data Fcrit is lower than Fexp, 

which means than the LOF term is highly significant and consequently a different 

non-linear model should be proposed to describe the relationship between y and x. 

On the other hand, the imprecision in the instrumental signal measurements 
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surprisingly provided a lower Fexp, and a contradictory conclusion about the positive 

acceptance of calibration curve linearity can be achieved. 

 

4.4. Mandel´s test 

Case study 4. Fluorescence measurement of unspecified analyte [65] 

4.4.1. Experimental design 

N=11, j=11; k=1 

 
4.4.2. Calibration data: X (concentration-mM) versus Y (signal-arbitrary units) 

0/0.10; 1/3.8; 2/7.50; 3/10.0; 4/14.4; 5/17.0; 6/20.7; 7/22.7; 8/25.9; 9/27.5; 10/30.0.  

 
4.4.3. Quadratic regression output:  

Y = (-0.0594±0.3344) + (3.8990±0.1556)·x + (-0.0888±0.0149)·x2; R2= 0.9985; RSE= 

0.4389 

 
4.4.4. Calculation of variances 

(Sy/x)LIN
2 = 0.9232; (Sy/X)NON

2 = 0.1927;  

 
4.4.5. F-test values (see reference 65 for calculation) 

FIUPAC =3.79 (Equation 4); FMandel = 35.13 (Equation 5); Fcrit (0.05, 1, 8) = 5.32 

 
4.4.6. Linearity evaluation 

Mandel´s test can be summarized as a comparison of RSE between linear and non-

linear models using the well-know conceptual F-test. In this case, the statistical 

hypotheses are the null (H0) if there is not difference between RSE values and then 

the quadratic model does not improve the linear one. It is important to note that the 

original formulation of Mandel, including DOF to avoid erroneous conclusion, should 

be considered. For this example, using Mandel definition the Fexp is higher than Fcrit 

and then H0 can be rejected and the quadratic model considered as appropriate. On 

the other hand, IUPAC definition provides a contrary conclusion (Fexp < Fcrit) 

considering that H0 cannot be rejected and then a linear model could be erroneously 

accepted because the alternative second order polynomial model does not improve 

the fit from the statistical point of view.    
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4.5. Significance of quadratic term (SQT) 

Case study 5. No information was reported about the source of measurement [42] 

4.5.1. Experimental design 

N=11, j=11; k=1 

 
4.5.2. Calibration data: X (concentration) versus Y (response) 

0/0.10; 2/19; 4/40; 6/71; 8/116; 10/164; 12/225; 14/299; 16/376; 18/466; 20/566  

 
4.5.3. Quadratic regression output 

Y = (2.3916±1.47059) + (4.5104±0.342103)·x + (1.1815±0.01647)·x2; R2= 0.9999; 

RSE= 1.9303 

 
4.5.4. Mean squares calculation (Statgraphic® Plus 5.0 software was used) 

Quadratic term (MSQT)=19164; Mean square of residuals (MSRES)=3.726;  

 
4.5.5. F-test values 

Fexp (MSQT/ MSRES) = 5143; Fcrit (0.05, 1, 8) = 5.32 

 
4.5.6. Linearity evaluation 

For this statistical test the hypotheses are similar that for Mandel´s test but using MS 

values. The experimental value of F, coming from the comparison of the quadratic 

MS term with the residual MS, exceeds the critical value. Similarly, the interval limit of 

the quadratic coefficient ranges 1.165<b2<1.198, excluding the zero value. Therefore, 

the QT is significant and the second-order polynomial is a better representation of the 

data compared with a linear model. 
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4.6. %RSDslope 

Case study 6. Determination of caffeine by HPLC [92] 

4.6.1. Experimental design 

N=12, j=4; k=3 

 
4.6.2. Calibration data: X (concentration-μg/mL) versus Y (PA signal-arbitrary units) 

5/1181; 5/1124; 5/1123; 10/2302; 10/2184; 10/2357; 15/3463; 15/3304; 15/3253; 

20/4527; 20/4476; 20/4424  

 
4.6.3. %RSDslope calculation 

%RSDslope = SEb1/b1*100 (Equation 4) = (3.68/221.16)*100 = 1.66% 

 
4.6.4. Linearity evaluation 

The error in the slope of the calibration curve can be related with the quality of 

analytical calibration. In this case, the error value obtained is lower than the 

suggested experimental value of 2% and then the regression could be considered as 

linear.  

