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Abstract

Previous work from our laboratory provided a “proof of concept” for use of artificial neural networks (nnets) to

estimate metabolic equivalents (METs) and identify activity type from accelerometer data (Staudenmayer J, Pober

D, Crouter S, Bassett D, Freedson P, J Appl Physiol 107: 1330–1307, 2009). The purpose of this study was to

develop new nnets based on a larger, more diverse, training data set and apply these nnet prediction models to an

independent sample to evaluate the robustness and flexibility of this machine-learning modeling technique. The nnet

training data set (University of Massachusetts) included 277 participants who each completed 11 activities. The

independent validation sample (n = 65) (University of Tennessee) completed one of three activity routines.

Criterion measures were 1) measured METs assessed using open-circuit indirect calorimetry; and 2) observed

activity to identify activity type. The nnet input variables included five accelerometer count distribution features and

the lag-1 autocorrelation. The bias and root mean square errors for the nnet MET trained on University of

Massachusetts and applied to University of Tennessee were +0.32 and 1.90 METs, respectively. Seventy-seven

percent of the activities were correctly classified as sedentary/light, moderate, or vigorous intensity. For activity

type, household and locomotion activities were correctly classified by the nnet activity type 98.1 and 89.5% of the

time, respectively, and sport was correctly classified 23.7% of the time. Use of this machine-learning technique

operates reasonably well when applied to an independent sample. We propose the creation of an open-access

activity dictionary, including accelerometer data from a broad array of activities, leading to further improvements in

prediction accuracy for METs, activity intensity, and activity type.

Keywords: wearable activity monitors, intelligent prediction models

ACCELEROMET ER SENSORS ARE popular tools to estimate physical activity (PA) behavior. The devices are easy to

use and impose nominal subject and researcher burden. These sensors provide objective estimates about PA

features, such as point estimates of energy expenditure (EE) and categorically defined activity intensity levels.

Despite their popularity, the traditional regression methods used to translate accelerometer output to estimates of

EE or time spent in different activity intensity levels remain problematic. For example, traditional regression

approaches are not accurate across a range of activity types and intensities (3, 7, 14, 22), and, although they often

produce relatively small or nonsignificant mean differences between estimated and actual EE, the individual

estimation errors are often substantial (4, 15). Recent advances in motion sensor technology permit
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Data collection.

University of Massachusetts study protocol.

accelerometers to capture and store more detailed information than originally possible, leading several groups to

explore more advanced data processing methods, such as hidden Markov models (HMM) (18), decision trees

(3), cross-sectional time series (5), multivariate adaptive regression splines (5), and artificial neural networks (nnet)

(21, 23).

HMMs, decision trees, and nnets are adaptive machine-learning systems capable of “learning” the shape of

complex data. When applied to accelerometer output, these machine-learning methods do not assume a simple

parametric relationship (e.g., linear, exponential, cubic) between accelerometer counts and EE. This inherent

flexibility allows such techniques to use more information from the acceleration signal than the counts per minute

used in the traditional regression approaches. These two factors suggest machine-learning approaches will improve

estimates of accelerometer-based PA metrics across a range of activity types and intensities when applied to large,

diverse samples. These methods also allow us to identify activity type which is not possible with simple regression

methods. A review of several different machine-learning activity classification methods and algorithms can be

found in a review by Preece and colleagues (19).

Our group and others previously reported success in applying HMMs to identify specific modes of activity (6, 13,

18). The HMM method is relatively complex and relies on custom software that may be a barrier for many applied

researchers. Our group (23) and de Vries et al. (8) have used nnet models to successfully identify different activity

types (23) and specific activities (8). Rothney et al. (21) developed nnet-using raw acceleration input features that

improve EE estimates compared with traditional regression techniques. This approach is promising, but, at present,

it requires expensive analytic software (Matlab, Mathworks, Cambridge, MA) and a very complex multiple

accelerometer system (Intelligent Device for EE and Activity, MiniSun LLC, Fresno, CA). Thus its application to

free-living environments and large-scale epidemiological studies remains impractical. De Vries et al. (8) used nnet

models from one or two Actigraph accelerometers positioned on the hip and wrist to successfully identify activity

type. However, their nnets do not predict EE, which is of interest to the research community.

Our group recently published a proof-of-concept paper for two nnets using the Actigraph 7164. One nnet

estimated metabolic equivalents (METs), and another nnet identified activity type (22). Our model improved MET

estimates compared with three traditional regression approaches (7, 9, 24) and successfully differentiated activity

type into four general categories (sedentary, locomotion, lifestyle, or vigorous sport). Unique features of our nnet

prediction models are that we used a single hip-mounted accelerometer (ActiGraph 7164; ActiGraph, Pensacola,

FL) and the open-source computing language and statistics package R (20) to process the data. The ActiGraph is

a commonly used activity monitor in the field, and R is a free statistics package, making this model readily

accessible to applied researchers without requiring expensive monitors or skills in advanced statistical methods.

Our methodology established that advanced data processing techniques (artificial nnets) improved accelerometry-

based PA measurement without compromising the capacity of applied researchers to implement these tools in the

field. However, our original paper was limited in that the nnets were validated on the same sample (n = 48) in

which the models were developed (using cross-validation), and we used an ActiGraph accelerometer model

(ActiGraph 7164) that is no longer available and is known to produce different output than more recent

accelerometer hardware upgrades (e.g., ActiGraph GT1M) (10). Thus the purpose of this study was to evaluate

the robustness and flexibility of the nnet method for processing GT1M accelerometer data to estimate activity

METs and activity type on an independent sample.

METHODS

At both sites, participants read and signed an informed consent document that was approved by

the Institutional Review Boards at the respective universities. Participants completed a health history questionnaire

to ensure eligibility criteria were met.

