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Background and Purpose: Automatic segmentation model is proven to be efficient in

delineation of organs at risk (OARs) in radiotherapy; its performance is usually evaluated

with geometric differences between automatic and manual delineations. However,

dosimetric differences attract more interests than geometric differences in the clinic.

Therefore, this study aimed to evaluate the performance of automatic segmentation with

dosimetric metrics for volumetric modulated arc therapy of esophageal cancer patients.

Methods: Nineteen esophageal cancer cases were included in this study. Clinicians

manually delineated the target volumes and the OARs for each case. Another set

of OARs was automatically generated using convolutional neural network models.

The radiotherapy plans were optimized with the manually delineated targets and the

automatically delineated OARs separately. Segmentation accuracy was evaluated by

Dice similarity coefficient (DSC) and mean distance to agreement (MDA). Dosimetric

metrics of manually and automatically delineated OARs were obtained and compared.

The clinically acceptable dose difference and volume difference of OARs betweenmanual

and automatic delineations are supposed to be within 1 Gy and 1%, respectively.

Results: Average DSC values were greater than 0.92 except for the spinal cord (0.82),

and average MDA values were <0.90 mm except for the heart (1.74 mm). Eleven of the

20 dosimetric metrics of the OARs were not significant (P > 0.05). Although there were

significant differences (P < 0.05) for the spinal cord (D2%), left lung (V10, V20, V30, and

mean dose), and bilateral lung (V10, V20, V30, andmean dose), their absolute differences

were small and acceptable for the clinic. The maximum dosimetric metrics differences of

OARs between manual and automatic delineations were 1D2% = 0.35 Gy for the spinal

cord and 1V30 = 0.4% for the bilateral lung, which were within the clinical criteria in

this study.

Conclusion: Dosimetric metrics were proposed to evaluate the automatic delineation

in radiotherapy planning of esophageal cancer. Consequently, the automatic delineation

could substitute the manual delineation for esophageal cancer radiotherapy planning

based on the dosimetric evaluation in this study.

Keywords: automatic segmentation, dosimetric evaluation, esophageal cancer, deep learning, organs at risk,

radiotherapy
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INTRODUCTION

One of the challenges in radiotherapy is the accurate delineation
of organs at risk (OARs). Various delineation techniques are used
by different professionals. Automatic segmentation of OARs with
artificial intelligence has great application value for treatment
planning in radiotherapy because of its high efficiency and
advanced delineation accuracy.

Several studies focused on the geometric evaluation between
manual and automatic segmentation delineations. The geometric
evaluation compares the similarity between different delineation
methods by Dice similarity coefficient (DSC) and mean distance
to agreement (MDA). The DSC evaluates the similarity of two
delineations by comparing the overlap area. The MDA shows
the average distance of outline points between the overlap
volume of two delineations. Liang et al. (1) evaluated the
quality of automatic delineation by using geometric discrepancies
in head and neck OARs. Ahn et al. (2) demonstrated that
the deep convolution neural network methods could provide
an effective and efficient way to delineate OARs for liver
cancer. For automatic delineation in the thorax, Yang et al. (3)
reported that several institutions participated in the thoracic
automatic segmentation challenge organized by the American
Association of Physicists in Medicine in 2017. The DSC scores
of the left lung, right lung, heart, and spinal cord were
0.956 ± 0.019, 0.955 ± 0.019, 0.931 ± 0.015, and 0.862 ± 0.038,
respectively (3). Lustberg et al. (4) showed their geometric
evaluation of automatic delineations for lung cancer in 2018:
the spinal cord (median Dice score, 0.83), the lungs (median
Dice score, >0.95), and the heart (median Dice score, >0.90).
Dong et al. (5) addressed that the averaged DSC scores for
the left lung, right lung, spinal cord, and heart were 0.97,
0.97, 0.90, and 0.87, correspondingly, in 2019. Therefore,
thoracic OARs including the spinal cord, lungs, and heart
could be segmented accurately by the automatic delineation
method (5).