 

4.7. Quality coefficient (QC) 

Case study 7. Determination of copper by AAS-Graphite furnace [93] 

4.7.1. Experimental design 

N=6; j=6; k=1 

4.7.2. Calibration data: X (concentration-ng/mL) versus Y (absorb.-arbitrary units) 

0/0.0000; 10/0.0410; 40/0.1240; 60/0.1890; 80/0.2460; 100/0.3050 

 
4.7.3. QCs calculation  

QC (Hu) = 6.2 (Equations 5-6); QC (mean) = 2.0 (Equations 7-8) 

 
4.7.4. Linearity evaluation 

The decision support based in different QC shows controversial results. The proposal 

of Hu et al. gave a value higher than 5% suggested as limit of acceptable quality. On 

the contrary, the QC (mean) provided a value than can be considered as satisfactory. 

This is due that QC (Hu) is more severe for deviations in the low concentration range 

and too tolerant for deviations in the high concentration range. 
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4.8. RE as function of RTO and ZPC 

Case study 8. Determination of unspecified drug by HPLC [96] 

4.8.1. Experimental data 

N=10; j=10; k=1 

 
4.8.2. Calibration data: X (concentration-ng/mL) vs Y (signal-arbitrary units·10-3) 

1/1.4; 2/2.4; 5/5.6; 10/10.6; 20/20.5; 50/5.9; 100/99.9; 200/199.7; 500/502.5; 

1000/999.5 

 
4.8.3. Evaluation of linearity 

In this CS, a comparison has been made between regression models with or without 

intercept and also including the ZPC. The regression statistics have been 

summarized in Table 5. Calibration data were considered following three possible 

regression options: 

i) The normal OLS regression gives %REMAX values below 15% for all the calibration 

points.  

ii) To study the influence of ZPC, the origin as additional calibration point was 

included in the experimental calibration data. In this case, the statistical regression 

output was improved, giving lower average and extreme error values. However, it is 

suggested do not include fictitious points in the calibration curves to avoid erroneous 

confidence intervals of regression coefficients that could be affect the accuracy of 

prediction interval for real samples.  

iii) To study OLS-RTO, two different regression curves have been evaluated such as 

automatically (clicking the software option) or statistically sound. In the statistical 

case, there are three possibilities to evaluate the intercept significance: 

 The experimental t-value (1.66) is lower that the critical value (2.26). 

Correspondingly, the p-value (0.14) is higher that the critical value (0.05). That 

means that intercept should be removed. 

 The intercept interval value (-0.2/1.3) includes zero. That means that the RTO 

is a reliable option justified from this statistical point of view. 

 The standard error of the intercept (SEb0 = 0.3255) is lower than the intercept 

value (b0=0.5397). That means that intercept should be maintained. Therefore, 

this way to evaluate the intercept significance looks less reliable. 
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The decision to force RTO can be considered as an inappropriate analytical decision 

taking into account the values of %RE parameter in both options (automatic and 

statistical). The calibration curves without intercept resulted in higher Σ%RE and 

%REAVER values that the calibration curve with intercept. In the same way, extreme 

%REMAX values around 40% were obtained forcing RTO. Therefore, bias was 

considerably higher than 15-20% suggested as limit for the calibration points. 