The study sample at the University of Massachusetts (UMass)
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University of Tennessee study protocol.

included 277 participants. The sample was 50.2% women and 17% minorities. The average age was (mean ±

SD) 38 ± 12.4 yr, and average body mass index (BMI) was 24.6 ± 4.01 kg/m .

On the day of the testing, participants reported to the laboratory in a 4-h fasted state, having not consumed

caffeine nor participated in exercise for the previous 4 h. Participants completed 11 out of 23 activities (each

activity was performed for 7 min continuously with a 4-min rest period between activities) that were divided into

two sections: treadmill activities and sport/activities of daily living (ADL). Between each activity section,

participants rested for 15 min to avoid the possibility of the physiological responses elicited by prior activity

influencing the responses of the subsequent activity bout. Furthermore, the order of presentation of the activity

bouts was balanced across subjects.

The treadmill section consisted of six conditions: three speeds (1.34, 1.56, 2.23 m/s) performed at 0% and 3%

grade. The ADL portion included five self-paced ADLs with each activity being performed for 7 min continuously.

All participants ascended and descended stairs and moved a 6.0-kg box from a shelf to the floor 8 m away. The

additional two ADLs were randomly selected from a menu of common household activities and sport activities

using a blocked randomized design to ensure activities were completed equally among age and sex groups. There

were 14 possible household and sport activities, including sweeping, mopping, gardening, trimming, mowing,

raking, dusting, laundry, vacuuming, washing dishes, painting, tennis (with a partner), and basketball. A detailed

description of the activities and study protocol has been published elsewhere (11).

Oxygen consumption during activities was measured using a portable metabolic system (Oxycon Mobile, Cardinal

Health, Yorba Linda, CA). This portable device is a battery-operated, wireless unit that measures breath-by-

breath gas exchange. It was secured to the body using a vest similar to a backpack (950 g). A face mask (Hans

Rudolf, Kansas City, MO) was connected to the flow sensor unit, which measured samples of expired air using a

microfuel O  sensor and a thermal conductivity CO  sensor. Immediately before data collection, and during the

break between protocol sections, a two-point (0.2 and 2.0 l/s) air flow calibration was performed using the

automatic flow calibrator, and the gas analyzers were calibrated using a certified gas mixture of 16% O  and

4.01% CO . The system has been shown to be valid for measurement of respiratory gas exchange during exercise

(17).

The validation sample was from the University of Tennessee (UTenn; n

= 65; 58% women and 38.2% minorities). Of the 68 participants who completed the protocol, data from 65

participants were included in the analysis. Three participants were excluded due to technical problems in

synchronizing the metabolic and accelerometer data. There were 18 different activities in the testing protocol.

The average age of the sample was (mean ± SD) 40.1 ± 13.0 yr, and average BMI was 27.1 ± 5.61 kg/m . Age

in the UTenn sample was not significantly different from that of the UMass sample (P = 0.6064), and BMI was

significantly higher than the mean of 24.6 kg/m  in the UMass sample (P = 0.005). Testing occurred on campus or

at the participant's or investigator's home. Participants performed one of three routines, each of which included six

different physical activities. For all routines, each activity was performed for 10 min, with a 3- to 5-min break

between activities.

For routine 1 (n = 25), participants did laundry, including gathering clothes, loading the machines, folding clothes,

and putting clothes away. They also ironed, did light cleaning, and aerobics. For routine 2 (n = 22), participants

drove through a residential neighborhood, played Frisbee golf, trimmed grass using an electric trimmer, gardened,

and moved dirt with a wheelbarrow. Participants also walked with a 6.8-kg box in their arms, set it down, picked

it up, and carried it to another location. For routine 3 (n = 18), participants played singles tennis and completed

self-paced walking and running activities. Distance was recorded to determine speed for each subject in these

activities. Participants walked and ran on a track and a road course that included sidewalks, crosswalks, and a

slightly hilly terrain. Participants also performed a self-paced walk carrying a 6.8-kg over-the-shoulder laptop

computer case. The mean (SD) speeds for the road and track walks were 1.49 (0.18) and 1.52 (0.19) m/s, 2.70
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Nnet training and development.

(0.54) and 2.73 (0.62) m/s for the road and track runs, and 1.43 (0.17) m/s for the walk carrying the computer

bag.

The criterion method for measuring oxygen consumption was the CosmedK4b  (Cosmed, Rome, Italy) portable

metabolic system. The Cosmed K4b  is a breath-by-breath gas analysis system consisting of a face mask,

analyzer unit, and battery. Before testing each subject, the unit was warmed up for 45–60 min and then calibrated

according to the manufacturer's instructions. Calibration of instrument included four parts: room air calibration,

reference gas calibration (16.03% O  and 3.98% CO ), turbine flow-meter calibration with a 3.0-liter syringe

(Hans-Rudolph), and CO /O  analyzer delay calibration with the participant wearing the face mask. To reduce

analyzer drift caused by extreme temperatures, the outdoor routines were not performed when the temperature

was below 50°F (10°C) (7).

At both UMass and UTenn, the ActiGraph GT1M (ActiGraph, Pensacola, FL) accelerometer was used. The

device is a small (3.8 × 3.7 × 1.8 cm), light-weight (27 g), uniaxial accelerometer. Detailed specifications of the

monitor are published elsewhere (1). Each participant wore an ActiGraph GT1M initialized to collect data in 1-s

epochs and secured on the anterior superior iliac spine along the anterior axillary line on the nondominant hip.