However, the primary concern in radiotherapy is not
the delineation accuracy but the dosimetric impacts of the
delineation. To show that a model successfully segments the
OARs in geometry is not sufficient to confirm its reliability
for radiotherapy utilization. Vinod et al. (6) believed that it
is similar to geometric evaluation of different delineations;
there was no standardized method of dosimetric comparison
of delineations. Accordingly, a quantitative system to evaluate
both the dosimetric and geometric parameters of manual and
automatic delineation-generated plans becomes necessary. Fung
et al. (7) showed their studies about geometric discrepancies
and dose impact between manually and automatically delineated
OARs in nasopharyngeal carcinoma in a creative manner.
Especially, Fung et al. (7) evaluated manual and automatic
delineations using dosimetric discrepancies, which include

Abbreviations: OARs, Organs at risk; VMAT, Volumetric modulated arc therapy;

CNN, Convolutional neural network; DSC, Dice similarity coefficient;MDA,Mean

distance to agreement; DCNN, Deep convolution neural network; CT, Computed

tomography; PTV, Planning target volume; PGTV, Planning gross tumor volume;

PRV, Planning organ at risk volume; DVH, Dose volume histogram.

TABLE 1 | The Clinical data of patients.

Characteristic N (n = 19)

Age Median 59.05 ± 8.26

Gender Male 16

Female 3

Pathology Squamous cell carcinoma 18

Small cell carcinomas 1

Primary location Cervical 0

Thoracic 19

Chemotherapy Neoadjuvant 8

Concurrent 8

None 3

T stage T3 11

T4 8

N stage N1 17

N2 1

N3 1

M stage M0 14

M1 5

The values in the “Age” row represent as mean ± standard deviation.

maximum dose, D1 cc, and D50%. However, their study
did not evaluate the automatic delineation using clinical
dosimetric metrics.

No study on the impact of dosimetric metrics between
manual and automatic delineations has been conducted
yet, specifically in esophageal cancer. Further, esophageal
cancer is common around Asia, especially in eastern Asia.
More than 700 esophageal cancer patients are treated by
radiotherapy in our department every year. Therefore,
automatic delineation of esophageal cancer will play an
important role in the clinic. This study introduces a
dosimetric evaluation method to substitute the geometric
evaluations on automatic delineation for esophageal cancer
VMAT radiotherapy.

METHODS

Data Acquisition
The data consisted of 19 stage III/IV esophageal cancer patients
who were treated from December 2018 to July 2019 in our
department. The inclusion criteria of patients were proven and
diagnosed histologically as esophageal cancer according to the
guideline of the TNM staging system. The detailed demographics
of the included patients are shown in Table 1. All patients were
set up with the supine position on a commercial “bellyboard” and
immobilized using a thermoplastic mask. The data of planning
computed tomography (CT) images were acquired from the
Somatom Definition AS 40 (Siemens Healthcare, Forchheim,
Germany) or the Brilliance CT Big Bore (Philips Healthcare,
Best, the Netherlands) systems on helical scan mode. CT images
were reconstructed using a matrix size of 512 × 512 and a slice
thickness of 5 mm. The delineation of OARs was delineated
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FIGURE 1 | Architecture of automatic segmentation network (A) and example of the residual block (B).

on CT images according to RTOG 0617 and RTOG 1106
standard contouring atlas (8, 9). Meanwhile, the delineation
of OARs was delineated and approved by senior clinicians for
this study.

Architecture of Segmentation Network
Five hundred patients diagnosed with thorax tumor who
received radiotherapy between 2011 and 2019 were enrolled

for training the OAR-segmentation models. The OARs for
segmentation included bilateral lungs, heart, spinal cord, and
bilateral kidneys. Fifty patients from 2018 to 2019 were
chosen randomly to validate the deep learning model. The
validation set was used to assess the performance of the deep
learning model.

We used this previously published deep learning algorithm to
segment the OARs for treatment planning (10). Figure 1 shows
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the detailed architectures. A four-stream dilated convolutional
module was applied before the ResNet-101 networks. The
advantage is that it can extract multiscale features from the
original CT image with different dilated factors. The multiscale
feature maps were added and feed forward to the ResNet-
101, which has 101 weighted layers. Its characteristic is the
use of several residual blocks to avoid gradients vanishing.
An example of the residual block is shown in Figure 1B.
It took a standard feed-forward convolutional network and
added skipped connections that bypassed a few convolutional
layers at a time. Each bypass gave rise to a residual block
in which the convolutional layers predicted a residual that
was added to the input tensor of the block. There were
3, 4, 23, and 4 such blocks in conv2, conv3, conv4, and
conv5, respectively. The size of image was reduced to 1/8
of the original network with the down-sampling. Therefore,
a bilinear interpolation was applied to the sum layer to
recover the feature map to the original size for pixel-
level classification.