 
4.9. RE as function of regression fitting technique (OLS/WLS) 

Case study 9. Determination of unspecified drug by HPLC [96]  

4.9.1. Experimental data 

N=14; j=7; k=2 

 
4.9.2. Calibration data: X (concentration-ng/mL) versus Y (signal-arbitrary units) 

5/0.0632; 5/0.0725; 10/0.1126; 10/0.1344; 50/0.6078; 50/0.5830; 100/1.0714; 

100/1.1227; 500/5.1290; 500/5.4232; 1000/10.3892; 1000/10.5105; 5000/46.7262; 

5000/51.1182 

 
4.9.3. Evaluation of linearity 

In the present CS, a comparison has been made between OLS and WLS regression 

fitting techniques. In addition, the influence of different WF in the GOF of regression 

triplet has been analyzed. The preliminary analysis of regression statistics showed 

that:  

 R2 values were very similar and always higher than 0.99. Anyway, this 

parameter has no significance for testing linearity.  

 The slope values (b1) were marginally affected by weighting, ranging from 

0.00977 to 0.01055.  

 The intercept values (b0) were different among the diverse regression models. 

As usual, for WLS the intercept value was lower, specifically 8-35% that 

values for OLS regression, looking that intercept is relatively poorly estimated 

for unweighted fitting technique. In addition, although with less difference 

against OLS, b0 values ranged between 0.01636 and 0.07074 when different 

WF were used. Similarly, the standard error (SEb0) dropped considerably, by 

this way decreasing %RSD from 125% to 21%. Therefore, the influence of the 

intercept value can be considered as a key factor for the GOF of the different 

regression models.  
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RSE and %RE parameters can be useful to evaluate the GOF of different linear 

regression models. In theory, calibration regressions should be selected taking into 

account if adequately fit to the experimental data, and then providing accurate 

(lowest RSE and %RE) calibration curves. The results of CS 9 (Table 5) showed that 

1/x2 and 1/y2 are the best WF considering the lowest values of RSE, Σ%RE, %REAVE 

and %REMAX. Relating to %REMAX, the value drops from no weighting (393%) to 1/y0.5 

(115%), 1/x0.5 (108%), 1/y (36%), 1/x (33%), 1/x2 (13%) and 1/y2 (12%) when WF 

were used. Then, bias was considerably greater that acceptable limits (20%) at the 

low concentration section of the calibration range, except in the case of using 1/x2 

and 1/y2 as WF.  

 

5. Calibration tutorial: full regression analysis and linearity evaluation 

This evaluation involves 4 different steps, all of which are easy to perform using 

statistical software. The basic steps are displayed in Figure 2 and explained 

following. 

 Step 1. Plot of calibration data: instrument response versus concentration 

As can be expected for calibration curves, the first step is to plot the y (instrument 

response) versus the x values (normally concentration). Suspect points than can be 

considered as outliers or leverage data should be investigated to see if they are 

correct and they belong to data set. If there is some degree of curvature, this 

situation may also be detectable. 

 

  Step 2. Determination of instrumental response behaviour 

The importance of this step must be emphasized considering that one assumption 

behind OLS is that the SD of the instrument response does not change 

(homoscedasticity) over the full range of x values for which the model will be applied.  

A first evaluation about constant SD can be carried out looking at the spread of data 

from the calibration plot. If it is appear that the spread increases, then the assumption 

of homoscedasticity will be probably not correct. Further evaluation of instrumental 

response behaviour can be carried out statistically to check homo/heteroscedasticity 

but is out of the scope of this manuscript additional explanation. Ignoring 

heteroscedasticity situation have negative impact in the regression, firstly in the 

estimation of coefficients and secondly in the prediction intervals for real samples.  
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 Step 3. Postulation of the regression triplet: method, model and fitting technique 

A common starting point for analytical calibration is least-squared method, linear 

model and OLS as the fitting technique. However, the WLS fitting technique must be 

used in analytical calibration so frequently to avoid an erroneous straight-line model. 

In this case, an important issue is the selection of WF.  

Once the appropriate regression triplet has been selected, it can be used to fit the 

calibration data and regression analysis to obtain the usual statistical parameters (b1, 

b0, REb1, REb0, RSE, R2) 

 

 Step 4. Evaluation of linearity 

As it was previously stated the linearity of calibration data is very important only to 

strictly linear regression models. This evaluation can be carried out in different ways 

that can be grouped into two general modes such as graphical and non-graphical. 