For both the development (UMass) and validation data sets (UTenn), we used

the identical data cleaning methods, as described by Staudenmayer et al. (23). Data points where the coefficient of

variation of the counts was greater than 90% different than the mean coefficient of variation for a given activity

were eliminated from the final data sets. We removed 16 of 2,745 (0.60%) subject/activity combinations for the

development group data set (UMass) and 3 of 368 (0.80%) subject/activity combinations for the validation group

(UTenn). The accelerometer count features used to develop the nnets were those used in Staudenmayer et al. (23)

and included variables representing the signal distribution (10th, 25th, 50th, 75th, and 90th percentiles of the

second-by-second accelerometer counts) and the temporal dynamics (lag-1 autocorrelation). Each subject

contributed one set of features for each activity, and those features were calculated from the second-by-second

accelerometer counts, excluding the first 2 min and last 10 s of accelerometer data. Each subject performed each

activity for 7 min in the UMass study and 10 min in the UTenn study. The METs for each unique subject and

activity combination in each study were calculated using the mean measured O2 uptake (ml·kg ·min ) divided

by 3.5 ml·kg ·min , excluding the first 2 min and last 10 s of measurements. As in Ref. 23, we did not find the

inclusion of subject-specific characteristics, such as age, sex, height, weight, or body mass index, to improve the

performance of the model.

We developed two nnets: 1) a prediction of METs (nnetMET) and 2) a prediction of activity type (nnetACT). We

used the same nnet technical specifications as Ref. 23. Briefly, nnetMET was fit to minimize the penalized squared

difference between the criterion MET values and the model's predictions. The penalization was done to avoid

overfitting, and the penalty value was chosen through cross-validation. The nnetACT was fit to minimize the

penalized negative logistic likelihood, and the penalty value was again chosen through cross-validation. In the main

analyses, we examined the accuracy and precision of the nnetMET trained on UMass data by computing the bias

(mean difference between prediction and criterion measure) and root mean squared error (RMSE; square root of

the mean of the squared differences between the prediction and the criterion measure) of the predictions for the

UTenn data. We also compared the nnetMET prediction bias and RMSE to the bias and RMSE for the Crouter

et al. (7) and Freedson et al. (9) regression equations applied to the UTenn data. The Crouter et al. (7) model

development was performed with data that were not part of the UTenn validation data set. We examined activity

intensity classification accuracy by comparing the actual intensity classification from the measured METs to those

predicted from the nnetMET and Crouter et al. (7) and Freedson et al. (9) equations. We validated activity type

categories predicted from the nnetACT trained on UMass and applied to UTenn.

RESULTS
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The mean counts per minute, the coefficient of variation for the accelerometer counts per minute, the averages of

the signal distribution input features, the lag-1 autocorrelation input feature, and the mean (SD) METs for each

activity for UMass and UTenn are shown in Table 1. The measured MET values for the individual activities

performed by the development and validation groups are presented in Table 2 (UTenn and UMass data). Notable

is that the range of mean measured METs was 1.88 (washing dishes) to 9.75 METs (treadmill, 2.23 m/s, 3%

grade) for UMass and 0.78 METs (driving) to 11.17 METs (track running) for UTenn. Additionally, for UMass,

4 activities (17%) were below 3 METs, 14 activities were between 3.1 and 6 METs, and 5 activities were above

6 METs. In contrast, for UTenn, there were 8 activities (44%) below 3 METs.

The validation of the nnetMET trained on UMass is shown in Fig. 1 (validated on UTenn). The bias was 0.32

METs, the RMSE was 1.90 METs, and the correlation between measured METs and the nnetMET was r =

0.78. Eight of the activities where METs were overestimated were in the light intensity range, and four activities

greater than 6 METs (vigorous) were underestimated. The bias and RMSE for the individual activities for the

nnetMET are presented in Table 2. We note that this figure suggests that a simple additive measurement error

model does not explain the relationship between the nnetMET estimates and the criterion measures. Further

exploration of measurement error models for nnetMET is outside the scope of the present work.

For comparison purposes, we applied the Freedson et al. (9) and Crouter et al. (7) regression models to UTenn

and UMass data (Table 2). For all activities combined (mean measured METs = 4.32), the biases for Freedson et

al. (9) and Crouter et al. (7) were −0.95 and 0.18 METs, respectively, when applied to the UTenn data (top of 

Table 2). The lowest mean measured METs was 1.88 for the UMass data (bottom of Table 2: washing dishes),

whereas there were three UTenn activities with mean METs below 1 (top of Table 2: driving, watching television,

and reading). We investigated whether those differences in activity intensity between UMass and UTenn influenced

the performance of the nnet by removing the three sedentary behaviors from the UTenn data and rerunning the

validation analysis. When sedentary behaviors were removed, the bias for the nnet validation was reduced from

0.32 METs to 0.10 METs and increased the nnet validation RMSE from 1.90 to 1.99 METs (Table 2, top). The

bias increased to −1.31 METs (from −0.95) for the Freedson et al. (9) equation and decreased to 0.14 METs

(from 0.18) for Crouter et al. (7) equation. The RMSEs increased to 2.26 (from 2.07) and 2.15 METs (from

1.97 METs) for the Freedson et al. (9) and Crouter et al. (7) equations, respectively.

Using UTenn, we examined the activity intensity classification accuracy for nnetMET, and the Freedson et al. (9)

and Crouter et al. (7) regression equations. Based on the measured METs, each activity was placed in an activity

intensity category (sedentary/light: less than 3 METs, moderate: 3.0–5.99 METs, and vigorous: 6.0 METs and

above). Predicted METs from the Freedson et al. (9) and Crouter et al. (7) regression equations and nnetMET

were directed to the appropriate intensity level classification. The confusion matrices illustrating these analyses are

shown in Table 3. The Freedson et al. (9) and the Crouter et al. (7) regression equations correctly classified

activity intensity 72.9 and 72.3% of the time, respectively. The nnetMET correctly classified activity intensity 77%

of the time, and the classification accuracy was relatively constant across intensity categories. The nnetMET

classification accuracy is lowest for vigorous activities (71.9%). This is largely due to aerobics, which was

classified as a vigorous activity (6.2 METs, on average), which was not included in the UMass training data, but

was in the UTenn validation data.