Experiments
The clinicians manually delineated the planning target
volume, the planning gross tumor volume, and the OARs,
including the spinal cord, spinal cord planning OAR volume
(PRV), heart, left lung, right lung, and whole lung, as the
ground truth (GT) set. The previously published deep
learning model was used for this automatic segmentation
task (10). The automatically delineated OARs included the
spinal cord, spinal cord PRV, heart, left lung, right lung, and
bilateral lung.

The work flowchart of this study is illustrated in Figure 2.
The radiotherapy plans were designed and optimized with the
manually delineated targets and the automatically delineated
OARs. The dose constraints are followed by published guideline:
the maximum dose of the spinal cord was ≤40 Gy, the
spinal cord PRV was ≤45 Gy, V20 Gy of the bilateral lung
was ≤25 or 30% in special cases, and the heart V30 and
V40 Gy was ≤40 and ≤30%, respectively (8, 11). D (x%)
means of the dose received by x% of the OARs volume.
Dmean is defined as the average dose of OARs receiving. The
Vx Gy is defined as the volume of normal OARs receiving
more than x Gy dose (10). Further, the clinically acceptable
dose difference and volume difference of OARs between
manual and automatic delineations should be <1 Gy and 1%,
respectively. All the plans were evaluated and approved by
senior clinicians.

Next, the dosimetric metrics of the plans were calculated
and evaluated using the manual and automatic segmentation
delineated OARs, separately. Finally, both manual and automatic
delineations were compared with metrics of the geometry and
clinical dosimetry.

Evaluation
Geometric Metrics

The DSC and MDA were used in this study (7, 12, 13).
As shown above, the DSC is one of the geometric evaluation

methods in this study, otherwise known as Sørensen–Dice

coefficient (14), which is used to evaluate the similarity
of two samples such as imaging and radiotherapy target
volume segmentation.

DSC(A, B) =
2|A ∩ B|

|A| + |B|

The DSC had values between 0 and 1 (0 = no overlap,
1 = complete overlap). A is the investigator (automatic)
delineation, and B is the GT (manual) delineation.

The MDA indicates the average distance of outline points
of the automatic contouring volume to the outline of reference
manual delineation perfect overlap volume (15). The lower the
values (mm) ofMDA, the higher the correspondence between the
automatic and manual contouring volumes (15).

Dosimetric Metrics

Radiotherapy plans were designed by using the Pinnacle3 R©

Radiation Therapy Planning software (version 9.1; Philips
Medical Systems Inc., Fitchburg, MA, USA). The dosimetric
parameters, including D2%, Dmean, V40, V30, V20, and V10 Gy,
were used to evaluate the plan quality and OARs sparing.

The continuous variables were presented as the mean ± SD
and should be rounded up to two decimal places, which are
dependent on the normality of the data. Correspondingly, the
paired t-test was used to compare the variables between the
manually and automatically delineated methods. All of the
statistical analyses were conducted using the IBM SPSS Statistics
software (version 25.0; IBM Inc., Armonk, NY, USA). All paired
t-tests were two-sided. The difference between manually (GT)
and automatically delineated dosimetric metrics was considered
as statistically significant when the paired t-test showed P < 0.05.

The dosimetric characteristics of OARs were gauged by the
conformity index (CI) and homogeneity index (HI) (11, 16, 17).
CI of target volume is defined as following equation (11):

CI =
TVPTV2

TV ∗PTV

where TV is the volume of prescribed isodose line enclosed
volume. PTV is the volume of targets. TVPTV represents the
overlap volume between volume of targets volume and the
prescribed isodose line enclosed volume.

HI of target volume is a simple scoring tool that quantifies
dose homogeneity in the target volume. It is therefore used to
evaluate and compare the dose distributions of various treatment
plans (11, 17).

The formula of HI is suggested by the ICRU 83 report as the
following equation:

HI =
D2%− D98%

D50%

The D2%, D98%, and D50% are doses delivered to 2, 98, and 50%
volume of target volume, respectively. The closer the HI value
approaches 0, the better homogeneity of target volume is (11).
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FIGURE 2 | The flowchart of manual and deep learning automatic delineation-based plan evaluation experiment.

FIGURE 3 | Examples of the segmentation. Color wash: manual segmentation; Line: automatic segmentation.