The graphical assessment includes residuals and linearity plots. In addition, the non-

graphical evaluation could be carried out by different statistical significance tests and 

also numerical parameters that were previously explained from the theoretical 

viewpoint. 

 

Following a new experimental case study is presented as an example to carry out an 

overall calibration diagnostic.  

Case study 10. Determination of volatile fatty acids (VFAs) by GC [106] 

5.10.1. Experimental data 

Matrix: aqueous samples; N=21; j=7; k=3 

 
5.10.2. Calibration data: X (concentration-ng/mL) versus Y (PAR of n-C5/IS) 

10/0.04465; 10/0.04322; 10/0.04435; 50/0.23650; 50/0.23678; 50/0.23592; 

100/0.48307; 100/0.48556; 100/0.48876; 250/1.28845; 250/1.29006; 250/1.26648; 

5000/2.60038; 500/2.52749; 500/2.58343; 750/3.70000; 750/3.83859; 750/3.80000; 

1000/4.90000; 1000/5.05255; 1000/5.10000 

 
5.10.3. Evaluation of calibration curve 

 Step 1. Plot of calibration data: instrument response versus concentration 

Figure 3a shows the scatter-plot of 21 PAR versus their respective calibration 

standard concentrations. All points appear to be well-behaved and there is no 

evidence of curvature. 
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 Step 2. Determination of instrumental response behaviour 

For this example the SD (and variance) of instrument response values clearly 

increase with the concentration of calibration standards. This concentration 

dependent trend confirms the heteroscedasticity of y measurements. 

 

 Step 3. Postulation of the regression triplet: method, model and fitting technique 

Visualizing the calibration plot is perceptible that least-squares and linear model 

should be an appropriate selection. About the fitting technique, the practical effect of 

heteroscedasticity is that WLS should be chosen instead of OLS. As it was previously 

suggested, it looks that 1/x2 can be considered as the best option for weighting.  

 

 Step 4. Evaluation of linearity 

Table 6 summarizes the results obtained after apply the different linearity tests. 

Following further explanation is provided. 

A) Graphically 

A1. Residuals plot 

When the proposed regression triplet is fit to the data, the corresponding residuals 

plot should be generated as well. Residual plot can be considered as one of the most 

useful tools in the calibration-diagnosis process but some previous experience in 

judgment is necessary. For this example, the residuals plot (Fig 3b) does not show 

an ideal random patter, but a clear non-random patter (parabola or sinusoidal) is 

neither showed. On the other hand, the graph exhibits a trumpet shape what 

confirms that WLS should be applied as fitting technique. 

 

A2. Linearity plot 

The method can be considered as linear in the full calibration range if none of the 

sensitivity points (relative response factors) intersects or are beyond the ±5% 

tolerance limits. For this example, Figure 3c shows that there is a deviation from 

linearity because the sensitivity values (0.00432; 0.00443; 0.00446) corresponding to 

the replicate calibration standards of 10 mg/L are of all them below the low tolerance 

limit (median value x 0.95= 0.00469). 
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B) Statistical significance tests  

The ANOVA and LOF tests showed that deviation from linearity is present. However, 

Mandel´s and SQT tests demonstrated that better fit to quadratic model was not the 

reason to the lack of linearity. By this way, confirming that there are reasons for LOF 

different to curvature presence.  

 

C) Numerical parameters 

 R2 was near 1, but this parameter is not proof of GOF to linear model. 

 %RSDslope was lower that the suggested limit of 2%, giving evidence of correct 

linearity. 

 QC (mean) was lower than the 5% limit, indicating good linearity. However, 

this test has poor significance in this case because it was designed for 

homoscedastic calibration curves.  

 %REMAX was lower than 15-20% considered as acceptance limit to bias 

deviation from calibration curves.   

 
D) Final decision about linearity 

This example shows what frequently happens for real experimental data, there are 

contradictory results when the linearity of a calibration curve is evaluated using 

different viewpoints [107]. In this CS, linearity plot and some statistical significance 

tests showed that calibration data could be treated as a non-linear model. Although it 

is important to specify that linearity graph was linear except for the lowest calibration 

point, and some statistical tests such as ANOVA and LOF are not totally reliable due 

to be precision dependent. On the other hand, some of the numerical parameters 

used to evaluate the linearity suggested that regression follows a linear model. 