We validated the nnetACT to predict activity type by developing and training the model on UMass data and

applying it to UTenn data. We placed the activities into household, locomotion, and sport activity categories and

did not include the UTenn sedentary behaviors, since the UMass study did not include sedentary behaviors (see 

Table 4 for assignment of activity type). Table 5 presents a confusion matrix illustrating the percentage of activities

correctly classified. Application of the nnetACT trained on UMass to UTenn data yielded an overall correct

classification rate of 80.9% (Table 5). Correct classification occurred for over 98.1% of the household activities,

89.5% of the locomotion activities, and 23.7% of the sports activities. Sport activities were often misclassified as

household activities. Correct classification was 97.3% when we applied the nnetACT trained on UMass data to

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T3/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T4/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T5/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T5/
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the UMass data (using hold-one-out cross-validation) (Table 5). Classification accuracy for the individual activities

(UTenn data) for nnetMET, Freedson et al. (9), and Crouter et al. (7) are shown in Table 6. Activity-specific

classification accuracy ranged from 24% [frisbee golf, Crouter et al. (7) regression equation] to 100% for most of

the sedentary behaviors for all three prediction models. Household and locomotion activities were correctly

classified 95% of the time, while sport activities were correctly classified 76.3% of the time.

We also developed and cross-validated nnetMET using the hold-one-out cross-validation method. The training of

the nnetMET on UMass data and cross-validation on UMass data yielded a bias of 0 METs. In comparison, the

biases were −1.26 and −0.84 METs for Freedson et al. (9) and Crouter et al. (7), respectively (applied to UMass

data). The RMSEs were also higher for Freedson et al. (9) and Crouter et al. (7) (2.18 and 2.05 METs,

respectively) compared with the nnet (1.43 METs). An nnet was trained on a combination of the UTenn and

UMass data and evaluated with hold-one-out cross-validation. Bias and RMSE were 0.0 and 1.2 METs,

respectively.

DISCUSSION

The primary aim of this study was to advance the nnet methodology for assessing PA metrics using the GT1M

Actigraph accelerometer by 1) training the nnets on a large, diverse sample using a broad range of locomotion,

lifestyle, and sporting activities; and 2) validating the nnets on an independent sample. The nnet methodology

produced reasonably valid MET estimates, with an overall bias of 0.32 METs and RMSE of 1.90 METs,

respectively. The nnet also successfully identified activity intensity category 77% of the time and activity type

80.9% of the time. These data are novel in that they move the nnet methodology from a proof of concept (22) to a

viable and validated method for processing accelerometer data. An alternative approach for validating METs using

a decision tree prediction model was employed by Albinali et al. (3). They successfully predicted activity type

from a decision tree algorithm and then used MET values from the Compendium of Physical Activities (2) to

predict METs. For model validation, our approach and that used by Albinali et al. (3) are both viable options to

examine prediction model performance.

Our laboratory previously demonstrated the nnet methodology success in estimating METs (bias = 0.00 METs,

RMSE = 1.43 METs) and identifying activity type (88.8% correct) using a “hold-one-out” cross-validation

technique (23). The nnets were validated on a single observation from the original sample, and the remaining

observations were used for nnet training. This process was repeated such that each observation from the original

sample was used once for validation, and the results were then averaged to produce a single estimate of the

precision and accuracy of nnet model. When used in calibration studies, cross-validation provides an estimate of

how well the nnet model will generalize to an independent sample. This approach is not ideal since the validation

sample was not truly independent, and the activity protocol and research procedures were identical for the cross-

validation. Thus researchers should expect that the model will not be as successful when applied to an independent

sample that is performing different activities.

In the present study, we again demonstrate the nnets' success using cross-validation. Although a primary aim of

this paper was to validate the nnets on an independent sample, we present these ancillary results (Table 2,

bottom) to make several points. First, the measurement error reported using cross-validation in this study (bias =

0.00 METs, RMSE = 1.43 METs) is similar to previous cross-validation results (bias = 0.05 METs, RMSE =

1.22 METs) (23). This comparison is interesting because, in the present study, we used a much larger, more

diverse sample and broader range of activities to train the nnets, yet the validity remained comparable to the

smaller, less diverse sample results. Accommodation to a broad range of activities performed by a diverse

population illustrates the adaptive nature of the nnet method. This inherent flexibility is an improvement over the

traditional linear and nonlinear regression models that assume simple, rigid relationships between accelerometer

counts and EE. It has been repeatedly documented that traditional regression models do not perform well when

applied to diverse samples performing a range of activities (7, 14, 22).

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T5/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
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The second reason to present cross-validation results is for comparison to the independent sample validation. The

error reported when the nnets are cross-validated (bias = 0.00 METs, RMSE = 1.43 METs) is less than that

reported using the independent sample validation (bias = 0.32 METs, RMSE = 1.90 METs). The error range is

also narrower for the cross-validation compared with the independent sample validation, indicating the nnet

performs better for individual activities (see Table 1). These data show the discrepancies that arise when different

validation techniques are used and illustrate the need to validate PA measurement techniques with independent

samples. Independent sample validation provides a clearer picture of method robustness.

Figure 1 shows the average measured and predicted METs for each activity when the nnet was trained on UMass

and applied to UTenn. The closer an activity is to the line of identity, the better the nnet MET estimate is to the

truth. The nnet that was trained on UMass and applied to UTenn tended to overestimate METs (positive bias), but

this was not statistically significant overall (see Table 2). This is perhaps because the UTenn study included

sedentary activities, and the UMass study did not. The UMass nnet returns a MET estimate of 1.98 METs when

the counts in a minute are all zero.

