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Abstract

Background: Three-level data arising from repeated measures on individuals who are clustered within larger units

are common in health research studies. Missing data are prominent in such longitudinal studies and multiple

imputation (MI) is a popular approach for handling missing data. Extensions of joint modelling and fully conditional

specification MI approaches based on multilevel models have been developed for imputing three-level data.

Alternatively, it is possible to extend single- and two-level MI methods to impute three-level data using dummy

indicators and/or by analysing repeated measures in wide format. However, most implementations, evaluations and

applications of these approaches focus on the context of incomplete two-level data. It is currently unclear which

approach is preferable for imputing three-level data.

Methods: In this study, we investigated the performance of various MI methods for imputing three-level incomplete data

when the target analysis model is a three-level random effects model with a random intercept for each level. The MI

methods were evaluated via simulations and illustrated using empirical data, based on a case study from the Childhood to

Adolescence Transition Study, a longitudinal cohort collecting repeated measures on students who were clustered within

schools. In our simulations we considered a number of different scenarios covering a range of different missing data

mechanisms, missing data proportions and strengths of level-2 and level-3 intra-cluster correlations.

Results:We found that all of the approaches considered produced valid inferences about both the regression coefficient

corresponding to the exposure of interest and the variance components under the various scenarios within the simulation

study. In the case study, all approaches led to similar results.

Conclusion: Researchers may use extensions to the single- and two-level approaches, or the three-level approaches, to

adequately handle incomplete three-level data. The two-level MI approaches with dummy indicator extension or the MI

approaches based on three-level models will be required in certain circumstances such as when there are longitudinal data

measured at irregular time intervals. However, the single- and two-level approaches with the DI extension should be used

with caution as the DI approach has been shown to produce biased parameter estimates in certain scenarios.

Keywords: FCS, Joint modelling, Multiple imputation, Multilevel multiple imputation, Three-level data, Incomplete multilevel

data, Linear mixed model
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Background
Clustered or multilevel data, in which observations on in-

dividual units are correlated because they are nested

within clusters, are common in epidemiological research

[1]. The clustering in the data may arise due to observa-

tional units (usually individuals) being nested within nat-

urally occurring groups such as schools (i.e. cluster

correlated data) and/or due to study design such as re-

peated measurements nested within individuals (i.e. longi-

tudinal data). Clustered data have a naturally hierarchical

structure where lower level units are nested within higher

level units and there can be multiple levels in this data

hierarchy [1]; in particular here we focus on three-level

data resulting from the clustering of repeated measures on

individuals within larger units such as schools [2]. One

such example is provided by the Childhood to Adoles-

cence Transition Study (CATS), a longitudinal study of a

cohort of young people recruited just before puberty from

schools in Victoria, Australia, and followed up at multiple

waves with data collected on a range of mental health out-

comes [3].

Missing data present challenges in many studies. In

studies such as the CATS, which involve multiple waves

of data collection, missing data is a major problem.

Multiple imputation (MI), as initially proposed by

Rubin (1987), is a popular approach for handling miss-

ing data [4]. MI is a two stage process [5]. In the imput-

ation stage, missing values are imputed multiple (m > 1)

times by sampling from their posterior predictive distri-

bution (or an approximation) using an imputation

model based on the available data. In the analysis stage,

the m completed datasets are analysed using the

intended analysis model and the resulting inferences

are combined using Rubin’s rules [5]. A key consider-

ation in MI is that in order to generate valid inferences

in the substantive analysis, the imputation model needs

to preserve all the features of the analysis model such

as non-linear relationships, interactions and multilevel

features [6]. This has been referred to in the MI litera-

ture as congeniality and more recently as substantive-

model-compatibility, which is closely related to the

concept of congeniality - see Meng (1994) and Bartlett

(2015) for formal definitions of these two concepts [7,

8]. In this paper we use the term congeniality, which in

the context of a multilevel analysis means that the

multilevel structure of the data that will be modelled in

the analysis model is accounted for in the imputation

model [9, 10]. In the context of an analysis model that

is a linear mixed model (LMM), ignoring the multilevel

structure during the imputation stage may lead to

biased estimates of the regression coefficients and their

standard errors, especially when the missing data pro-

portion is large, and also may severely bias estimates of

the variance components [9, 11–13].

There are two broad model-based frameworks for

imputing missing data in multiple variables; joint

modelling (JM) and fully conditional specification

(FCS). The JM approach imputes incomplete variables

by assuming that they all follow a single joint distri-

bution, for convenience, often a multivariate normal

(MVN) distribution [14]. The FCS approach imputes

variables with missing values one at a time by using a

series of univariate conditional models for each in-

complete variable given all the other variables [15,

16]. There is also a variation of the JM approach,

which factorizes the joint distribution of the variables

into a sequence of conditional distributions [17].

However, we will not consider this approach in the

current manuscript due to reasons detailed further in

the discussion. The standard JM and FCS methods

(referred to as single-level JM and single-level FCS)

assume that observations are independent. As a result,

when the substantive analysis of interest is a multi-

level analysis, imputing using either of these ap-

proaches will not be congenial with the analysis

model [9, 18]. A simple way of extending the single-

level imputation approaches for imputing incomplete

two-level data is to include a series of dummy indica-

tors (DIs) to represent the clusters. In addition, from

a practical perspective this approach is only sensible

when the number of clusters to be represented using

DIs is not very large, as a large number of clusters

would require a large number of DIs [10], For longi-

tudinal repeated measures data, with follow-ups at

fixed intervals of time, an alternative is to arrange the

repeated measures of the same variable in wide for-

mat and treat each repeated measurement as a dis-

tinct variable in the imputation model [19].

Recently, methodologists have extended the JM and

FCS approaches to use multilevel imputation models

[13, 20–22]. The extension of the JM approach for im-

puting multilevel data uses a multivariate linear mixed

model (MLMM) as the imputation model [20]. Similarly,

the multilevel extension to the FCS approach imputes

missing values using a series of univariate LMMs [13].

Implementations of both these extensions are now avail-

able in a variety of software [23–29], but the majority of

these, as well as existing applications and evaluations,

are limited to incomplete two-level data [12, 30, 31]. To

our knowledge, only the FCS MI approach based on

multilevel models has been specifically extended to

impute three-level data, and can be implemented in

Blimp, which is a stand-alone package for conducting

imputation, and the ml.lmer function in the R package

‘miceadds’ [26, 32, 33].

