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Abstract

Background: Viruses are key players regulating microbial ecosystems. Exploration of viral assemblages is now
possible thanks to the development of metagenomics, the most powerful tool available for studying viral ecology
and discovering new viruses. Unfortunately, several sources of bias lead to the misrepresentation of certain viruses
within metagenomics workflows, hindering the shift from merely descriptive studies towards quantitative comparisons
of communities. Therefore, benchmark studies on virus enrichment and random amplification protocols are required
to better understand the sources of bias.

Results: We assessed the bias introduced by viral enrichment on mock assemblages composed of seven DNA viruses,
and the bias from random amplification methods on human saliva DNA viromes, using qPCR and deep sequencing,
respectively. While iodixanol cushions and 0.45 μm filtration preserved the original composition of nuclease-protected
viral genomes, low-force centrifugation and 0.22 μm filtration removed large viruses. Comparison of unamplified and
randomly amplified saliva viromes revealed that multiple displacement amplification (MDA) induced stochastic bias
from picograms of DNA template. However, the type of bias shifted to systematic using 1 ng, with only a marginal
influence by amplification time. Systematic bias consisted of over-amplification of small circular genomes, and
under-amplification of those with extreme GC content, a negative bias that was shared with the PCR-based
sequence-independent, single-primer amplification (SISPA) method. MDA based on random priming provided by
a DNA primase activity slightly outperformed those based on random hexamers and SISPA, which may reflect
differences in ability to handle sequences with extreme GC content. SISPA viromes showed uneven coverage
profiles, with high coverage peaks in regions with low linguistic sequence complexity. Despite misrepresentation
of certain viruses after random amplification, ordination plots based on dissimilarities among contig profiles
showed perfect overlapping of related amplified and unamplified saliva viromes and strong separation from
unrelated saliva viromes. This result suggests that random amplification bias has a minor impact on beta diversity
studies.

Conclusions: Benchmark analyses of mock and natural communities of viruses improve understanding and
mitigate bias in metagenomics surveys. Bias induced by random amplification methods has only a minor impact
on beta diversity studies of human saliva viromes.
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Background
Viruses are the most abundant and genetically diverse

components of microbial ecosystems [1–3]. Unlike cellu-

lar organisms, viruses lack universal marker genes for as-

sessment of whole viral assemblages, hampering our

understanding of these key players of microbiota homeo-

stasis. The incorporation of next-generation sequencing

(NGS) technologies into metagenomic surveys of viruses

has circumvented this limitation, triggering an exponen-

tial increase in the number of viromes available in data-

bases [4]. Currently, metagenomics is the most powerful

tool for studying viral ecology [5–11], and its application

to host microbiomes has enabled the identification of

many new viruses, including ones that infect humans

[12–16]. However, caution must be taken when extract-

ing ecological conclusions from metagenomic studies,

because putative bias in viral representation can affect

every step of sample manipulation.

Only a small percentage of the total DNA retrieved

from human microbiomes corresponds to viral ge-

nomes [17–19]. Thus, a variety of physical virus-like

particle (VLP) enrichment protocols has been employed

to increase their relative ratio, enabling deep explor-

ation of viral assemblages [17, 18, 20–25]. Most of

these protocols combine low-speed centrifugation,

0.22–0.45 μm filtration, or ultracentrifugation in dens-

ity gradients to remove cellular contamination and con-

centrate VLPs, with nuclease treatment for elimination

of unprotected genetic material. Unfortunately, viruses

encompass a wide range of sizes, morphologies and

chemical constituents. These features endow viruses

with different resistance levels to chemical and mech-

anical stressors, making the establishment of a univer-

sal protocol for viral genomic purification unfeasible.

For example, CsCl density gradients are frequently used

for efficient removal of cellular contamination during

preparation of viromes [17, 21, 26–29]. Unfortunately,

this protocol deeply skews viral communities due to

strong discrimination against viruses that sediment out-

side of the typically selected density layer (including

most non-tailed bacteriophages) [20, 30–34], and due

to capsid weakening of certain viruses [20, 32]. Simi-

larly, the use of chloroform to disrupt bacterial mem-

branes also compromises the physical integrity of

enveloped and some naked viruses [20, 35]. The exten-

sive preference for 0.22 over 0.45 μm syringe filtration

has been justified by its better performance at removing

small bacteria. However, some studies propose that

both strategies efficiently reduce bacterial contamin-

ation in host-associated samples [35–37], while

0.22 μm filtration diminished viral DNA yields recov-

ered from human faeces by half in comparison to the

use of 0.45 μm filters [38]. This may be explained, at

least in part, by the filter retention of giant eukaryotic

viruses such as those recently found in human samples

[39, 40], or large bacteriophages [41].