Therefore, the important question is which decision to take considering the contrary 

results. To reply appropriately, %RE can be considered as a key numerical 

parameter because in analytical chemistry the selected calibration curve will be used 

to predict the x values of real samples from experimental y values. In this CS, the 

deviations calculated from back-concentrated concentrations were 3.6% in the worst 

case. This result is very far from 15-20% suggested as acceptance criterion. By this 

way, it is possible to conclude that calibration data could be considered as linear for 

the whole calibration range considered (10-1000 mg/L). 
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6. Conclusions 

Based on the theoretical aspects of analytical calibration and the results reported in 

the selected CS, the following conclusions can be drawn.  

 A very good option for analytical calibration should be using triplicate 

measurements of six calibration standards covering a working range in which the 

usual content of real samples is expected. The calibrations levels should be evenly 

distributed or alternatively for wide calibration ranges partial arithmetic series 

should be suggested. The quantification calibration mode (ESTD/ISTD) should be 

select according the specific characteristic of each analytical determination. In any 

case, three sequences or rounds for calibration over at least 2-3 different weeks 

are suggested to check the independency of standards and the stability of the 

instrument signal over time.  

 The regression triplet including method, model and fitting technique should be 

selected appropriately to fit the experimental calibration data.  

 The common mistakes in analytical calibration should be avoided following the 

next suggestions. Firstly, although analytical software will probably giving 

information of r and/ or R2, both parameters will be never considered as indicators 

for evaluating the linearity of calibration curves. Secondly, heteroscedasticity must 

not be neglected in the calibration process. WLS should be considered as the best 

fitting technique option to regression curves. Relating to WF, they should be 

calculated as function of 1/x2. Thirdly, ZPC and RTO can be considered as two 

common mistakes for regression providing a significant bias for quantitative 

results. Therefore, they should be not considered.  

  There are different ways to assess the linearity of calibration curves by using 

graphical plots, statistical significance test and some numerical parameters. The 

final decision obtained using some of them should be contradictory. Specially, 

%RE should be considered as helpful to appropriately evaluate the linearity of 

calibration curves considering its unambiguous conclusion when compared to well 

establish acceptance limits. 

 A straight-line model is commonly preferred for calibration curves but deviation 

from linearity is a very common situation in several analytical techniques. This 

situation should be resolved applying polynomial models as the best response 

function for the accurate calibration curves.        
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Figure 1. Calibration versus linearity plots for CS 1 
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1d. Linearity plot for Biochanin 
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Figure 2. Different steps for analytical calibration 
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Figure 3a. Calibration plot for CS 10 

0

1

2

3

4

5

6

0 250 500 750 1000

Concentration (mg/L)

P
e
a
k
 A

re
a
 R

a
ti

o
 (

P
A

R
)

 

 

Figure 3b. Residuals plot for CS 10 
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Figure 3c. Linearity plot for CS 10 

0.0042

0.0044

0.0046

0.0048

0.0050

0.0052

0.0054

10 100 1000

Concentration (mg/L)

R
e
la

ti
v
e
 R

e
s
p

o
n

s
e
 F

a
c
to

r 
(R

R
F

)

+ 5%

- 5%

Median

 

 
 
 



 52 

Table 1. Summary of validation guidelines: Calibration process  
 

NAME 

 

AOAC 

(1993) 

 

[1] 

 

ICH 

(1994) 

 

[16] 

 

EUR-1 

(1998) 

 

[3] 

 

FDA 

(2001) 

 

[6] 

 

IUPAC 

(2002) 

 

[2] 

 

ANVI 

(2003) 

 

[8] 

 

USP 

(2003) 

 

[7] 

 

JRC 

(2009) 

 

[12] 

 

AGILE 

(2010) 

 

[11] 

 

EMA 

(2011) 

 

[5] 

 

INAB 

(2012) 

 

[9] 

 

NATA 

(2013) 

 

[10] 