To impute incomplete three-level data researchers

may use MI approaches based on three-level imput-

ation models or alternatively, extend single-level or
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two-level MI approaches by using DIs and/or by ana-

lysing repeated measures in wide format for one or

both of the levels of clustering. Meanwhile, while the

DI and/or analysing repeated measures in wide format

do take the three-level structure of the data into ac-

count, it is not clear how and when they would pro-

duce valid results. No study to date has compared the

performance of all these MI approaches in a setting

where there are three levels of hierarchy. In fact,

methodologists have pointed out that experience in

imputing three level data is lacking [34]. Therefore in

this paper, we investigate the performance of MI

methods for imputing incomplete three-level data, fo-

cusing on those that can be used within the main-

stream packages R and Stata. For the JM approaches

we focus on those assuming a MVN distribution, as

this is the most common JM fitted in most statistical

packages [35, 36]. Our focus is on multilevel data

resulting from repeated measures with follow-ups at

fixed intervals of time within an individual where

there is clustering among individuals as in the CATS.

The analysis model is a LMM with a random inter-

cept for each level of clustering.

The organization of the paper is as follows. We begin

with a brief description of the case study and the re-

search question that motivated our study, which aimed

to estimate the effect of early depressive symptoms on

academic performance. This is followed by a description

of the MI approaches we have identified for imputing in-

complete three-level data resulting from longitudinal re-

peated measures across individuals clustered within

larger clusters. We then describe a simulation study con-

ducted to evaluate and compare the performance of the

approaches, using the CATS example as basis for gener-

ating data. An illustration of the various approaches ap-

plied to the CATS case study is provided. We conclude

with a general discussion.

Methods
Motivating case study: the childhood to adolescence

transition study (CATS)

The CATS is a longitudinal population-based cohort

study conducted in Melbourne, Australia. It is a

multidisciplinary study with the long-term goal of

studying educational, emotional, social and behav-

ioural development in children from puberty through

adolescence [3]. The study recruited Grade 3 students

of 8–9 years of age in 2012 from 43 schools. Of the

2289 students enrolled at these schools, 1239 (54%)

children with informed parental/guardian consent

were recruited into the study at wave 1. Data collec-

tion was conducted annually from parent, teacher and

student self-report questionnaires along with direct

measurements (saliva samples and anthropometric

measurements). There is also linkage with the Victor-

ian Curriculum and Assessment Authority (VCAA) to

obtain National Assessment Programme – Literacy

and Numeracy (NAPLAN) results. NAPLAN, which is

administered to all students in schools across

Australia in grades 3, 5, 7 and 9 (approximate ages

8–9, 10–11, 12–13, 14–15 years), assess the student’s

academic performance on 4 domains – reading, writ-

ing, numeracy and language conventions. At the time

of this work, we had access to 7 waves of data collec-

tion. The detailed study protocol can be found else-

where [3].

Target analysis

We focus on an analysis of the effect of early depres-

sive symptoms (at waves 2, 4 and 6) on academic

outcome (at waves 3, 5 and 7) as measured by NAPL

AN numeracy scores. To account for clustering of in-

dividuals within schools and repeated measures within

individuals [37], the analysis model used to answer

this research question was a LMM for the repeated

NAPLAN outcome measures (at the 3 time points)

including random effects for school- and child. In this

paper we restrict our attention to a random intercept

model for brevity, although we note that it may be

appropriate to consider a random slope for wave in

the applied context. We return to this in the discus-

sion. A measure of depressive symptoms at the previ-

ous wave was included as a time-varying exposure

along with wave as the time variable. The model was

adjusted for potential baseline (wave 1), time-fixed

confounders: child’s NAPLAN numeracy scores, sex,

socio-economic status (SES), and age [37]:

NAPLAN zijk ¼ β0 þ β1�depressionij k − 1ð Þ

þ β2�waveijk
þ β3�NAPLAN zij1 þ β4�sexij

þ
X

4

a¼1

β5;a�I SESij1 ¼ a
� �

þ β6�ageij1 þ α0i þ α0ij þ εijk ð1Þ

where i denotes the ith school (i = 1,…, 43), j denotes the

jth individual (j = 1,…1239) and k denotes the kth wave

(k = 3, 5, 7), with εijk denoting independent random

measurement errors distributed as εijk � N ð0; σ21Þ and

school and individual-level random effects α0i � Nð0; σ2
3

Þ and α0ij � Nð0; σ22 ) respectively. The I[.] in the above

model denotes an indicator function for SES being equal

to a. The rest of the notation is described in Table 1.

The main target parameter of interest in the above

model is β1, the mean change in standardized NAPLAN
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numeracy score per unit increase in the depressive

symptom score.

In the CATS, all demographic variables in the analysis

model, i.e. child’s age, sex and SES quintile, were com-

pletely observed [3]. Meanwhile, data were missing for

both time-varying variables, that is, NAPLAN numeracy

scores and the depressive symptom scores. NAPLAN nu-

meracy scores were missing for 15% (184/1239) of individ-

uals at wave 1, 16% (198/1239) at wave 3, 21% (264/1239)

at wave 5, and 30% (366/1239) at wave 7. Depressive

symptom scores were missing for 11% (137/1239) of

individuals at wave 2, 14% (173/1239) at wave 4 and 21%

(249/1239) at wave 6.

MI methods for handling incomplete three-level data

In the context of repeated measures clustered within lar-

ger higher-level clusters such as schools, there are two

sources of correlation: the correlation among individuals

belonging to the same higher-level cluster and the cor-

relation among the repeated measures of an individual.