Sampling protocols and subsequent preservation pro-

cedures can also lead to inaccurate or biased conclu-

sions. Indeed, sample preservation buffer, time and

temperature drastically affect the amount of virus de-

tected by flow cytometry [42]. Several strategies are al-

ternatively used for the extraction of virions from host

tissues, bacterial biofilms or cellular debris, including

the application of physical force by sonication, freezing

cycles and homogenizers, though their impact on virus

misrepresentation has not been investigated in-depth.

Procedures for the concentration of viruses such as tan-

gential flow filtration and ultracentrifugation are also

critical steps that reduce virus yield by filter clogging

[33, 38] or compromise the integrity of some viruses due

to the pressure they are subjected to. Furthermore, DNA

extraction kits are disturbing sources of DNA contamin-

ation in metagenomic studies [43], skewing viral assem-

blages by eluting small DNA viral genomes better than

non-fragmented large DNA viral genomes [7].

Another controversial source of bias is random amplifi-

cation, a step that is necessary when the amount of viral

genetic material is limiting, preventing NGS, as in the case

of extreme environments [44] or many human-associated

ecosystems [45]. Three random amplification protocols

are widely employed: sequence-independent, single-pri-

mer amplification (SISPA, originally called random PCR)

[46, 47]; linker amplification shotgun libraries (LASL)

[48]; and multiple displacement amplification (MDA) [26,

49]. Each method alters the relative abundance of viruses

or provides uneven coverage across sequenced genomes.

The SISPA method relies on pseudo-degenerate oligonu-

cleotides, with 6–12 random nucleotides at the 3′ end for

random priming and ~ 20 nucleotides of defined sequence

at the 5′ end. It has been reported that the annealing bias

of the constant part of the primer promotes uneven distri-

bution of sequence reads across the target genome and af-

fects the sensitivity of detection for low-abundance viruses

[50]. Pooling SISPA products amplified with different

primers provides more uniform coverage patterns [51].

LASL protocol adapted to NGS [52] is another PCR-based

method claimed to randomly amplify templates with ultra-

low quantities [27]. However, LASL requires previous gen-

ome fragmentation and DNA-size selection, which makes

this approach useless when only a few nanograms of tem-

plate are available [27]. Additionally, it also exhibits the

GC-dependent bias inherent to PCR [27, 53] and over-

looks ssDNA viruses [34], though this has recently been

overcome with a modified LASL procedure that gives reli-

able estimates of relative abundance of ssDNA viruses

[29]. Unlike SISPA and LASL, MDA is not PCR-based; ra-

ther, it amplifies DNA under isothermal conditions [54].

MDA relies on random priming of target DNA with
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endonuclease-resistant random hexanucleotides and the

high fidelity and strong strand-displacement capacity of

the podovirus φ29 polymerase to amplify DNA templates

with ultralow amounts [49]. Although this method pro-

vides more uniform coverage profiles throughout human

genomes than those obtained by some PCR-based random

amplification methods [55, 56], several biases have been

associated with this technology, including chimera forma-

tion [57], preferential amplification of circular ssDNA ge-

nomes [58] and non-uniform amplification of linear

dsDNA genomes. This later bias seems stochastic in

single-cell genomics [59] but becomes systematic for

nanogram levels of template by under-representing local

GC-rich regions [60–64], as previously reported for

PCR-based amplification protocols [27, 53, 65–68]. MDA

bias is more conspicuous in reactions with higher fold

amplification, but in general, > 1 ng of template provides

bias affecting a low number of loci in the range of three-

fold misrepresentation [55, 56, 69, 70]. Modified protocols

have claimed to reduce bias by combining MDA with

microfluidics [64] or by replacing random hexanucleotides

with small oligonucleotides synthesised by enzyme DNA

primase [71, 72]. This latter approach also ensures

zero-background amplification in the absence of DNA in-

put and even-coverage profiles.

In light of the aforementioned examples, it is reasonable

to assume that every step in metagenomic studies of viral

assemblages represents a potential source of bias.

Continuously falling prices of NGS services are promoting

a shift in the scientific goals of metagenomics research

from descriptive towards quantitative comparisons of com-

munities. Thus, it is essential to assess multiple replicates

in order to gain statistical insight and implement optimised

protocols that better preserve the original virome compos-

ition. Benchmark studies of virus enrichment and random

amplification protocols are required to improve our know-

ledge about the nature and impact of sources of bias.