In the present study, 12 activities are “different” between development and validation (track run, road run,

aerobics, 15-lb. bag walk, load/unload boxes, moving dirt, track walk, Frisbee golf, road walk, reading,

television, driving; see Table 2). The average RMSE for these activities is 2.25 METs. The average RMSE for

activities that were “similar” between UMass and UTenn (ironing, gardening, laundry, light cleaning, trimming,

tennis; see Table 2) is 1.32 METs. It is expected that the absolute errors would be larger for higher MET

activities; the activities identified as being “different” had higher measured METs (mean = 4.66 METs) than the

activities identified as being “similar” (mean = 3.64 METs). We also assessed this difference in terms of percent

RMSE (measured METs/RMSE). Using this approach, activities identified as different had a mean percent RMSE

of 70.8%, while similar activities had a mean percent RMSE of 29.4%. This supports the observation that the

error was substantially larger for activities not used in the training data set. This issue is also discussed by Albinali

et al. (3), who recommend “tuning” machine-learning algorithms to individual activities to improve the precision of

activity type identification.

In our laboratory's original study (23), we suggested the nnet improved MET estimates compared with traditional

regression approaches. This could not be conclusively confirmed, given that the nnet was cross-validated, while

the traditional regressions were being tested on an independent sample. Table 2 presents the RMSE for the nnet

method, the Freedson cut-point method (9), and the Crouter two-regression method (7), all using an independent

sample for validation. These data support that the nnet improves MET estimates compared with simple regression.

Although the improvement in RMSE was modest for the nnet in comparison to the regression models, across all

activities, the nnet had the lowest RMSE, 1.90 METs compared with 2.07 METs [Freedson et al. (9)] and 1.97

METs [Crouter et al. (7)]. Both the nnet and the Crouter et al. (7) regression method had slightly positive biases

(0.32 and 0.18 METs, respectively), indicating that they tend to overestimate METs on average, whereas the

Freedson et al. (9) regression underestimated METs on average (bias = −0.95 METs). It is not surprising the

nnetMET tended to overestimate METs, given that no sedentary behaviors were included in the training of the

nnetMET. There were three UTenn activities below 1 MET (0.79–0.86 METs), where the nnetMET produced a

substantial error (%RMSE = 149.0–196.2%). For comparison purposes, we removed these activities from the

analysis and reevaluated the three prediction methods. The RMSE was slightly higher (1.99 METs), and bias was

reduced to 0.10 METs, respectively (Table 2). These data further illustrate the difficulties of prediction models,

where activities in the nnet training data set are not identical to those used in its nnetMET validation.

It is not clear as to why there was only a small improvement in the nnet RMSE in comparison to the RMSE from

the regression models. One possible explanation is that there were several activities in the training data set that

were not in the validation data sets. It is also possible that there is a limit to the size of improvements expected,

given the finite range of activities performed. To address this knowledge gap, future machine-learning model

development protocols should include a broad spectrum of activities, across the range of EE that represent

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/figure/F1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T2/
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activities performed in daily life.

The Actigraph accelerometers and the present data processing techniques were not designed to measure

sedentary behavior. Recently, however, researchers have become increasingly interested in understanding the

interaction between sedentary behavior and health. This shift has led to new challenges for the field of PA

measurement. The nnets currently available do not identify sedentary behaviors, nor accurately estimate sedentary

activity METs. Some researchers advocate using an “inactivity threshold” to identify and assign METs to

sedentary behaviors. Nonetheless, sedentary behaviors often make up a large portion of an individual's day (16),

and thus training the nnet to identify sedentary behaviors is an important next step.

A novel feature of the nnet methodology for measuring PA is the identification of activity type. We categorized

activities into household, locomotion, and sport activity type categories. Table 4 presents a confusion matrix

illustrating the percentage of activities that the nnetACT correctly classified as activities into these categories. The

nnetACT trained on UMass correctly classified 80.9% of activities from UTenn. The nnet was successful at

identifying household (98.1% correct) and locomotion (89.5% correct) activities in the UTenn study. A possible

factor contributing to why the classification accuracy was higher for household activities compared with

locomotion activities was that locomotion activities were treadmill based in the training data set and were

performed on a track or road in the validation data set. Nevertheless, classification accuracy was high, despite

these differences in locomotion protocols. The nnetACT did not perform well for sport activities (23.7% correct),

which were often misclassified into the household activities category (69.5% of time). All of the UTenn sports,

aerobics, Frisbee golf, and tennis were poorly classified. The UTenn aerobics and Frisbee golf activities were not

included in the UMass study. The third sport in the UTenn study, tennis, was played solo against a wall in the

UTenn study, while in the UMass study tennis was played with a partner. As the registry of activities used to train

nnets expands both in terms of the types and intensities of activities included and the number of samples available

for a given activity, improvement in identification of activity type will follow.

A major strength of this study is our use of separate development and validation samples. Although some activities

were “similar,” the activity protocols were different between the two sites. Additionally, the overall study

procedures and metabolic measurement equipment were different between UMass and UTenn (e.g., at UMass

activities were performed for 7 min vs. 10 min at UTenn, Oxycon Mobile vs. Cosmed K4b ). By validating the

nnet on a completely independent sample, we provide researchers with evidence how the nnet will perform when

applied to other independent samples.

A second strength of this study is our use of a very large, diverse sample for the training data set. We also used a

wide range of commonly performed locomotion, lifestyle, and sport activities. There will always be some level of

interindividual variability in how activities are performed, but training the nnet on a broad range of activity types

and intensities and on a sample with a range of physical characteristics increases the generalizability of the model.

Another strength is the use of measured activity EE to compute METs as the criterion for the nnetMET model

validation. Albalini and colleagues (3) used a different approach, where raw signals from multiple accelerometers

were used in machine-learning algorithms to first identify activity type. They then applied the Compendium of

Physical Activities (2) to estimate MET levels, which produced an underestimate of EE of 15–21%.