 

SWGTOX 

(2013) 

 
[13] 

 

EUR-2 

(2014) 

 

[4] 

FITTING EXPERIMENTAL DATA 

REG  X X X X X X   X  X X X 
Non-LIN X X X X X X X X X X X X X X 

WLS   X X X  X X   X X X X 
ZPC/RTO     RTOT    RTO

+    ZPC-  

EVALUATION OF LINEARITY 
A) GRAPHYCALLY 

PLO  X X   X X  X  X X X X 
RES   X  X   X X  X X X X 

LIN/SEN         X  X    
B) STATISTICALLY 

ANO               
LOF     X   X   X  X  
MAN        X       
SQT             X  

C) NUMERICAL PARAMETERS 

r/R2  X   X
-
 X

+
 X  X  X

-
 X

-
 X

-
  

RSE            X   
SLO        X       
QCs               
DEV  X  X  X  X X XBC     
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Table 2. Advantages and disadvantages of different procedures to check linearity 
 

PROCEDURE ADVANTAGES DISADVANTAGES 

A) Graphically 

GRA 
Helpful to overall view of 

experimental calibration data 
Do not detect lack of linearity in 

all cases 

RES Very useful for calibration diagnosis 

Do not detect lack of linearity 
for all degrees of curvature. 

Necessary previous knowledge 
about regression trends. 

LIN 
Graphs including acceptance limits 

are very illustrative  for easy 
understanding 

Some terms such as sensitivity, 
response factors or relative 
response factors could be 

confusing 
Not totally conclusive 

B) Statistically 

ANO 
Easy to calculate 

 
Acceptance limit based in F test 

Test precision dependent 
and not conclusive 

LOF Acceptance limit based in F test 

Calculations are complicate 
without software program 
Test precision dependent 

and not conclusive 

MAN 
Easy to calculate 

 
Acceptance limit based in F test 

Erroneous versus correct 
equation for calculation. 

Explain lack of linearity only in 
the case of quadratic model 

SQT Acceptance limit based in F test 

Calculations are complicate 
without software program 

Explain lack of linearity only in 
the case of quadratic model 

C) Numerical parameters 

r/R2 
Widely use due to be simple 

concepts and statistical availability 
Misleading, therefore not never 

useful as linearity test 

RSE Simple concept 
Results are instrument 

dependent 

SLO Easy to calculate Not conclusive 

QC Acceptance limit based in % 

Different equations were 
provided in the literature 

 

Not conclusive for all the 
calibration range 

%RE 

Simple calculation 
 

Acceptance limit based in % 
 

Conclusive from statistical viewpoint 

Acceptance criteria of 15-20% 
should be sometimes 

considered as excessive high 
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Table 3. Literature relating to r/R2 as misleading linearity criterion  

Reference Authors Date Coefficients Statements 

[67] Davis & Pryor 1976 r 
“r, although  widely used as a measure 

of GOF, does not accurately reflect the 

deviations of points from the line” 

[68] Hunter 1981 r&R2 
“In fitting functional models values of r 

and R
2
 close to ±1 do provide an aura 

of respectability, but not much else” 

[69] Van Arendonk et al. 1981 r 
“ A practice that should be discouraged 

is the use of r as a means of evaluating 

goodness of fit of linear models” 

[70] Mitchell & Garden 1982 r 
“The r value does not indicate whether 

the chosen mathematical model 

adequately fits the data” 

[71] 
Analytical Methods 

Committee 
1988 r 

“A large value of r does not indicate a 

linear relationship between two 

measurements” 

“The r does not indicate linearity or the 

lack thereof” 

[72] Sahai and Singh 1989 R2 
“A large value of R

2
 does not insure a 

good fit neither the model predict well” 

[73] Thompson 1990 r 

“r is often mis-applied to calibration 

data in an attempt to support the 

presumption of linearity” 

“r≈1 does not necessarily imply an 

underlying linear relationship” 

[74] Miller 1991 r 
“ The magnitude of r, considered alone, 

is a poor guide of linearity” 

[51] Karnes and March 1991 r 

“r is a poor indicator of how well a 

linear regression equation fits the linear 

model” 

“r is of little value in documenting 

adherence to the linear model” 

[75] Miller 1991 r 

“A high value of r is thus seen to be no 

guarantee at all that a straight line 

rather than a curve, is appropriate for a 

given calibration plot” 

[76] Cassidy & Janosky 1992 r& R2 

“Values of r and R
2
 tell us whether 

there is a reasonable probability that x 

and y are directly related. They are not 

intended to measure the degree of 

linearity of the line of best fit. 