RESULTS

Geometric Metrics
The performance of our deep learning model is shown inTable 2.
The MDAs of the left lung, right lung, bilateral lung, heart,
spinal cord, spinal cord PRV, left kidney, and right kidney were
0.68 ± 0.13, 0.82 ± 0.20, 0.73 ± 0.12, 1.87 ± 0.69, 0.79 ± 0.15,
0.80 ± 0.15, 1.12 ± 0.31, and 1.01 ± 0.29mm, respectively.
The segmentation accuracy values for the left lung, right lung,
bilateral lung, heart, spinal cord, spinal cord PRV, left kidney,
and right kidney in validation set are shown as follows: DSC:
0.97 ± 0.01, 0.97 ± 0.01, 0.97 ± 0.01, 0.93 ± 0.03, 0.83 ± 0.03,
0.91± 0.02, 0.93± 0.02, and 0.93± 0.02, respectively. It implied
that the deep learning model was reliable in automatically
delineated OARs for esophageal cancer.

Table 3 shows the mean value and standard deviation of the
DSC and MDA, respectively. It also shows that the MDA of the
spinal cord and spinal cord PRV was shorter than that of the left
lung, right lung, bilateral lung, and heart. The MDAs of the left

TABLE 2 | The geometric characteristic of OARs of validation set.

OARs MDA (mm) DSC

Lung L 0.68 ± 0.13 0.97 ± 0.01

Lung R 0.82 ± 0.20 0.97 ± 0.01

Lung all 0.73 ± 0.12 0.97 ± 0.01

Heart 1.87 ± 0.69 0.93 ± 0.03

Spinal cord 0.79 ± 0.15 0.83 ± 0.03

Spinal cord PRV 0.80 ± 0.15 0.91 ± 0.02

Kidney L 1.12 ± 0.31 0.93 ± 0.02

Kidney R 1.01 ± 0.29 0.93 ± 0.02

MDA, mean distance to agreement; DSC, Dice similarity coefficient.

lung, right lung, bilateral lung, heart, spinal cord, and spinal cord
PRV were 0.82 ± 0.21, 0.90 ± 0.31, 0.85 ± 0.20, 1.74 ± 0.85,
0.75± 0.22, and 0.74± 0.22 mm, respectively.
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FIGURE 4 | Comparison of mean DVH of all the 19 cases. Red solid line: automatic segmentation Blue solid line: manual segmentation including DVH of targets (A),

spinal cord PRV (B), spinal cord (C), heart (D), bilateral lung (E), left lung (F), and right lung (G).

The spinal cord DSC value was 0.84 ± 0.04, which was the
lowest value in all of six OARs. The OARs including the left lung,
right lung, bilateral lung, and heart showed good performance
in DSC evaluation. The segmentation accuracy values for the
spinal cord PRV, heart, left lung, right lung, and bilateral lung
(lung all) are shown as follows: DSC: 0.92 ± 0.02, 0.93 ± 0.04,
0.97 ± 0.01, 0.97 ± 0.01, and 0.97 ± 0.01, correspondingly.
Examples of the segmentation results are shown in Figure 3,
which illustrates that the segmentation was in good agreement
with the manual delineation.

Dosimetric Metrics
Table 4 shows the paired t-test confidence interval of the spinal
cord and spinal cord PRV D2% conversely. The dose difference
of spinal cord D2% between manual and automatic delineations
was significant. The V30, V40, and mean dose of the heart were
insignificant. All of the corresponding paired t-test confidence
interval data of the right lung presented were insignificant. By
contrast, the P-value of the left lung was <0.001, except for the
V5 of the left lung. For the bilateral lung, the corresponding V30,
V20, V10, and mean of manual delineation were significantly
higher than those of the automatic delineation. V5 of the bilateral
lung was insignificant, with interval confidence of 0.44. Except
the V30, V40, andmean of heart, as well as the V5 of right and left
lung, most of the dosimetric metrics of manual delineation OARs
were found to be relatively significantly higher than automatic
delineation OARs. For all of patients’ OARs, including spinal
cord and lungs, both the manual and automatic delineation plans
were able to meet the clinical dose constraints. Only the heart
V30 of two patients (#1: manual: 40.71%, automatic: 41.09%;
#2: manual: 49.56%, automatic: 48.02%) could not meet the
clinical dose constraints because of their targets close to their
heart. However, the heart V30 of these two patients was still
variation-acceptable in the clinic.