Our methodology has several limitations. The nnet cannot identify sedentary behaviors. Moving forward, inclusion

of sedentary behaviors in the calibration and nnet training process should be a priority. A second limitation is that

the results apply only to experimental conditions in a highly controlled laboratory data collection setting. Thus

differences in protocol and criterion measures may alter nnet error estimates. Additionally, the nnet produces PA

estimates on a minute-by-minute basis. Free-living behavior does not take place in minute increments; thus to

apply the nnet to free-living settings, methodology advances need to include analytic procedures for identifying the

end of one activity type and the beginning of the next activity type. One possible solution to this problem is to train

the nnet to identify individual activity bouts and to then produce PA estimates for specific activities. It should also

2

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T4/
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be noted that the nnet algorithms may only be applied to adults 20–60 yr of age. Future investigations should

develop specific nnet algorithms for children and older adults using activities that are relevant in model

development and validation for these age groups. We used the fixed denominator of 3.5 ml·kg ·min  to

compute activity METs. Although baseline resting metabolic rate is known to be influenced by such factors as age

and fat-free mass, we used the standard of 1 MET = 3.5 ml·kg ·min  to comply with recommendations for

MET computation (2). A limitation of using the constant 3.5 ml·kg ·min  in the denominator is evident in the

UTenn validation data set with MET values for selected sedentary behaviors (driving, TV viewing, and reading)

falling below 1.0 (see Table 2). As shown in the present study, use of this constant is particularly problematic and

may lead to underestimates for computing METs for sedentary behaviors. Although the advantage of using the 3.5

ml·kg ·min  constant standardizes the expression of METs, future studies should consider this limitation in light

of individual differences in resting metabolic rate.

Finally, this analysis uses derived activity counts to produce the nnet prediction models. Future studies should

employ raw acceleration features as nnet input variables to provide a universal metric for accelerometer sensor

output. However, given that currently there is pervasive use of accelerometers employing integrated outputs (e.g.,

counts/min), nnets developed from integrated accelerometer signals remain useful.

In summary, we developed and trained nnets to estimate METs, classify activity intensity, and identify activity type.

We validated these nnets on an independent sample, performing activities that were not identical to the training

data set, and we compared the nnetMET results to regression models. Our nnet produced a lower bias and

RMSE than the regression models in estimating METs. The intensity classification from the nnetMET was

reasonably accurate, and we were successful in identifying activity type using the nnetACT for household and

locomotion activities. Further advancement of these techniques will require algorithm modification to estimate

sedentary behaviors and to identify specific activity bouts under free-living conditions. The nnetMET models only

predict absolute intensity prediction, and further work is warranted to extend this approach to address relative

intensity predictions. We also recommend the development of an open-access PA registry, where accelerometer

and metabolic data from a broad array of activities are created. This will facilitate refinement and improvement of

machine-learning algorithms for prediction of activity EE and activity type identification.
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Figures and Tables

Table 1.

Descriptive summary for accelerometer output from UMass and UTenn

Percentiles (counts/s over the

course of 1 min)

METs

Activity Counts/min Coefficient of

Variation (per

min)

10th 25th 50th 75th 90th Lag-1

Autocorrelation

Mean SD

UMass

Washing

dishes

7 157.8 0 0 0 0 0 0.06 1.88 0.36

Laundry 144 194.9 0 0 0 1 7 0.41 2.27 0.36

Dusting 353 174.4 0 0 0 5 18 0.53 2.57 0.51

Painting 687 99.9 0 0 2 14 38 0.44 2.90 0.73

Sweeping 548 134.9 0 0 3 10 26 0.51 3.10 0.62

Trimming 267 144.7 0 0 1 5 13 0.43 3.16 0.63

Vacuuming 632 83.9 0 1 6 14 26 0.41 3.24 0.56

Mopping 676 80.5 0 1 7 17 28 0.43 3.55 0.76

Gardening 1,234 98.9 0 1 9 29 58 0.49 3.63 1.09

Walk 1.34

m/s, 0%

3,000 4.4 44 47 50 53 56 0.15 3.80 0.46

Descending 3,476 9.4 26 46 62 72 80 0.11 3.88 0.78
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stairs

Raking 602 74.7 1 2 5 14 26 0.39 4.08 1.07

Moving boxes 2,149 36.6 2 18 35 45 72 0.50 4.52 0.93

Walk 1.56

m/s, 0%

3,905 4.2 59 62 65 68 71 0.26 4.52 0.55

Walk 1.34

m/s, 3%

3,145 5.0 46 49 52 56 59 0.18 4.70 0.51

Cleaning room 3,396 39.1 7 22 48 84 117 0.38 4.79 1.10

Mowing 2,016 26.1 13 23 34 43 51 0.50 5.33 1.02

Walk 1.56

m/s, 3%

4,003 4.4 60 63 67 70 73 0.28 5.58 0.60

Basketball 4,642 23.3 20 40 68 101 143 0.09 8.33 2.35

Run 2.23 m/s,

0%

7,496 5.3 112 118 125 132 138 0.24 8.45 0.92

Tennis 3,412 33.1 15 29 50 77 106 0.36 9.01 1.85

Ascending

stairs

3,041 11.0 27 40 52 62 71 0.22 9.62 1.65

Run 2.23 m/s,

3%

7,757 4.5 117 123 129 136 142 0.20 9.75 1.00

UTenn

Driving 26 141.3 0 0 0 0 0 0.29 0.78 0.17

Television 43 46.6 0 0 0 1 2 0.18 0.83 0.25

Reading 33 27.5 0 0 0 0 2 0.08 0.86 0.26

Ironing 59 100.9 0 0 0 0 2 0.31 1.90 0.45

Gardening 690 109.2 0 0 1 12 38 0.55 2.73 0.69

Laundry 512 131.0 0 0 1 8 27 0.59 2.76 0.84

Light cleaning 572 111.2 0 0 1 11 30 0.56 2.86 0.68

Trimming 470 102.4 0 0 3 10 21 0.49 2.91 0.76

Road walk

(1.49 m/s)