In this article, we monitored the composition of syn-

thetic communities formed by seven DNA viruses by

quantitative real-time PCR (qPCR), and a natural DNA

viral assemblage from human saliva by NGS, along with

a simple experiment of virus enrichment coupled with

three alternative random amplification procedures. This

study provides new information about the bias induced

by certain protocol steps, finding that regardless of the

random amplification strategy chosen, abundance pro-

files of viruses from different subjects can be clearly dis-

tinguished in ordination plots.

Methods
Mock and natural viral communities

Synthetic viral assemblages (henceforth referred to as

“mock communities”) were prepared in 1× SM buffer

(50 mM Tris pH 7.5, 100 mM NaCl, 10 mM MgSO4)

and consisted of seven DNA viruses chosen for their dif-

ferent genetic and structural features (Table 1): Vaccinia

Western Reserve (WR) was purified from a 36% sucrose

cushion prepared in Tris-HCl pH 9.0; bacteriophages

lambda, φ29 and M13 were purified by isopycnic CsCl

density gradient centrifugation twice [73]; Minute Virus

of Mice strain p (MVMp) was firstly purified by centrifu-

gation through a 10–40% sucrose gradient and then

through a isopycnic CsCl gradient [74]; human adeno-

virus 5 (AdenoV) was purified by double CsCl gradient

centrifugation [75]; and porcine circovirus 2a (PCV2a)

derived from the supernatant of an infected cell culture.

Aliquots of each viral stock were independently treated

with a cocktail of nucleases (250 U/ml DNAse I, 250 U/

ml Nuclease S7, and 100 μg/ml RNAse A; Roche) for

30 min at 37 °C to digest unprotected genetic material

such as contaminant DNA from the host or viral DNA

from partially unassembled viruses. Then, viral DNA

protected in capsids or envelopes was extracted and esti-

mated by absolute qPCR (see below). A balanced

Table 1 Features of viruses included in viral mock communities

Theoretical proportion (%)

Species Family Morphology structure Diameter (nm) Genome type Size (kb) Mock
community 1

Mock
community 2

Vaccinia Western Reserve (WR) Poxviridae Enveloped, brick-shaped
virion

200 × 250 Linear dsDNA 194.7 14.28 16.65

Lambda phage (lambda) Siphoviridae Non-enveloped, head-tail
structure

60 Linear dsDNA 48.5 14.28 16.65

Human adenovirus 5 (AdenoV) Adenoviriade Non-enveloped pseudo
T = 25 capsid

90 Linear dsDNA 35.9 14.28 16.65

φ29 phage (φ29) Podoviridae Non-enveloped, head-tail
structure

54 Linear dsDNA 19.3 14.28 16.65

M13 phage (M13) Inoviridae Non-enveloped, rod of
filaments

7 × 700–2000 Circular ssDNA 6.4 14.28 16.65

Minute Virus of Mice p (MVMp) Parvoviridae Non-enveloped T = 1 capsid 23 Linear ssDNA 5.1 14.28 16.65

Porcine circovirus 2a (PCV2a) Circoviridae Non-enveloped T = 1 capsid 17 Circular ssDNA 1.8 14.28 0.075
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mixture of 20 ng of nuclease-resistant genetic material

from each of these viruses was pooled together to pre-

pare the first mock assemblage of viruses (mock com-

munity 1). As a lower-than-expected proportion of

vaccinia virus was detected by qPCR in this mock com-

munity, a second one (mock community 2) was prepared

taking into account the vaccinia measurement and also

with a lower proportion of PCV2a (due to stock

exhaustion).

Natural viral assemblages were obtained from 2 to

3 ml of non-stimulated, naturally outflowed saliva sam-

ples from healthy volunteers after signing an informed

consent document. Samples were diluted 1:4 in 1× SM

buffer to reduce saliva viscosity and preserved at 4 °C for

up to 30 min until processed. Two pools were elaborated

with samples from nine (Unamp1) and seven individuals

(Unamp2); six individuals contributed to both pools, and

samples were collected 1 week apart.

Purification protocol

Mock viral communities were subjected to two consecu-

tive low-speed centrifugation rounds at 3000×g for 10 min

and filtered through 0.22 or 0.45 μm filters (Millex-HV

Syringe Filter Unit, PVDF, 33 mm diameter, Millipore).

Then, samples were centrifuged at 18000×g for 16 h

through iodixanol cushions (OptiPrep™, density gradient

medium, Sigma-Aldrich) consisting of layers of 15 and

50% iodixanol prepared in 1× SM buffer. Viral particles

were collected from the interphase between the two layers

and subsequently treated with a cocktail of nucleases

(250 U/ml DNAse I, 250 U/ml Nuclease S7, and

100 μg/ml RNAse A; Roche) to digest unprotected

genetic material. Viral DNA was extracted with

200 μg/ml of proteinase K, 0.5% SDS and phenol:chloro-

form:isoamyl alcohol (25:24:1) and finally concentrated by

ethanol and sodium acetate precipitation. The impact of

each of these steps on the composition of mock commu-

nities 1 and 2 was assessed in experimental duplicates or

triplicates, respectively (Additional file 1: Table S1).