The mean dose volume histogram curves (Figure 4) of plans
with manual and automatic segmentation were close for most of
the OARs. Table 4 shows that the maximum dosimetric metrics
differences of OARs between manual and automatic delineations
were 1D2% = 0.35 Gy for spinal cord and 1V30 = 0.4% for

TABLE 3 | The geometric characteristic of OARs between manual and deep

learning automatic delineation-based plan.

OARs MDA (mm) DSC

Lung L 0.82 ± 0.21 0.97 ± 0.01

Lung R 0.90 ± 0.31 0.97 ± 0.01

Lung all 0.85 ± 0.20 0.97 ± 0.01

Heart 1.74 ± 0.85 0.93 ± 0.04

Spinal cord 0.75 ± 0.22 0.84 ± 0.04

Spinal cord PRV 0.74 ± 0.22 0.92 ± 0.02

MDA, mean distance to agreement; DSC, Dice similarity coefficient.

bilateral lung, which corresponded with the clinical criteria in
this study. The CIs of PTV and PGTV were 0.73 ± 0.083 and
0.83 ± 0.071, respectively. In addition, The HIs of PTV and
PGTV were 0.27± 0.020 and 0.085± 0.014, correspondingly.

DISCUSSION

The geometric results illustrate that the segmentation was in
close agreement with the manual delineation when considering
the DSC. Because of the lack of relevant reports on automatic
delineation in esophageal cancer, we can compare them with
thoracic OAR automatic delineation reports. Yang et al. (3)
addressed the mean value of DSC in thoracic automatic
segmentation. Their data included the left lung, right lung,
heart, and spinal cord whose DSC values were 0.956 ± 0.019,
0.955 ± 0.019, 0.931 ± 0.015, and 0.862 ± 0.038, respectively.
Dong et al. (5) addressed that the averaged DSC scores for the
left lung, right lung, spinal cord, and heart OARs were 0.97, 0.97,
0.90, and 0.87, respectively, in 2019. The lowest DSC value in all
of the six OARs is the spinal cord (0.84 ± 0.04) in our study.
The OARs including the spinal cord PRV (0.92 ± 0.02), left lung
(0.97± 0.01), right lung (0.97± 0.01), lung all (0.97± 0.01), and
heart (0.93± 0.04) showed good performance in DSC evaluation.
Therefore, OARs including the spinal cord, lungs, and heart were
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FIGURE 5 | Examples of the segmentation of left hilum. Yellow color wash: PTV; Purple line: manual segmentation; Green line: automatic segmentation.

accurately segmented by the automatically delineated method in
this study.

The finding of CIs and HIs above indicate that each
radiotherapy plan has good conformity and homogeneity, which
can fully meet the clinical requirement. The dosimetric metrics
of the spinal cord PRV, heart, and right lung between manual
and automatic delineations show no difference in this study. The
corresponding P-value of the dosimetric metrics between the
manual and automatic delineation sets shows an insignificant
value that could indicate their equivalent nature. The automatic
delineation of the heart and right lung shows a relative
equivalent quality in dosimetric metrics when compared with
manual delineation.

By contrast, the D2% of the spinal cord and the mean
dose, V10, V20, and V30 of the left and bilateral lungs show
significant value (P < 0.05). Based on our knowledge, the
hilum of lung is a steep dose falloff area in esophageal cancer
radiotherapy. As an observation of manually and automatically
delineated OARs in Figure 5, the automatically delineated left
lung shows a distortion around the left hilum comparing
with manual delineation. Therefore, dosimetric metrics of the
left and bilateral lungs show significant values in paired t-
test. The difference of V5 was insignificant for right, left, and
bilateral lung. Considering the toxicity of radiotherapy in the
lung, Luna et al. (18) reported that the lung V5 (>43.6%)
could predict the presence of radiation pneumonitis consistently.
The mean V5 values of manually and automatically delineated
bilateral lung were <43.6%, which implies a lower risk of severe
radiation pneumonitis in this study. By the review of studies
and radiotherapy guideline, the dose impact is notable in the
steep dose fall area (7). The 2% volume of the spinal cord
(manual 1.13 ± 0.35 cc vs. automatic 1.18 ± 0.26 cc) was
relatively equal to a voxel of CT in the planning system (1
cm × 1 cm × 1 cm). The average 2% volumes of the spinal
cord PRV were 4.08 ± 0.75 and 4.25 ± 0.66 cc for manual
and automatic delineations, respectively. D2% of the spinal cord
was relatively equal to the point dose in radiotherapy planning.
Therefore, the D2% of the spinal cord shows significant value

TABLE 4 | The paired t-test outcome of the dosimetric characteristic of OARs

between manual and deep learning automatic delineation-based plan.