3,933 17.2 47 60 68 73 79 0.77 4.04 0.58

Frisbee golf 3,060 36.2 9 29 49 64 89 0.49 4.05 0.49

Track walk

(1.52 m/s)

3,987 14.6 56 63 67 72 76 0.57 4.19 0.67

Load/unload

boxes

2,380 37.3 9 24 38 49 69 0.42 4.21 0.54

Moving dirt 1,707 53.8 1 7 22 42 64 0.49 4.21 0.93

15-lb. bag

walk

3,817 22.1 51 55 62 71 79 0.50 4.92 1.26

Aerobics 2,781 58.5 8 17 34 61 106 0.65 6.20 1.39

Tennis 4,385 42.7 15 35 71 102 132 0.57 8.68 1.56

Road run 6,286 21.5 82 98 108 116 122 0.59 10.51 2.64
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(2.70 m/s)

Track run

(2.73 m/s)

7,618 13.2 112 119 129 138 145 0.41 11.17 2.60

METs, metabolic equivalents; UMass, University of Massachusetts; UTenn, University of Tennessee.

Table 2.

Measured METs, METs predicted from nnetMET, and nnetMET biases and RMSEs for independent sample

validation (UTenn) and cross-validation (UMass)

Biases RMSEs

Activity n Measured

METs

nnet

trained on

MA study

data

Freedson

linear

regression

Crouter

two-

equation

method

nnet

trained on

MA study

data

Freedson

linear

regression

Crouter

two-

equation

method

UTN study

    Driving

(sed)

22 0.78 1.50 0.68 0.42 1.52 0.70 0.71

    

Television (sed)

23 0.83 1.28 0.64 0.35 1.34 0.70 0.67

    Reading

(sed)

22 0.86 1.23 0.61 0.25 1.28 0.67 0.63

    Ironing 23 1.90 0.38 −0.41 −0.41 0.59 0.58 0.79

    

Gardening

22 2.73 0.40 −0.74 0.67 0.80 0.98 0.97

    Laundry 22 2.76 0.25 −0.91 0.31 0.83 1.22 0.96

    Light

cleaning

22 2.86 0.27 −0.97 0.36 0.76 1.18 0.83

    

Trimming

21 2.91 0.27 −1.10 0.08 0.90 1.29 0.71

    Road

walk

17 4.04 1.41 0.52 2.12 1.75 0.84 2.62

    Frisbee

golf

22 4.05 2.11 −0.18 2.26 2.38 0.59 2.34

    Track

walk

17 4.19 0.94 0.42 1.62 1.23 0.85 2.19

    

Load/unload boxes

22 4.21 1.44 −0.88 1.36 1.71 1.04 1.54

    Moving

dirt

22 4.21 0.35 −1.42 0.55 0.86 1.65 1.07

    15-lb.

bag walk

17 4.92 0.10 −0.45 0.48 2.08 1.90 2.13

    Aerobics 20 6.20 −0.46 −2.55 −0.29 2.09 2.83 1.28

+ *+ *+ * *

+ *+ *+ * *

+ *+ * * *

+ *+ *+

*+ *+

*+

*+

*+

+ *+ + *

+ * + *

+ +

+ *+ +

*+ *

*+

*+ + *
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    Tennis 18 8.68 −1.35 −3.75 1.60 2.50 4.07 2.54

    Road run 18 10.51 −2.94 −4.08 −3.00 4.45 5.11 4.68

    Track

run

18 11.17 −2.68 −3.67 −3.03 3.55 4.16 4.15

    Overall 4.32 0.32 −0.95 0.18 1.90 2.07 1.97

    Overall

without sedentary

activities

5.02 0.10 −1.31 0.14 1.99 2.26 2.15

Mean

measured

METs

nnet trained on

MA study data

(cross-validated)

Freedson

linear

regression

Crouter

two-

equation

method

nnet trained on

MA study data

(cross-validated)

Freedson

linear

regression

Crouter

two-

equation

method

UMass

study

    

Washing

dishes

42 1.88 0.16 −0.43 −0.84 0.36 0.56 0.92

    

Doing

laundry

39 2.27 0.24 −0.72 −0.09 0.50 0.80 0.78

    

Dusting

36 2.57 0.14 −0.85 0.32 0.40 0.94 0.51

    

Painting

37 2.90 0.26 −0.92 0.47 0.73 1.11 0.85

    

Sweeping

39 3.10 0.06 −1.22 −0.03 0.68 1.37 0.88

    

Trimming

bushes

39 3.16 −0.26 −1.51 0.69 0.61 1.60 1.04

    

Vacuuming

35 3.24 0.37 −1.30 0.07 0.64 1.40 0.57

    

Mopping

39 3.55 0.06 −1.57 −0.20 0.77 1.73 0.90

    

Gardening

38 3.63 −0.10 −1.21 0.50 0.90 1.46 0.99

    

Treadmill

1.34 m/s,

0%

255 3.80 0.69 0.02 −0.19 0.93 0.67 0.61

    

Descending

stairs

152 3.88 2.12 0.33 0.88 2.76 1.10 1.80

     40 4.08 −0.41 −2.17 −0.83 1.01 2.35 1.22

*+ + *

+ *+ + *

+ *+ + *

*+

*+ *

*+ *+ *

+ *+ * *

*+ *+ *

*+ *+

*+ *

*+ *+ * *

+ *+ * *

*+ * *

*+ *+ *

+ * *+ * *

+ *+ *+ * *

+ *+ *+ * *
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Raking

    

Moving

boxes

267 4.52 0.08 −1.37 0.78 0.93 1.62 1.24

    

Treadmill

1.56 m/s,

0%

255 4.52 0.35 0.01 −0.42 0.88 0.85 0.85

    

Treadmill

1.34 m/s,

3%

224 4.70 −0.02 −0.76 −0.97 0.75 1.05 1.16

    