Viruses from saliva samples were diluted in three volumes

of 1× SM buffer, vigorously shaken by vortex and purified

following the same protocol described above, but only

using 0.45 μm filters at the filtration step.

Random amplification

Viral DNA purified from mock communities (1 ng) was

randomly amplified by SISPA as previously described

[76], using 60 pmol of primer K-8N (Additional file 1:

Table S1) in two consecutive rounds of Klenow Frag-

ment (3′ to > 5′exo-; NEBiolabs) extension instead of re-

verse transcription. Viral DNA from Unamp1 saliva

(1 ng) was amplified following the same protocol with

the following primers: an FR26RV-primer variant with

12 Ns at the 3′ end (FR20RV-12N) was used in the first

step of SISPA to improve coverage evenness [51], and an

equimolar mixture of FR20RV primers with 0–4 Ns at

the 5′ end were used in the PCR amplification step to

improve identification of clusters during Illumina se-

quencing (SISPA1) [77]. In parallel, a similar strategy

was followed using two other primer sets: primers

K-12N and K, and primers 454-A-12N and 454-A

(Additional file 2: Table S2). Finally, DNA fragments

with sizes between 500 and 1500 bp were gel-extracted

with a QIAquick Gel Extraction kit (Qiagen) according

to the manufacturer’s instructions. PCR products ob-

tained with the three aforementioned primer sets were

equally mixed to minimise SISPA bias amplification

(SISPA2) [51].

We also amplified DNA from viral assemblages by two

alternative MDA kits, both based on φ29 polymerase ac-

tivity, but differing in random priming strategy. The

Illustra Ready-To-Go GenomiPhi V2 or V3 DNA Ampli-

fication Kits (GE) use random hexamers, whereas the

TruePrime™ Single Cell WGA Kit (Sygnis Biothech) uses

PrimPol, a primase enzyme that synthesises random

short DNA primers. Viral DNA from mock communities

(1 ng) was amplified with a GenomiPhi V2 kit for 2.5 h

following the manufacturer’s instructions. Viral DNA

from saliva samples was amplified with a GenomiPhi V3

kit using different template amounts and amplification

times (Additional file 1: Table S1): MDA_G1 from 1 ng

and 2.5 h; MDA_G2 from 1 ng and 10 h; MDA_G3 from

10 pg and 3.5 h; and MDA_G4 from 10 pg and 10 h. A

TruePrime™ kit was also used to amplify different tem-

plate amounts of saliva viral DNA following manufac-

turer’s instructions: MDA_T1 from 1 ng and 2.5 h;

MDA_T2 from 10 pg and 3.5 h.

Quantitative real-time PCR assays

The composition of mock viral communities was

assessed by qPCR in technical triplicates. Oligonucleo-

tides were designed using Primer3Plus [78] under de-

fault parameters to amplify targeted regions between 80

and 150 bp (Additional file 1: Table S1). Quantification

was performed in 384-well plates with final reaction vol-

umes of 10 μl using two alternative protocols: on a

CFX384 Touch thermocycler (BioRad) with SsoFast Eva-

Green Supermix (BioRad) kit under this temperature

protocol: 30 s at 95 °C + (5 s at 95 °C + 5 s at 60 °C) × 40,

or on an ABI PRISM 7900HT SDS thermocycler with a

QuantiTect SYBR1 Green PCR Kit (Qiagen, Courtaboeuf,

France) under this temperature protocol: 15 min at

95 °C + (15 s at 94 °C + 30 s at 60 °C + 30 s at 72 °C) × 40.

Absolute quantification of nuclease-resistant viral ge-

nomes was performed using serial dilutions of standards

with known copy number as measured by Quant-iT™

PicoGreen® dsDNA Assay and NanoDrop™ 1000 (Thermo

Scientific). The standards consisted of linearized plasmids
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containing the PCR-targeted regions, except for the M13

virus, whose standard was a 650 bp PCR product. Stand-

ard curves, with a 5–7 log-linear dynamic range, showed

R2 values above 0.996 and calculated PCR efficiencies be-

tween 91.21 and 105.82%. Melt curve analysis of products

always showed single peaks; Milli-Q water was used as a

non-template control, with no amplification detected in

all cases. Data from the ABI thermocycler was analysed

using SDS 2.4 software (Applied Biosystems). Mean

quantification cycles (Cq) of each virus in each sample

were converted into absolute concentration (viral

genomes/ml) by interpolation on the standard curve

(linear regression of the log of standard concentration ver-

sus Cq). Graphics were drawn using ggplot2 package

under R 3.2.3 software [79].