When these two sources of correlation are accounted for

in the analysis model, they need to be accounted for in

Table 1 Description of the variables measured for the jth individual belonging to the ith school at wave k in the analysis model

Variable Type Grouping /Range Label

Child’s sex Categorical 0 = Female 1 =Male sexij

Child’s age (wave 1) Continuous Range [7–11] ageij1

SES measured by the SEIFA IRSAD quintile (wave 1) Categorical 0 = 1st quintile (most disadvantaged) SESij1

1 = 2nd quintile

2 = 3rd quintile

3 = 4th quintile

4 = 5th quintile (most advantaged)

Standardized NAPLAN numeracy score (wave 1) Continuous z-score NAPLAN _ zij1

Standardized NAPLAN numeracy score (waves 3,5 and 7) Continuous z-score NAPLAN _ zijk
a Depressive symptoms (waves 2,4 and 6) Continuous Range [0,8] depressionij(k − 1)

b Overall child behaviour reported by SDQ (waves 2,4 and 6) Continuous Range[0,40] SDQij(k − 1)

IRSAD Index of Relative Socio-Economic Advantage and Disadvantage, NAPLAN National Assessment Program - Literacy and Numeracy, SDQ Strengths and

Difficulties Questionnaire, SEIFA Socioeconomic Index for Areas, SES Socio-Economic Status
aA subset of 4 items (each ranging from 0 to 2) from the Short Mood and Feelings Questionnaire (SMFQ) was used to measure the depressive symptoms at each

wave in the CATS study [3, 38]. Depressive symptoms at each wave in our study is the total summary score of these four items
b For measuring the overall child behaviour, a total difficulties score is derived from the first 4 subscales of the Strengths and Difficulties Questionnaire (SDQ):

emotional symptoms, conduct problems, hyperactivity/inattention, peer relationship problems (each ranging from 0 to 10) [39]. This variable is not included in the

analysis but is included in the imputation model as an auxiliary variable to improve its performance

Table 2 Summary of the imputation approaches for handling incomplete three-level data

MI approach Paradigm Model Softwarea How the two sources of clustering are handled

Clustering due to
higher level clusters

Clustering due to
repeated measures

JM-1L-DI-wide JM Standard (single-level) SAS [64], SPSS [36], Stata [35],
Mplus [24], R [46]

DI Repeated measures arranged
in wide format

FCS-1L-DI-wide FCS Standard (single-level) SAS, SPSS, Stata, Mplus, R, Blimp [26] DI Repeated measures arranged
in wide format

JM-2L-wide JM Two-level MLMM SAS [28], Mplus, Realcom-impute [23],
Stat-JR [29], R

RE Repeated measures arranged
in wide format

JM-2L-wide DI RE

FCS-2L-wide FCS Two-level LMM Mplus, R, Blimp RE Repeated measures arranged
in wide format

FCS-2L-DI DI RE

JM-3L JM Three-level MLMM Stat-JR, Mplus RE RE

CS-3L FCS Three-level LMM R, Blimp RE RE

DI dummy indicators, FCS fully conditional specification, JM joint modelling, LMM linear mixed model, MLMM multivariate linear mixed model, RE random effects
aR and Blimp are the only freely available, open-source software implementations
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the imputation model [40]. In this section we outline the

MI approaches we have identified for handling incom-

plete three-level data of this sort, describing how each

approach handles these two sources of correlation. We

specifically focus on a clustering scenario similar to the

CATS where we have a moderate number of higher level

clusters and repeated measures at regular intervals of

time.

Single-level JM with DI for higher level clusters with

repeated measures imputed in wide format (JM-1L-DI-wide)

Popularized by Schafer (1997), the single-level JM ap-

proach assumes a joint multivariate normal distribu-

tion for the incomplete variables. Under this approach

imputations for the missing values are drawn from

the posterior predictive distribution of the missing

data given the observed data using an iterative data

augmentation algorithm [14]. With this approach, the

within-cluster correlation of the higher-level clusters

can be incorporated using a set of dummy variables

representing these clusters in the imputation model.

Specifically, if there are I clusters, the cluster mem-

bership of each individual is represented in the im-

putation model by (I − 1) DIs. The clustering of

repeated measures within individuals are then im-

puted in wide format (with one row per individual

and separate variables for each repeated measure),

and treating them as distinct variables in the imput-

ation model. This approach preserves the clustering

of repeated measures in the imputation model by

allowing for the correlation between repeated mea-

sures with an unstructured covariance matrix.

Single level FCS with DI for higher level clusters with

repeated measures imputed in wide format (FCS-1L-DI-

wide)

The single-level FCS approach specifies a (single-level)

univariate imputation model for each incomplete vari-

able. The imputations for the missing values in each

variable in turn will be drawn using an iterative algo-

rithm which will cycle through univariate imputation

models [16]. Similar to JM-1L-DI-wide, the correl-

ation among individuals belonging to the same

higher-level cluster can be modelled through DIs

while the correlation among the repeated measures

can be modelled by including the repeated measures

as distinct variables in the imputation model. Thus,

when imputing an incomplete repeated measure at

one time point/wave, repeated measures at all the

other waves are included as predictors preserving the

correlation of the repeated measures.

Two-level JM for higher level clusters with repeated

measures imputed in wide format (JM-2L-wide)

Schafer and Yucel (2002) extended the JM approach to

enable imputation of multilevel data by imputing from a

joint MLMM [20]. This multivariate model models the

correlation among individuals within a higher-level clus-

ter using cluster-specific random effects which are as-

sumed to follow a normal distribution. As with JM-1L-

DI-wide, the clustering of repeated measures within in-

dividuals can then be modelled by imputing the data in

wide format where repeated measures are treated as dis-

tinct variables. In this approach, the incomplete variables

are included as outcomes and the complete variables are

included as predictors in the imputation model.

Two-level FCS for higher level clusters with repeated

measures imputed in wide format (FCS-2L-wide)

Van Buuren (2011) proposed an FCS extension for im-

puting two-level data which uses a series of univariate

two-level LMMs to impute the missing values, cycling

through the incomplete variables one at a time [13].

Under this approach, repeated measures are treated as

distinct variables (imputing the data in wide format) and

a univariate two-level LMM is specified for each incom-

plete repeated measure in turn with cluster-specific ran-

dom effects to account for the correlation among

individuals of the same higher-level cluster.

Two-level JM for repeated measures with DI for higher level

clusters (JM-2L-DI)

An alternative approach using the two-level MLMM [20],

is to use the MLMM to allow for the clustering of re-

peated measures within an individual, and then model

the correlation among individuals of the same higher-

level cluster by including DIs representing the cluster

membership, imputing the data in long format (i.e. where

each repeated measure is a separate row in the dataset).