Cleaning

room

38 4.79 1.37 −0.66 1.74 2.14 1.52 2.25

    

Mowing

38 5.33 0.48 −2.27 −0.17 1.19 2.43 0.95

    

Treadmill

1.56 m/s,

3%

239 5.58 −0.55 −0.96 −1.39 1.06 1.30 1.61

    

Basketball

38 8.33 −0.69 −3.20 −0.80 2.27 3.55 1.76

    

Treadmill

2.23 m/s,

0%

213 8.45 0.30 −1.07 −1.52 1.21 1.72 2.22

    

Tennis

38 9.01 −1.68 −4.87 −2.44 2.35 5.08 2.83

    

Ascending

stairs

166 9.62 −2.25 −5.74 −5.04 2.91 5.92 5.34

    

Treadmill

2.23 m/s,

3%

165 9.75 −0.98 −2.18 −2.71 1.46 2.52 3.12

    

Overall

4.90 0.00 −1.26 −0.84 1.43 2.18 2.05

n, No. of subjects; sed, sedentary activities; nnet, neural network; MA, Massachusetts; RMSE, root mean square

error.

P < 0.05 in a paired comparison with nnet. P < 0.05 in comparison with zero (statistically significantly biased).

Activities are Bonferroni corrected.
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Fig. 1.

Measured metabolic equivalents (METs) vs. METs predicted from neural network (nnetMET). The nnnetMET was

developed on University of Massachusetts (UMass) data set (n = 277) and applied to University of Tennessee (n = 65)

data set. The bias was 0.32 METs, and the root mean square error (RMSE) was 1.90 METs.

Table 3.

Confusion matrices for intensity category classification comparing criterion measure (measured METs) and

Freedson et al. (9), Crouter et al., (7) and nnetMET

Intensity Category from Prediction Models

Intensity Category From Criterion Measure Light Moderate Vigorous %Correct

Freedson et al. (9)

    Light 145 2 0 98.6

    Moderate 60 94 0 61.0

    Vigorous 5 32 27 42.2

    Overall 72.9

Crouter et al. (7)

    Light 114 32 1 77.6

    Moderate 6 97 51 63.0

    Vigorous 4 7 53 82.8

    Overall 72.3

nnetMET

    Light 116 30 1 78.9

    Moderate 8 119 27 77.3

    Vigorous 4 14 46 71.9

    Overall 77.0
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n = 365 Subject/activity combinations for validation group (UTenn). Note: Light intensity is <3 METs, moderate

3–5.99 METs, and vigorous ≥6 METs.

Table 4.

Activities and activity type assignment

Activity Type

UTenn

Driving Sedentary

Television Sedentary

Reading Sedentary

Ironing Household

Gardening Household

Laundry Household

Light cleaning Household

Trimming Household

Road walk Locomotion

Frisbee golf Sports

Track walk Locomotion

Load/unload boxes Household

Moving dirt Household

15-lb. bag walk Locomotion

Aerobics Sports

Tennis Sports

Road run Locomotion

Track run Locomotion

UMass

Washing dishes Household

Laundry Household

Dusting Household

Painting Household

Sweeping Household

Trimming Household

Vacuuming Household

Mopping Household

Gardening Household

Walk 1.34 m/s, 0% Locomotion

Descending stairs Locomotion

Raking Household

Moving boxes Household

Walk 1.56 m/s, 0% Locomotion
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Walk 1.34 m/s, 3% Locomotion

Cleaning room Household

Mowing Locomotion

Walk 1.56 m/s, 3% Locomotion

Basketball Sports

Run 2.23 m/s, 0% Locomotion

Tennis Sports

Ascending stairs Locomotion

Run 2.23 m/s, 3% Locomotion

Note: Type is criterion activity type classification.

Table 5.

Confusion matrices illustrating accuracy of activity type classification

Predicted Activity (nnetACT)

Actual Activity Household Locomotion Sports %Correct

Accuracy of activity type identification predicted from nnetACT

trained on UMass and validated on the independent data set from

UTenn (n = 299 subject/activity combinations)

    Household 151 2 1 98.1

    Locomotion 9 77 0 89.5

    Sports 41 4 14 23.7

    Overall 80.9

Cross-validation results (trained and validated on UMass using hold-

one-out validation) (n = 2,453 subject/activity combinations)

    Household 689 23 9 95.6

    Locomotion 11 1,640 5 99.0

    Sports 15 3 58 76.3

    Overall 97.3

ACT, activity type. Note: List of activity type assignments is the same as in Table 4.

Table 6.

Intensity classification accuracy by activity for nnet, Freedson et al. (9), and Crouter et al. (7)

Activity nnetMET Freedson Crouter

Frisbee golf 48.0 95.0 24.0

Gardening 55.0 73.0 45.0

Light cleaning 55.0 73.0 55.0

Aerobics 55.0 20.0 70.0

Trimming 67.0 48.0 71.0

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3233887/table/T4/
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Laundry 68.0 59.0 73.0

Track walk 71.0 94.0 53.0

Road walk 76.0 94.0 41.0

Tennis 78.0 17.0 89.0

Load/unload boxes 82.0 68.0 64.0

15-lb. bag walk 82.0 94.0 59.0

Track run 82.0 82.0 94.0

Road run 83.0 72.0 78.0

Moving dirt 91.0 23.0 86.0

Ironing 96.0 100.0 100.0

Television 96.0 100.0 96.0

Driving 100.0 100.0 100.0

Reading 100.0 100.0 95.0

Values are in percent. Note: Bolding identifies activities that were different between training (UMass) and

validation (UTenn) data sets. Activities were classified as light (<3METs), moderate (3–5.99 METs), or vigorous

(≥6 METs) intensity.

Articles from Journal of Applied Physiology are provided here courtesy of American Physiological Society
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