Illumina sequencing

Viral DNA from saliva samples was fragmented to average

lengths of 700–1000 bp by sonication with a Biorruptor

Plus (Dioganode), agarose gel extracted, and used to pre-

pare NEBNext® Ultra™ DNA libraries (NEBiolabs), with ten

PCR cycles of amplification in all cases. Sequencing of the

13 viromes was performed in a MiSeq Illumina Sequencer

located at the Parque Científico de Madrid (Madrid, Spain)

using a MiSeq Reagent Kit v3 for 600 cycles. A total of

20,365,123 paired reads (2 × 300 pb; 12.22 Gbp in total)

were obtained with an average of 1,566,548 reads per vir-

ome (Additional file 3: Table S3). Sequences were

pre-processed before de novo assembly. First, SISPA

primers were trimmed using the Biopieces framework [80].

Three overlapping primer substrings of 15 nt were used as

queries for the find_adaptor tool, allowing one error for pri-

mer identification. Quality filtration was performed with

PrinSeq 0.19.3 Lite [81] with the following parameters:

-ns_max_p 1 -ns_max_n 3 -trim_ns_left 1 -trim_ns_right 1

-trim_qual_left 20 -trim_qual_right 20 -trim_qual_type

mean -trim_qual_window 2 -trim_qual_step 1 -lc_method

entropy -lc_threshold 50 -min_qual_mean 20 -min_len 100

-out_format 1. Contaminating sequences were identified

and removed from further analyses by Bowtie2 alignments

[82] against the human genome (Genome Reference

Consortium Human Build 37 (GRCh37)), a vector dataset

(UniVec) and the phiX174 genome (NC_001422.1), under

default parameters. Finally, prokaryotic DNA contamin-

ation was estimated for a subset of 100,000 randomly se-

lected reads (trimmed to 250 bp) from saliva viromes and

from six available saliva metagenomes [83] by BLASTn

searches (e value < 1e−10) against Silva-119 database.

De novo assembly and contig analyses

Subsamples of 500,000 reads were randomly selected

from each metagenome using the random_records tool

(Biopieces framework) to perform cross-assembly with

the SPAdes genome assembler v.3.6.2 [84] and the next

kmers lengths: 21, 33, 55, 77, 99 and 127. A total of

2557 cross-contigs larger than 2 kb were obtained when

subsamples from Unamp1, MDA_G1–4, MDA_T1–2

and SISPA1–2 were combined. In a second

cross-assembly, 4584 contigs larger than 2 kb were as-

sembled from the 13 available viromes. The impact of

the amplification strategy on de novo assembly metrics

was assessed for 200,000; 600,000; and 1,200,000 ran-

domly selected reads from each virome. The circular na-

ture of the contigs was assessed following two

alternative strategies, looking for reads in the metagen-

omes simultaneously matching the 5′ and 3′ contig

ends: Minimus2 with default parameters from the

AMOS package v.3.1.0 [85] and a custom script based

on two-direction BLASTn comparisons between contig

ends and reads. Only alignments with a minimum over-

lap of 60 nt and no more than three mismatches and

two indels were considered. In addition, we accepted the

presence of BLAST hits to small circular viral genomes

or plasmids as a valid criterion to identify circular

viruses. For that, ORFs were extracted with the Prodigal

v2.6.3 tool [86] and significant best BLASTx hits (e value

< 10−3) against the GenBank non-redundant 90 (release

220), and viral protein (downloaded from NCBI in

August 2017) databases were computed. The best

BLASTx hit among ORFs from the same contig was also

used for taxonomic assignment.

Comparisons of contig profiles among viromes

To compute contig abundance and coverage profiles,

reads were aligned to cross-contigs using Bowtie2 under

strict alignments parameters (–np 0 –n-ceil L,0,0.02

–rdg 0,6 –rfg 0,6 –mp 6,2 –score-min L,0,-0.2), allowing

> 96% identity along the total read length. Coverage pro-

files were extracted with SAMtools mpileup [87], and

cross-contig abundance was normalised by dividing the

number of aligned reads by contig length (in kb) and per

million reads (RPKM). Trifonov linguistic complexity

[88] was calculated in windows of 50 nt and steps of

20 nt with a custom script. Preferential binding sites

along contigs for the primers used in SISPA were

assessed by looking for 8 nt substrings of the last 15 nt

at the 3′ end of each primer. Pearson’s correlations were

calculated among coverage profiles of each contig using

reads from amplified and unamplified viromes and the

stats package in R. Coefficients of variation of contig

coverage were computed as the standard deviation of

coverage at each nucleotide position (excluding the 5%

terminal positions) divided by the mean contig coverage.