Two-level FCS for repeated measures with DI for higher

level clusters (FCS-2L-DI)

Similar to JM-2L-DI, the two-level FCS approach [13]

can be used to model the clustering of repeated mea-

sures within individuals using individual specific random

effects, with the correlation among individuals of the

same higher-cluster modelled using DIs representing the

cluster membership, again imputing the data in long

format.

Three-level JM (JM-3L)

The JM approach for multilevel data [20], can be ex-

tended to three levels using a three-level MLMM where

the correlation among individuals within the same

higher-level cluster is modelled using cluster-specific
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random effects while the clustering of repeated measures

within individuals is modelled using individual-specific

random effects applied to the data in long format.

Three-level FCS (FCS-3L)

This approach is an extension of the two-level FCS ap-

proach proposed by van Buuren (2011) [13] to impute

three-level data using a series of univariate three-level

LMMs for each variable with missing values [26, 32, 33].

Similar to JM-3L, here the correlation among individuals

within the same higher-level cluster is modelled using

cluster-specific random effects while the clustering of re-

peated measures within individuals is modelled using

individual-specific random effects imputing the data in

long format.

The Table 2 summarizes the approaches discussed

above along with the software each of the approach is

available in.

Simulation study

We conducted a simulation study based on the CATS

case study to compare the performance of the above

approaches. In our simulations we did not consider

JM-3L, as to our knowledge there are no available

implementations of this method in mainstream soft-

ware. The data were generated as described below,

with 40 school cluster (i = 1,…, 40) and a total sample

size of 1200 students.

Generation of the complete data

First we generated 40 school clusters which we popu-

lated in two ways to obtain a sample of 1200

students:

1. In the first scenario we assumed that each school

contained a fixed cluster size of 30 students, which is

a typical class size observed in school setting [41].

2. In the second scenario each school contained a

varying number of students ranging from 8 to 66

students, similar to the CATS [3]. In this scenario,

the school cluster sizes (8 ≤ ni ≤ 66) were assumed

to follow a truncated log-normal distribution and

cluster size for each school i was sampled randomly

from this distribution. In order to set the total

number of students across the 40 schools to be

1200, the sampled cluster sizes were multiplied by a

factor of 1200=
P

40

i¼1

ni and rounded to derive a scaled

class size. If the total of these scaled class sizes was

less than 1200, the deficit was added to the last

school cluster, if the total of scaled class size was

higher than 1200, the excess was deducted from the

last school cluster.

Under each of the two scenarios, the rest of the vari-

ables were generated sequentially as described below for

individual j in cluster i. The values of the parameters

indexing these distributions were determined by estimat-

ing the respective quantity from the CATS data and are

given in Additional file 1: Table S1.

i. Child’s age at wave 1 (ageij1) was generated from a

uniform distribution, U(a, b).

ii. Child’s sex (sexij) was generated by randomly

assigning λ% of students to be female.

iii. Child’s SES quintile at wave 1 (SESij1) was

generated by randomly assigning θ0, (θ1 − θ0), (θ2
− θ1), (θ3 − θ2) and (1 − θ3) % of respondents to SES

quintiles 1,2,3,4 and 5 respectively.

iv. The standardised NAPLAN scores at wave 1 (NAPL

AN _ zij1) were generated from a linear regression

Table 3 Point estimate (and standard error) for the effect of early depressive symptoms on subsequent standardized NAPLAN

numeracy scores, and point estimates for the variance components at levels 3, 2 and 1, from available case analysis (ACA) and 8 MI

approaches applied to the CATS data analysis

Method Regression coefficient estimate (SE) Level 3 variance component Level 2 variance component Level 1 variance component

ACA −0.022 (0.007) 0.042 0.239 0.232

JM-1L-DI-wide −0.019 (0.007) 0.043 0.243 0.231

FCS-1L-DI-wide −0.019 (0.008) 0.043 0.246 0.230

JM-2L-wide −0.020 (0.007) 0.041 0.246 0.228

FCS-2L-wide −0.022 (0.007) 0.042 0.245 0.229

JM-2L-DI −0.020 (0.008) 0.042 0.237 0.228

FCS-2L-DI – – – –

FCS-3L in ml.lmer −0.021 (0.007) 0.033 0.238 0.232

FCS-3L in Blimp −0.021 (0.007) 0.040 0.238 0.228

ACA available case analysis, DI dummy indicators, FCS fully conditional specification, JM joint modelling, NAPLAN National Assessment Program - Literacy and

Numeracy, RE random effects, SE standard error
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model conditional on child’s sex, child’s age at wave

1 and child’s SES quintile:

NAPLAN zij1 ¼ η0 þ η1� sexij ¼ 1
� �

þ η2�ageij1

þ
X

4

a¼1

η3;a�I SESij1 ¼ a
� �

þ ψij ð2Þ

where ψij are independently and identically (iid) distrib-

uted as as ψij � N ð0; σ2φÞ and a = 0 (reference category),

1,2,3, or 4 representing the SES quintiles 1–5

respectively.

v. Child’s depression status at waves 2, 4 and 6

(depressionij(k − 1)) was generated using a LMM

conditional on child’s age at wave 1, child’s sex,

NAPLAN scores at wave 1, child’s SES quintile and

wave:

depressionijk ¼ δ0 þ δ1�ageij1 þ δ2� sexij ¼ 1
� �

þ δ3�NAPLAN zij1

þ
X

4

a¼1

δ4;a�I SESij1 ¼ a
� �

þ δ5�waveijk þ u0i þ u0ij þ φijk ð3Þ

Where φijk, u0ij and u0i are iid as φijk � N ð0; σ2
φÞ, u0ij

� Nð0; σ2u2Þ; and u0i � Nð0; σ2u3Þ respectively.

vi. Child’s standardized NAPLAN score at waves 3, 5

and 7 (NAPLAN _ zijk) was generated from a LMM

as shown below:

NAPLAN zijk ¼ β0 þ β1�depressionij k − 1ð Þ

þ β2�waveijk þ β3�ageij1
þ β4� sexij ¼ 1

� �

þ β5�NAPLAN zij1

þ
X

4

a¼1

β6;a�I SESij1 ¼ a
� �

þ α0i

þ α0ij þ εijk ð4Þ

where εijk, α0i and α0ij are iid as εijk � N ð0; σ21Þ α0i � N

ð0; σ23Þ; and α0ij � Nð0; σ22) respectively.

vii. Finally, child’s behavioural problems at waves 2, 4

and 6 (SDQijk), which is not included in the analysis

but will be included in the imputation model as an

auxiliary variable to improve its performance [42],

was generated using a LMM conditional on

depression symptoms at waves 2, 4 and 6 and wave:

SDQijk ¼ γ0 þ γ1�depressionijk þþγ2�waveijk
þ ν0i þ ν0ij þ ϵijk ð5Þ

where ϵijk, ν0i and ν0ij are iid as; ϵijk � N ð0; σ2ϵÞ ν0i � Nð

0; σ2v3Þ; and ν0ij � Nð0; σ2
v2
) respectively.