Consequently, neither r nor R
2
 should 

be used the linearity of a calibration 

curve” 

[77] MacTaggart & Farwell 1992 r 
“r gives only a relative idea of the 

linearity inherent in a particular data 

set” 

[59] 
Analytical Methods 

Committee 
1994 r 

“Hence, r is misleading in the context 

of testing for linearity” 

“It is better used for correlation, not for 

quantify linearity” 

[34] Mulholland & Hibbert 1997 r& R2 

“Many analysts depend entirely on the 

use of R
2
 (or r) value between 0.999 

and 1.000 as an acceptability criterion. 

This is well known to be inadequate” 

“r does not give any indication of the 

errors associated with an individual 

measurement” 
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Table 3. Literature relating to r/R2 as misleading linearity criterion (continuation) 

Reference Authors Date Coefficients Statements 

[78] Van Loco et al. 2002 r 

“r is not useful indicator of linearity in 

the calibration model, even for r>0.997” 

“r is not suitable for assessing the 

linearity of calibration curves” 

[79] De Levie 2003 r 
“r can easily be misinterpreted by chemists 

as a measure of GOF which it is not” 

[80] Huber 2004 r 

“r describes the quality of the fit only 

poorly and its linearity not at all” 

“If r is used for testing the quality of the fit 

with subsequent proof of linearity, it is 

severely biased” 

[81] Kiser & Dolan 2004 R2 

“Even if the standard curve has R
2
>0.9990, 

the fit will not necessarily be very good” 

“R
2
 is a poor measure of the curve fit 

quality” 

[82] Emer 2005 r 
“r is neither a proof or linearity, nor a 

suitable quantitative parameter” 

[83] Hibbert 2005 r 
“r is not the statistic of choice to determine 

the extent of linearity” 

[31] De Souza & Junqueira 2006 r &R2 
“the improper recommendation to establish 

linearity that is most frequently written into 

protocols and papers is the use of r or R
2
” 

[84] Asuero et al. 2006 r 

“r close to unity does not necessarily 

indicate a linear calibration function” 

 “Analyst should avoid being misled by r” 

“It is surprising that r had been used so 

frequently to assess the linearity of 

calibration graphs” 

“In short, r value is in reality not a measure 

of model adequacy” 

[85] Lee et al. 2006 R2 

“R
2
 is not useful for evaluating the quality 

of a calibration curve model because it 

does not penalize model complexity and 

consequently encourages overfitting” 

[86] Sonnergaard 2006 r 
“r is often misused as a universal 

parameter expressing the quality in linear 

regression analysis” 

[87] Singtoroj et al. 2006 R2 

“R
2
 alone is not adequate to demonstrate 

linearity since values above 0.999 can be 

achieved even when the data shows signs 

of curvature” 

[88] 
Analytical Methods 

Committee 
2006 r 

“Given the importance of linear 

calibration, it is strange that most analytical 

chemists are willing to use  r as an 

indicator of linearity” 

“r in the context of linearity testing is 

potentially misleading, and should be 

avoided. 

[53] Araujo 2009 r 

“It is extremely important to emphasize 

that an r-test to check the linearity does not 

exist. We cannot say that r=0.999 is more 

linear that r= 0.997” 

[89] Komsta 2012 r &R2 

“r and R
2
 are completely unrelated to 

several phenomena that can occur during 

calibration. Very high values can be 

obtained for curves with significant 

curvilinearity” 

[90] Rozet et al. 2013 R2 
“R

2
 do not allow to properly select an 

adequate response function for the 

calibration curve” 
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Table 4. Linear regression output data for CS 1-7 

Case 
Study 

SLOPE 

[b1] 
STD. ERROR 

[SEb1] 
INTERCEPT 

[b0] 
STD. ERROR 

[SEb0] 
DET. COEF. 