Lorenz curve analysis was addressed as previously de-

scribed [89]. SISPA primers at the 5′ end of R1-reads

were trimmed with Biopieces framework before Bowtie2

alignment to contigs. Those reads trimmed > 35 bps were

considered to have primer-dimers. The percentages of reads
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with primer-dimers were computed in 50 nt windows with

a step of 20 nt using SAMtools and a custom script.

Distances among contigs profiles of saliva viromes

were calculated using Bray-Curtis dissimilarities and

Sørensen indexes, and ordination plots drawn using

non-metric multidimensional scaling (NMDS), available

in the vegan package in R. Graphs were obtained using

graphics, ggplot2 and vegan packages in R. Pearson’s

correlations were also computed among contigs profiles

of viromes using the stats package in R.

Distribution of homologous reads among inter-subject

saliva samples (Sa101, SaC25 and Sa33) and

intra-sample (Unamp1, MDA_G4 and MDA_T2) was

modelled as follows: two randomly selected subsamples

with 10,000 reads from these viromes were

BLASTn-compared in only one direction, and the num-

ber of queries with significant hits (e value < 10−10) was

computed after excluding those with hits to reads from

the same virome. This procedure was repeated across

10,000 iterations, and the Mann-Whitney U test was

used to compare distributions of homologous reads.

Results

Low-speed centrifugation, filtration and random amplification

methods alter composition of mock viral communities

To evaluate the potential effect of purification and ran-

dom amplification methods on metagenomic studies of

viruses, we prepared two mock viral communities

(Table 1), each composed of seven DNA viruses with dif-

ferent morphologic (icosahedral, filamentous, naked and

enveloped viruses with 17–360 nm diameter) and gen-

etic features (circular and linear, ssDNA and dsDNA

genomes). We avoided the use of bacteria as indicator

of contamination because the protocol included two

consecutive low-speed centrifugation steps and 0.45 μm

filtration that reduced the number of colonies in pure

cultures of Escherichia coli, Staphylococcus aureus and

Roseobacter litoralis by at least 7–8 logarithmic units

(Additional file 4: Table S4). To prepare mock communi-

ties with equal amounts of genetic material from the

seven viruses, the number of nuclease-protected ge-

nomes in each viral stock was first determined by abso-

lute qPCR. This quantification strategy avoids

underestimation of ssDNA viruses, which are poorly de-

tected by staining reagents [30], and overestimation of

viruses damaged structurally during stock preservation

or purification. The impact of several independent or

combined viral enrichment steps and random amplifica-

tion protocols were also analysed by qPCR.

Initial proportions of viruses in the mock communities

are shown in Fig. 1a, b (controls); most of the viruses

were evenly distributed in both experiments. However,

mock community 1 showed an unexpectedly low pro-

portion of vaccinia WR genomes compared to the other

viruses (0.26% on average), probably due to the decay of

viral stability during conservation at 4 °C. Mock commu-

nity 2 showed under-representation of PCV2a (0.11% in

average) due to stock exhaustion during mix preparation

(Additional file 5: Table S5).

Low-force centrifugation and filtration reduced the total

amount of nuclease-protected viral genomes (Fig. 1c, d).

In the case of mock community 2, this reduction was due

in part to the 27–150-fold decrease of vaccinia WR ge-

nomes after centrifugation and the > 500-fold reduction of

the same virus detected in two out the three replicates

after 0.22 μm filtration. This negative bias affecting vac-

cinia caused a drastic reduction in its relative abundance

within the mock community (from 22.1–41.8% to

1.4–2.0%) (Fig. 1b). Consistently, vaccinia genomes fell to

nearly undetectable levels during centrifugation and filtra-

tion of mock community 1 (Fig. 1c). Unexpectedly, small

viruses (M13, MVMp and PCV2a) were globally more af-

fected by centrifugation, and to a lesser extent by filtration

and iodixanol cushion, than other larger dsDNA viruses

(lambda, φ29 and AdenoV). Differences in centrifugation

effects between these two groups of viruses across the five

independent experimental replicates were statistically sig-

nificant (p = 0.00082, Mann-Whitney Test) but did not

notably alter the original assemblage composition, as

shown in Fig. 1a, b. In agreement, the combination of

these purification steps in mock community 2 reduced the

amounts of the small viruses by 6.2–10.0-fold. Iodixanol

cushion was the protocol step that best preserved the

mock community structure, with a minimal loss of virus

particles, which was also true for vaccinia WR virus.