Steps i-vii above were replicated 1000 times. This

number was selected to limit the Monte Carlo standard

error related to the coverage, which with 1000 replica-

tions will be approximately 0.7% [43].

In order to compare the performance of the MI ap-

proaches under different degrees of correlation at the

two levels, we considered two different intra-cluster cor-

relation (ICC) values at level 3 (high = 0.15 and low =

0.05) and at level 2 (high = 0.5 and low = 0.2). This re-

sulted in four simulation scenarios corresponding to four

pairs of ICC values: High-High, High-Low, Low-High

and Low-Low. These ICC values were chosen based on

the estimated ICC values in the CATS (level-2 ICC = 0.5

and level-3 ICC = 0.07) and the literature (an ICC of

0.05 is common in cluster randomized trials [44] and

larger ICC values such as 0.2 are seen in repeated mea-

sures designs [6, 45]). Under each of the ICC combina-

tions, the respective variance components at levels 1, 2

and 3 in the final population data generating model (Eq.

4) were obtained by equating the total variance across all

the three levels to unity (i.e. σ21 þ σ22 þ σ23 ¼ 1Þ (see

Additional file 1: Table S2).

Generation of missing data

We set data to missing in depressive symptom scores at

waves 2, 4 and 6 (the exposure of interest). Specifically,

to mimic the missing data proportions observed in the

CATS, 10, 15 and 20% of the depression symptom

scores at waves 2, 4 and 6, respectively, were set to miss-

ing. To evaluate the approaches under a more extreme

example, in a second scenario we set 20, 30 and 40% of

the depressive symptom measures at waves 2, 4 and 6 to

missing.

We set depressive symptoms to be missing completely

at random (MCAR) and according to two missing at

random (MAR) mechanisms: MAR-CATS and MAR-

inflated. Under the MCAR mechanism, the desired pro-

portion of depression symptom scores at each wave was

set to be missing using simple random sampling. Under

the MAR mechanisms, depression symptom scores at

each wave were set to be missing according to a logistic

regression model dependent on the standardized NAPL

AN scores at the subsequent wave and the SDQ measure

at the concurrent wave:
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logitðPðR depressionijk ¼ 1ÞÞ

¼ ζ0k þ ζ1�NAPLAN zijðkþ1Þ þ ζ2�SDQijk

ð6Þ

where, R _ depressionijk is an indicator variable which

takes the value 0 if depressionijk is missing and 1 if

depressionijk is observed.

For the MAR-CATS scenario we used the associations

between the probability of response and the predictors

of response observed in the CATS. For the MAR-

inflated scenario we doubled the values of ζ1 and ζ2. The

values of the intercepts ζ0k were chosen by iteration so

that the required proportions of missingness were

achieved for each of the waves (2, 4 and 6). The values

of the parameters ζ1 and ζ2, and the corresponding odds

ratios for each of the two MAR scenarios are shown in

the Additional file 1: Table S3.

MI methods and evaluation

For the 24 scenarios considered (2 cluster sizes × 4 ICC

combinations × 3 missingness mechanisms), we applied

the following 8 MI approaches: JM-1L-DI-wide, FCS-

1L-DI-wide, JM-2L-wide, FCS-2L-wide, JM-2L-DI,

FCS-2L-DI, FCS-3L in Blimp and FCS-3L in ml.lmer to

impute missing values in depressive symptom scores at

waves 2, 4 and 6 in each of the simulated data sets.

Except for FCS-3L in Blimp, all the other approaches

were implemented in R version 3.5.0 [46]. For the FCS-

3L in Blimp we used the Blimp beta version 1.1 [26]. For

the JM approaches, JM-1L-DI-wde, JM-2L-wide, JM-

2L-DI, the R package ‘jomo’ was used while for the FCS

approaches, FCS-1L-DI-wide, FCS-2L-wide, FCS-2L-

DI, the R package ‘mice’ was used. Specifically for the

single-level JM approach, the function jomo1con in the

‘jomo’ package was used while for the single-level FCS

approach, the function norm in the ‘mice’ package was

used. For the two-level JM approaches the function

jomo1rancon in the ‘jomo’ package was used and for the

two-level FCS approaches the function 2 l.pan in the

‘mice’ package was used. While there are several alterna-

tive functions in R for specifying a two-level FCS imput-

ation model, we chose the above because they have been

shown to perform well for handling incomplete longitu-

dinal data in previous simulation studies [47]. Although

the FCS-3L implementations in Blimp and ml.lmer both

impute missing values using three-level LMMs as the

imputation model, in FCS-3L in ml.lmer the three-level

model is fitted using maximum likelihood, while in

Blimp a fully Bayesian approach is used. In addition, the

FCS-3L implementation in ml.lmer can also handle non-

hierarchical cross-classified data. For regression coeffi-

cients and the variance parameters in the imputation

model for FCS-3L in Blimp, we used the default priors

specified in Blimp [26].

In addition to all the variables in the analysis model,

the imputation model for each of the 8 MI approaches

also included child behaviour problems (reported by

SDQ) at waves 2, 4 and 6 as auxiliary variables. For each

simulated dataset, 20 imputations were generated for

each of the MI approaches [5]. After examining trace

plots, the JM MI approaches were run after a burn-in of

1000 iterations with 100 between-imputation iterations,

and the FCS MI approaches in R a burn-in of 10 itera-

tions. The FCS approach in Blimp were run after a

burn-in of 1000 iterations with 100 thinning iterations,

as with 1000 iterations the potential scale reduction

(PSR) factor values were less than 1.10 which according

to the Blimp user guide (version 1.1) is generally accept-

able [30].