Dosimetric metrics GT AI P-value

Spinal cord D2% (Gy) 36.08 ± 0.41 35.73 ± 0.41 <0.01

Spinal cord PRV D2% (Gy) 40.25 ± 0.43 40.42 ± 0.30 0.55

Heart V30 (%) 28.60 ± 4.06 28.70 ± 4.09 0.87

V40 (%) 14.68 ± 2.19 15.00 ± 2.28 0.48

Mean (Gy) 20.54 ± 2.71 20.64 ± 2.76 0.65

Lung all V30 (%) 8.63 ± 2.69 8.23 ± 2.73 0.02

V20 (%) 15.81 ± 4.95 15.63 ± 4.99 <0.01

V10 (%) 26.47 ± 8.27 26.28 ± 8.28 0.04

V5 (%) 41.05 ± 12.76 41.48 ± 13.18 0.44

Mean (Gy) 9.26 ± 2.55 9.21 ± 2.57 0.04

Lung L V30 (%) 10.24 ± 4.86 10.01 ± 4.95 <0.01

V20 (%) 18.55 ± 8.28 18.28 ± 8.38 <0.01

V10 (%) 30.53 ± 12.02 30.31 ± 12.07 0.04

V5 (%) 45.84 ± 16.26 45.88 ± 16.45 0.73

Mean (Gy) 10.31 ± 3.68 10.21 ± 3.71 <0.01

Lung R V30 (%) 7.31 ± 3.75 7.32 ± 3.79 0.90

V20 (%) 13.55±5.35 13.45 ± 5.28 0.41

V10 (%) 23.11 ± 7.83 22.97 ± 1.76 0.42

V5 (%) 37.04 ± 11.71 37.01 ± 11.74 0.89

Mean (Gy) 8.40 ± 2.51 8.38 ± 2.51 0.75

(P < 0.05). The dosimetric metrics of spinal cord PRV is
more important in this study because the PRV is recommended
for the structures of the nervous system including the spinal
cord (11, 19).

Although the dose differences of the spinal cord, left lung,
and bilateral lung are significant, their absolute difference
is small and acceptable for clinical use. Table 4 shows
that the maximum dosimetric metrics differences of OARs
between manual and automatic delineations are <1 Gy
(spinal cord, 1D2% = 0.35 Gy) and 1% (bilateral lung,
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1V30 = 0.4%). The dose difference and volume difference
of OARs had no impact on the radiation toxicity of each
OARs, because the OARs of both manual and automatic
delineations do not approach their maximum tolerance in this
study (8). Chicas-Sett et al. (20) reported that the manual
delineation also depends on intraobserver or interobserver
deviations, which leads to dosimetric difference and organ-
sparing failure.

As shown in the results, the dosimetric metrics of manual
delineation OARs were found to be relatively significantly
higher or lower than automatic delineation OARs. However,
the dosimetric metrics of manually delineated OARs for each
patient did not show a directional higher or lower trend
than automatic delineation OARs. This result implies that the
dosimetric metrics of manual and automatic delineationmethods
conform to Gaussian distribution, which had been proved in
paired t-test.

Although the deep learning segmentation model shows
outperformance, there are still limitations to this study. In
order to improve the performance of automatic delineation
model, larger training data are recommended in future work.
Further, three-dimensional radiography information will be
valuable in the architecture of deep learning model. As shown
in Figure 5, the automatically delineated left lung illustrates
a distortion around the left hilum. This limitation might be
overcome with the combination of threshold method and
automatic delineation.

CONCLUSION

The findings of this study showed that the geometric evaluation
between manual and automatic delineations was not enough in
clinical applications. Dosimetric metrics were proposed to assess
the automatic delineation in radiotherapy planning of esophageal
cancer. Based on the dosimetric evaluation in this study, the

manual delineation for esophageal cancer radiotherapy can be
substituted by automatic delineation.
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