Regarding random amplification, we found that the

use of MDA resulted in overrepresentation of small cir-

cular ssDNA viruses (M13 or PCV2a), as previously re-

ported [90]. M13 increased its relative abundance by

1.7–3.6 and 3.0–7.2 times in mock communities 1

and 2, respectively, while PCV2a had 3.2–7.1- and

9.1–14.7-fold overrepresentation in mock communities

1 and 2, respectively. As expected, the lack of a denatur-

ation step during the MDA protocol prevented primer an-

nealing to dsDNA molecules, exacerbating the bias towards

viruses with circular ssDNA genomes (MDA-WD; Fig. 1a).

In contrast, MVMp (and to a lesser extent AdenoV) exhib-

ited consistent decreases (up to ~ 500-fold in the case of

MVMp) in relative abundance across the five experimental

replicates of MDA random amplification.

Importantly, SISPA amplifications provided less

skewed communities, and clearly outperformed MDA in

assemblage uniformity, with relative proportions changes

in the range of ± 2-fold. The only exception was

AdenoV, which was consistently underrepresented in the

three experimental replicates by a factor of 2.94--

23.6-fold. The loss of AdenoV representation after two

alternative random amplification strategies and of
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MVMp during MDA remains unexplained and deserves

further research.

This benchmark study for assessment bias in mock

viral communities revealed that both simple viral enrich-

ment and random amplification protocols introduce bias

that affects representation.

Comparison of bias induced by random amplification

protocols on human saliva viromes: stochastic bias of MDA

amplification from picograms of template and marginal

influence of extension times

To evaluate the impact of random amplification on

human viromes, we subjected a pooled-saliva sample to

a common viral enrichment protocol and different ran-

dom DNA amplification strategies. By MiSeq (Illumina)

sequencing from the same sample, we obtained nine

metagenomes, including an unamplified virome

(Unamp1), six viromes obtained after amplification with

two commercial MDA kits (GenomiPhi: MDA_G1-4;

and TruePrime™: MDA_T1-2) and another two with

SISPA (SISPA1-2) (Additional file 1: Table S1). Bacterial

contamination was detected in our viromes by BLASTn

searches against a 16S rDNA database, but the percent-

age of 16S-related reads was at least ten times lower

than in saliva microbiomes from healthy individuals

(Additional file 6: Figure S1). De novo cross-assembly of

reads from these nine viromes produced 2557

cross-contigs larger than 2 kb, and their normalised

abundance was expressed in mapped RPKM. Figure 2a

shows the 277 most biased contigs (fold changes > 50 or

< 0.02 relative to Unamp1). MDA viromes derived from

1 ng template showed similar patterns of biased contigs,

with marginal influence by extension time in GenomiPhi

amplification (2.5 and 10 h in MDA_G1 and MDA_G2,

respectively) or random priming strategy (GenomiPhi:

MDA_G1, and TruePrime™: MDA_T1). In contrast,

amplification from 10 pg of DNA template notably

a c e

b d f

Fig. 1 Effects of virus enrichment and random amplification on mock viral communities. Relative proportions of seven DNA viruses (lambda = bacteriophage
lambda; WR = vaccinia WR; phi29 = bacteriophage φ29; AdenoV = human adenovirus 5; M13 = bacteriophage M13; MVMp = Minute Virus of
Mice p; PCV2a = porcine circovirus 2a) from mock community 1 (a) and mock community 2 (b) were assessed by qPCR before and after single
or combined treatments. Two or three independent replicates were tested for each experiment and noted with numbers 1–3. Sample names
include the following identifiers related to treatment: Control, untreated mock assemblage; C, two consecutive centrifugation steps at 3000×g
for 10 min; 0.45 and 0.22, filter pore size (μm) used during syringe filtration; I, iodixanol cushion; MDA, multiple displacement amplification
with GenomiPhi kit; MDA_WD, multiple displacement amplification without denaturation step; SISPA, sequence-independent, single-primer
amplification. Fold change in the total amount of each virus genome before and after a given treatment is shown for mock community 1 (c)
and 2 (d). Fold change in relative viral proportion before and after random amplification treatments is shown for mock community 1 (e) and 2 (f)
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increased the spectra of contigs affected by bias

(MDA_G3, MDA_G4, and MDA_T2) and produced

divergent patterns of biased contigs. Therefore, amplifi-

cations from low DNA input not only introduce more

bias but also increase bias variability. MDA bias patterns

differed from those found in SISPA viromes, likely due

to fundamental differences between isothermal and

PCR-based random amplification methods.