The target analysis model (Eq. 1) was then fitted to

each of the imputed data sets and the estimates were

pooled across the imputed datasets using Rubin’s rules

[5, 48]. The parameters of interest were the regression

coefficient for depressive symptoms (β1), and the esti-

mates of the variance components at levels 1, 2 and 3 (

σ21; σ
2
2; σ

2
3 respectively). We also conducted an available

case analysis (ACA) where waves of an individual with

missing values were excluded from the analysis.

The estimates of β1; σ
2
1; σ

2
2 and σ23 from the ap-

proaches were compared to the true values of these pa-

rameters that were used to simulate the data. In order to

compare the performance of the various approaches for

estimating the regression coefficient of interest we calcu-

lated the bias, the average difference between the true

value and the estimates across 1000 replications; the em-

pirical standard error, the average standard deviation of

the estimates from 1000 replications; the model-based

standard error, the average of the standard error of the

estimates across 1000 replications; and the coverage

probability, estimated by the proportion of replications

where the estimated 95% confidence interval contained

the true value [49]. For the variance component esti-

mates, we report the bias and empirical standard error.

We also report the percentage bias which is defined as

the bias relative to the true value as a percentage.

Results
Simulation study

The comparative performance of the MI approaches

were very similar for the MCAR, MAR-CATS and

MAR-inflated scenarios so we focus on the results from

the MAR-CATS scenario.

The sampling distributions of the estimated bias of the

regression coefficient of interest (β1) across the 1000

replications for each analysis approach for different sce-

narios are displayed in Fig. 1. As expected, we observed

large bias (> 10% relative bias), slightly larger standard
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errors than with the MI approaches and severe under-

coverage (< 0.90) for ACA across all ICC combinations

and missing data proportions, all of which increased

with lower ICC values and higher missing data propor-

tions. While all the MI approaches showed minimal

biases, there were slightly higher biases for FCS-3L in

ml.lmer when the ICC at level 2 was high and with JM-

2L-DI, FCS-2L-DI, and FCS-3L in Blimp when the ICC

at level 2 was low. These biases were more prominent in

the MAR-inflated scenario with higher missing data pro-

portions (Table S6). All the MI approaches resulted in

comparable empirical and model-based standard errors

with coverage probabilities close to the nominal level

(Fig. 2 and Table S5).

Figure 3 shows the estimated biases for the variance

components at level 1, 2 and 3 across different simu-

lation scenarios. All approaches resulted in similar

negligible bias (< 10% relative bias) for the variance

components at level 1, 2 and 3 across the different

simulation scenarios. For all MI approaches there were

slightly larger biases for the level 3 variance estimates

when there was a high ICC at level 3, but level 1 and

2 variance estimates were unbiased across the different

ICC combinations and missing data proportions. The

ACA approach produced slightly larger bias in the

level 2 variance whenever the ICC at level 2 was high,

and for the level 1 variance when the ICC at level 2

was low.

The performance of the approaches was similar with

variable cluster sizes (results available on request) except

when the data were MCAR, where there was slightly

higher albeit still minimal bias for FCS-2L-DI,FCS-3L in

ml.lmer and FCS-3L in blimp for some scenarios with

high missing data proportions.

Fig. 1 Distribution of the bias in the estimated regression coefficient of interest (β1, true value= − 0.025) across the 1000 simulated datasets for available case

analysis (ACA) and the 8 multiple imputation (MI) approaches under two scenarios for missing data proportions at waves 2, 4 and 6 (10%, 15%, 20% and 20%,

30%, 40%, respectively) and four ICC combinations when data are missing at random (MAR-CATS). The lower and upper margins of the boxes represent the

25th (Q1) and the 75th (Q3) percentiles of the distribution respectively. The whiskers extend to Q1–1.5*(Q3- Q1) at the bottom and Q3+ 1.5*(Q3- Q1) at the

top. The following abbreviations are used to denote different MI methods, e.g., DI: dummy indicators, FCS: fully conditional specification, JM: joint modelling
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Application to the CATS data

The MI approaches evaluated in the simulation study

were also applied to the CATS data to provide an empir-

ical comparison and these resultes are shown in Table 3.

Consistent with the simulation results, the regression co-

efficient estimates and the standard errors were very

similar irrespective of the method of analysis, with

slightly more variability in the variance component esti-

mates, especially with FCS-3L in ml.lmer where we ob-

served a considerably smaller estimate for the level 3

variance component. All the approaches suggest that an

increase in the depressive symptom score is associated

with a small decrease in the standardized NAPLAN nu-

meracy score at the subsequent wave. Of note it was not

possible to apply FCS-2L-DI for the CATS due to sparse

data. The estimated regression coefficients (and standard

errors) of the adjusting covariates were also quite similar

under the different MI approaches evaluated, and these

are shown in the Additional file 1: Table S13.

Discussion
While implementations of several MI approaches for im-

puting single- and two-level data are available in main-

stream statistical software, there are limited options for

imputing incomplete three-level data using three-level

imputation models. Further, these approaches have not

been compared with the pragmatic DI/wide adaptations

of the more readily available approaches designed for

imputing single- and two-level data presented here. We

report a comparison of all these approaches using simu-

lations and a real-data example based on the CATS. All

of the MI approaches considered resulted in approxi-

mately unbiased estimates for the coefficient of the ex-

posure with confidence intervals achieving nominal

Fig. 2 Empirical standard errors (filled circles with error bars showing ±1.96× Monte Carlo standard errors) and average model-based standard

errors (hollow circles) from 1000 simulated datasets, for available case analysis (ACA) and the 8 multiple imputation (MI) approaches under two

scenarios for missing data proportions at waves 2,4 and 6 (10%, 15%, 20% and 20%, 30%, 40%, respectively) and four ICC combinations when

data are missing at random (MAR-CATS). The following abbreviations are used to denote different MI methods, e.g., DI: dummy indicators, FCS:

fully conditional specification, JM: joint modelling
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coverage across the different ICC combinations and

missing data proportions considered in our study. We

found similar comparable performance of these ap-

proaches in our case study as well. Simulations also

showed that, when the cluster sizes varied, FCS-2L-DI,

FCS-3L in ml.lmer, and FCS-3L in Blimp showed

slightly higher biases in the setting with a high propor-

tion of missing data than the other approaches. This

suggests that the multilevel FCS approaches could be

more sensitive to sparse data resulting from small cluster

sizes and missing data than the JM approaches. As ex-

pected, severe biases and under-coverage were observed

for ACA when data were MAR, with slight gains in pre-

cision for all MI approaches compared to ACA [50]. We

observed very little bias for the estimates of the variance

components for all the approaches, including ACA,

under all simulation scenarios. Our finding that the per-

formance of the single-level approaches JM-1L-DI-wide,

FCS-1L-DI-wide was similar to the approaches using

three-level imputation models is highly relevant for

practice since the commonly used statistical packages

Stata and SPSS often used by researchers do not have

MI approaches based on multilevel imputation models

[18].