[R
2
] 

RSE 
[Sy/x] 

1A 2437 10 7186 2090 0,9998 2421 

1B 3.414 0.015 -0.409 0.064 0,9998 0.183 

2 2.286 0.014 -11.4 3.5 0.9996 5.296 

3A 0.2416 0.0016 0.016 0.006 0.9993 0.017 

3B 0.2416 0.0029 0.016 0.011 0.9977 0.031 

4 3.0109 0.0916 1.2727 0.0542 0,9917 0.961 

5 28.141 2.202 -68.5 26.050 0.9478 46.18 

6 221.16 3.68 45.33 50.39 0.9972 71.26 

7 0.0030 0.00005 0.0052 0.0029 0.9989 0.004 
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Table 5. Linear regression output data for CS 8-10 

CASE 
STUDY 

FITTING 
TECHN. 

SLOPE 
(ST. ERROR) 

INTERCEPT 
(ST .ERROR) 

DET. COE. RSE RELATIVE ERROR  (%RE) 

  [b1/SEb1] [b0/SEb0] [R
2
] [Sy/x] [Σ%RE] %REAVER %REMAX 

8a OLS 
0.9998 
(0.0009) 

0.5397 
(0.3255) 

0.9999 0.8774 25.6 2.6 14.0 

8b 
OLS 
ZPC 

0.9999 
(0.0009) 

0.4744 
(0.2937) 

0.9999 0.8442 17.8 1.8 7.4 

8c 
OLS 

RTO/STA 
0.9998 
(0.0009) 

- 0.9999 0.8774 83.6 8.4 40.0 

8d 
OLS 

RTO/AUT 
1.006 

(0.0008) 
- 0.9999 0.9588 83.2 8.3 39.9 

9a OLS 
0,00977 
(0.00015) 

0,20658 
(0.28597) 

0.9973 0.9318 1223 58 393 

9b 
WLS 

 

(1/y
0.5

) 

0.00984 
(0.00014) 

0.07074 
(0.08796) 

0.9976 0.3202 358 17 115 

9c 
WLS 

 

(1/x
0.5

) 

0.00984 
(0.00014) 

0.06719 
(0.08305) 

0.9976 0.3029 339 16 108 

9d 
WLS 

 

(1/y) 

0.00994 
(0.00015) 

0.03160 
(0.02102) 

0.9974 0.0878 147 7 36 

9e 
WLS 

 

(1/x) 

0.00995 
(0.00015) 

0.02980 
(0.02102) 

0.9973 0.0777 140 7 33 

9f 
WLS 

 

(1/y
2
) 

0.01055 
(0.00025) 

0.01636 
(0.00347) 

0.9934 0.0112 85 4 12 

9g 
WLS 

 

(1/x
2
) 

0.01050 
(0.00027) 

0.01644 
(0.00336) 

0.9921 0.0106 85 4 13 

10 
WLS 

 

(1/x
2
) 

0.00503 
(0.00003) 

-0.00665 
(0.00080) 

0.9992 0.0032 44 2 3.6 
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Table 6. Case study 10: evaluation of linearity 

Linearity Test Acceptance Criteria Result 

A. Graphical mode 

Residuals plot No trend No trend 

Linearity plot ≤ ±5% tolerance limits Out of tolerance limits 

B. Statistical significance tests 

ANOVA H0: Fexp < Fcrit 902926 > 2.4 

ANOVA-LOF H0: Fexp < Fcrit 8.65 > 2.96 

Mandel H0: Fexp < Fcrit 1.74 < 3.16 

SQT H0: Fexp < Fcrit 1.73 < 3.16 

C. Numerical parameters 

R2 None 0.9993 

%RSDslope < 2% 0.6% 

QC (mean) < 5% 2.6% 

%REMAX < 15-20% 3.6% 

 

 