The advantage of three-level MI approaches over the

pragmatic adaptations of single- and two-level ap-

proaches is that they have much lower computational

time. In practice as only several imputations are required

(generally less than 100) [51], we do not consider this to

be a substantial practical limitation. The findings from

our study are important as FCS-3L in ml.lmer is a very

recent command that can be challenging to implement

due to limited documentation (however, see [52] for a

demonstration of its functionality), and FCS-3L in Blimp

is a standalone package. However, the single-level and

two-level approaches with DI and repeated measures im-

puted in wide format may incur convergence issues of

the imputation model when there are a large number of

Fig. 3 Estimated bias in the variance components at level 1, 2 and 3 across the 1000 simulated datasets available case analysis (ACA) and the 8

multiple imputation (MI) approaches under two scenarios for missing data proportions at waves 2, 4 and 6 (10%, 15%, 20% and 20%, 30%, 40%,

respectively) and four ICC combinations when data are missing at random (MAR-CATS). The following abbreviations are used to denote different

MI methods, e.g., DI: dummy indicators, FCS: fully conditional specification, JM: joint modelling
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clusters and/or a large number of incomplete repeated

measures, as with FCS-2L-DI in our case study. In

addition, the methods which impute repeated measures

in wide format (JM-1L-DI-wide, FCS-1L-DI-wide, JM-

2L-wide, and FCS-2L-wide) for the repeated measures

cannot be applied with repeated measures that are not

recorded at fixed intervals of time. Previous simulation

studies have shown that the DI approach can result in

inflated standard errors and biased variance components

estimates (and therefore ICCs) particularly when the

ICC is low and there are small cluster sizes [12, 18, 40].

Given all of these findings, it is suggested that DI ap-

proaches be used with caution.

In the single-level context where all variables are con-

tinuous and approximately normally distributed, JM and

FCS approaches have been shown to be equivalent [53,

54]. However in the multilevel context, even with nor-

mally distributed variables, this is not necessarily true

[10]. The multilevel JM approach by Schafer and Yucel

(2002), as implemented in R, is slightly different from

the standard multilevel FCS implementation in R as ori-

ginally proposed by van Buuren (2011), because it allows

associations between incomplete variables to vary at dif-

ferent levels [10]. The standard multilevel FCS approach

can be made equivalent to the multilevel JM approach

by including arithmetic means of the imputed variables

as cluster means in the imputation model [9]. However,

in including the cluster means this way, the FCS ap-

proaches assume that the cluster sizes are equal and it is

argued that for the FCS approaches to be formally

equivalent to the JM approaches in the multilevel con-

text, the cluster sizes should also be equal [9, 31] (Note:

the new Blimp version 2.2 also has an additional alterna-

tive approach- “latent” approach, for incorporating the

group means which do not assume equal cluster sizes)

[55]. While these differences between the multilevel JM

and FCS could be important in the context of compli-

cated multilevel analyses that assume different associa-

tions between variables at different levels, the

substantive analysis model considered in the current

manuscript does not assume such relations. Therefore as

these differences are not largely relevant in the context

of our example we do not discuss these differences in

more detail. For a detailed discussion of the formal dif-

ferences between the JM and FCS approaches in the

multilevel context, see Carpenter and Kenward (2013),

Enders et al. (2016) and Mistler (2017) [9, 10, 56].

No study to date has compared all of the available MI

approaches in a three-level data setting. However, our

results are consistent with those from similar studies

conducted in a two-level setting. In particular, Huque

et al. (2018) and Huque et al.(2019) showed that the

single-level JM and FCS approaches which impute the

repeated measures in wide format to account for the

clustering of repeated measures (labelled JM-mvni and

FCS-standard in their study) performed well compared

to several generalized linear mixed model (GLMM)

based approaches for handling incomplete longitudinal

data [47, 57]. Our results are also consistent with the

simulations result of Enders et al. (2017), who showed

that the two-level MI application in Blimp resulted in re-

gression coefficients with negligible bias even in small

samples with large proportions of missing data and min-

imal bias for the variance component estimates for a

random intercept model [30]. Several studies that have

assessed the DI approach to impute two-level data found

that with missing values in predictors, the DI approach

produces reliable estimates of the regression coefficients

while the estimates of variance components can be

biased, especially when the ICC is low coupled with very

high missing data rates and small cluster sizes [12, 13,

18, 34, 40]. Consistent with these findings, we observed

that with low ICC at level 2, the variance components at

level 2 for the JM-2L-DI and FCS-2L-DI were slightly

more biased than with the other MI approaches.

It is always difficult to draw conclusions from a single

simulation study, but the fact that our simulations were

based on a real study allowed us to incorporate complex

yet realistic associations, meaning that the findings re-

flect what could be expected in settings with a similar

clustering structure. We limited our simulations to a

random-intercept analysis model with missing data at

level 1 only for brevity. However, caution should be

taken when generalizing these results to more complex

analysis models, for example multilevel analysis models

with random slopes and/or interaction terms. It would

be interesting to compare the possible approaches in the

context of a random slope model because it is likely that

the performance of these approaches are quite different

[57]. With random slopes, the single- and two-level im-

putation models with extensions, particularly those

which use DIs, might lead to biased estimates and can

often be infeasible with a large number of clusters [58].

In addition, if explanatory variables with random slopes

or interaction effects are incomplete, MI as implemented

in standard software (the “reversed” imputation strategy)

may no longer be valid [31]. Recently introduced

substantive-model-compatible (also referred to as

model-based) MI approaches could be a potential solu-

tion for this problem but is beyond the scope of this

paper [8, 59, 60].

An alternative JM approach for imputing multilevel

data was described by Asparouhav and Muthén (2010).

Similar to the JM approach by Schafer and Yucel (2002),

this approach also uses a joint MLMM for imputing in-

complete variables but treats all variables, complete and

incomplete, as outcomes in the imputation model [61].

This approach is slightly less restrictive than the JM
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approach by Schafer and Yucel (2002) as it allows associ-

ations between all variables to vary at different levels,

and as a result can be congenial with more complicated

multilevel analysis models that assume different associa-

tions between variables (both complete and incomplete)

at different levels [7, 56]. We did not include this ap-

proach in our study as our substantive analysis model

did not assume such associations. Another variation of

the JM approach which can be used to impute multi-

level data is the sequential parameterization of the joint

model. Although more flexible than the commonly im-

plemented JM approach, the specification of separate

conditional models for each incomplete variable requires

more consideration by the researcher than the JM ap-

proach [17]. Also, while there is a recent implementation

of this approach that can handle two-level data, we are

not aware of any implementations of this approach that

can handle three-level data [59]. Although it would be

possible to accommodate three-level data using this ap-

proach using wide/DI adaptation due to the complexity

of this approach this is less appealing than the ap-

proaches considered here.

While our study focused on the setting with repeated

measures clustered within individuals who are in turn

clustered within large groups, the pragmatic methods

suggested in our study may be adapted to more general

three-level settings. However evaluation of the perform-

ance of these adaptations compared to the three-level

imputation models in a more general context is still an

area for future work. For example, an extension to our

study could be to explore the performance of these MI

approaches with more complex analysis models or where

there are missing data at level 2 (time-fixed variables)

and level 3 (cluster-specific variables). In our simulation

study missingness was imposed in a continuous variable.

Therefore, another extension would be to assess the per-

formance of the MI approaches for imputing mixtures of

categorical and continuous variables as the different ap-

proaches impute incomplete categorical variables in dif-

ferent ways [62]. Finally, our simulations considered

only MCAR and MAR missingness mechanisms and the

MI methods evaluated in our simulations are only guar-

anteed to produce unbiased estimates under MAR. In

practice it is possible that the data are missing not at

random (MNAR), although this does not preclude un-

biased estimation from the approaches considered [63].

Future research should examine the performance of

these methods under MNAR mechanisms.

Despite the limitations of this manuscript discussed

above, our study is the first to provide a much needed

comparison of the currently available approaches for im-

puting incomplete longitudinal data that are nested

within clusters which has important implications for the

practical researcher.

Conclusion
In conclusion, the findings from our study indicate that

both single-and two-level MI approaches can be ex-

tended with DIs and/or imputing repeated measures in

wide format to adequately handle incomplete three-level

data, performing as well as the MI approaches using

three-level imputation models. Therefore in practice, re-

searchers may choose an appropriate method based on

the substantive analysis model, computational time and

software preference. However, approaches which use the

DI extension should be used with caution as it has been

shown to produce biased parameter estimates in certain

scenarios. In the presence of longitudinal data measured

at irregular time intervals, researchers may have no

other choice than the three-level imputation approaches.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.

1186/s12874-020-01079-8.

Additional file 1: Table S1, S2 and S3. contains the parameter values

used in the data generating and missing data generation models of the

simulation study. Table S4, S5 and S6 contains the values of

performance measures, for available case analysis (ACA) and 8 multiple

imputation (MI) approaches for estimating the regression coefficient of

depressive symptom scores at the previous wave, under the three

missing data mechanisms missing completely at random (MCAR), missing

at random similar to CATS (MAR-CATS) and inflated missing at random

(MAR-inflated) respectively. Table S7 and S8. contains the values of

performance measures, for ACA and 8 multiple imputation (MI)

approaches in estimating the variance components at level 3, 2 and 1,

when data are missing completely at random (MCAR) with low (10, 15

and 20% across waves 2, 4 and 6 respectively) and high (20, 30 and 40%

across waves 2, 4 and 6 respectively missing data percentages across

waves respectively. Table S9 and S10. contains the values of

performance measures, for ACA and 8 multiple imputation (MI)

approaches in estimating the variance components at level 3, 2 and 1,

when data missing at random (MAR-CATS) with low (10, 15 and 20%

across waves 2, 4 and 6 respectively) and high (20, 30 and 40% across

waves 2, 4 and 6 respectively missing data percentages across waves

respectively. Table S11 and S12. contains the values of performance

measures, for ACA and 8 multiple imputation (MI) approaches in

estimating the variance components at level 3, 2 and 1, when data are

missing at random (MAR-inflated) with low (10, 15 and 20% across waves

2, 4 and 6 respectively) and high (20, 30 and 40% across waves 2, 4 and

6 respectively missing data percentages respectively. Table S13. contains

the estimated regression coefficients (and standard errors) for the

adjusting covariates, from available case analysis (ACA) and 8 MI

approaches applied to the CATS data analysis. Fig. S1 and S2. shows

the distribution of the bias in the estimated regression coefficient of

interest across the 1000 replications for available case analysis (ACA) and

the 8 multiple imputation (MI) approaches under two scenarios for

missing data proportions at waves 2, 4 and 6 (10, 15, 20 and 20%, 30,

40%, respectively) and four ICC combinations when data are missing

completely at random (MCAR) and missing at random (MAR-inflated)

respectively. Fig. S3 and S4. shows the empirical standard errors (filled

circles with error bars showing ±1.96× Monte Carlo standard errors) and

average model-based standard errors (hollow circles) from 1000 replica-

tions, for available case analysis (ACA) and the 8 multiple imputation (MI)

approaches under two scenarios for missing data proportions at waves

2,4 and 6 (10, 15, 20 and 20%, 30, 40%, respectively) and four ICC combi-

nations when data are missing completely at random (MCAR) and miss-

ing at random (MAR-inflated) respectively. Fig. S5 and S6. shows the

estimated bias in the variance components at level 1, 2 and 3 across the

1000 replications available case analysis (ACA) and the 8 multiple
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imputation (MI) approaches under two scenarios for missing data propor-

tions at waves 2, 4 and 6 (10, 15, 20 and 20%, 30, 40%, respectively) and

four ICC combinations when data are missing completely at random

(MCAR) and missing at random (MAR-inflated) respectively.

Additional file 2. R syntax for the CATS data illustration
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