It is well known that MDA based on φ29 polymerase

amplifies small plasmids and circular viral genomes

more efficiently than linear DNA molecules [90]. As de-

scribed above for M13 and PCV2a in our mock commu-

nities (Fig. 1e, f ), the proportion of reads in contigs

assigned to circular ssDNA viruses such as inoviruses,

microviruses and circoviruses increased in viromes

amplified with MDA from 1 ng of template. This

over-amplification was exacerbated when using 10 pg

(Additional file 7: Figure S2). Furthermore, 10/15

MDA_G1 and MDA_G2 contigs with the highest

positive fold change corresponded to small contigs with

overlapping ends, suggesting their circular nature, and

another showed best BLAST hit to a member of

Microviridae family (which have circular genomes)

(Table 2). Systematic bias towards small circular ge-

nomes could also explain over-amplification of many

contigs in MDA_T1 but failed to explain the highly

variable-positive bias observed when 10 pg was used as

template (MDA_G3, MDA_G4 and MDA_T2) (Fig. 2c).

Systematic bias associated with local regions of extreme

GC content skewed human virome composition during

PCR-based and isothermal random amplification

The influence of GC content on random amplification

of human viromes was studied for reads and contigs.

The unamplified virome showed two equivalent peaks of

read abundance, with average GC content of 36 and

51%, respectively. However, all amplification strategies

a b

c

Fig. 2 Impact of random amplification bias on reads and contigs from saliva viromes. a Fold change of normalised cross-contig abundance (RPKM)
between randomly amplified and unamplified viromes are shown. Only those contigs longer than 2 kb with fold change > 50× (green colour) or < 0.02×
(red colour) are depicted. Four amplifications were carried out using a GenomiPhi kit with two different DNA template quantities and
extension times: 1 ng for 2.5 h (MDA_G1); 1 ng for 10 h (MDA_G2); 10 pg for 3.5 h (MDA_G3); and 10 pg for 10 h (MDA_G4). Amplifications
with a TruePrime™ kit were performed from 1 ng for 2.5 h (MDA_T1) and 10 pg for 3.5 h (MDA_T2). SISPA amplifications were carried out with
a single primer (FR26RV-12N; SISPA1) or by pooling the amplification products obtained with three different primers (FR26RV-12N, K-12N, and
454-A-12N; SISPA2). b Relative abundance of reads as a function of their average GC content is shown for unamplified and selected randomly
amplified viromes. c Fold change of 2577 cross-contigs as a function of their average GC content is shown. Small circular cross-contigs are
depicted as blue dots and linear cross-contigs as grey dots. Trend lines obtained by linear regression over two different ranges of %GC are shown
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produced viromes with a higher number of reads accu-

mulated at the second peak, revealing a systematic posi-

tive bias towards reads with average %GC in the range

of 44–58 (Fig. 2b). Conversely, GenomiPhi amplification

protocols promoted under-representation of reads with

average GC content > 60%, while MDA_T1 amplification

underrepresented reads with average GC values < 40%, a

negative bias that was exacerbated in SISPA-amplified

viromes. The 2557 cross-contigs perfectly reproduced

the patterns of over- and under-representation described

for reads (Fig. 2c). Linear regression analyses of fold

changes and average GC content over a range of 30–

55% for non-circular contigs showed steeper slopes in

MDA_T1 and SISPA2 than in MDA_G1 viromes,

whereas the opposite was observed for the GC content

range from 60 to 70% (Fig. 2b).

MDA_T1, followed by MDA_G1, showed the lowest

number of contigs with > 10 or < 0.1-fold changes relative

to Unamp1 (6.2 and 7.6%, respectively). These percentages

of highly biased contigs fell to 4.5 and 6%, respectively,

when only non-small circular contigs within the 35–65%

GC range were analysed. As expected, the proportion of

highly biased contigs of SISPA viromes was insensitive to

the removal of small circular contigs but exhibited a re-

duction similar to MDA viromes when those with extreme

average GC content were not considered. MDA-amplified

viromes from 10 pg of template showed ~ 30% of highly

biased contigs which, in agreement with the stochastic

bias proposed above, and were insensitive to the removal

of small circular contigs or those with extreme GC con-

tent. (Additional file 8: Table S6).

Random amplification under isothermal conditions

outperforms PCR-based amplification in coverage uniformity

Coverage profiles were inspected across the 38 most

abundant contigs, with coverages > 50× in the unampli-

fied virome (Unamp1) as well as in those viromes ampli-

fied from 1 ng of the same DNA template (Fig. 3). As

exemplified by contig_16 and contig_624, MDA pro-

vided more uniform distribution of reads across contigs

than SISPA, which agrees with the multiple

high-coverage peaks found in previously reported

SISPA-amplified viromes [51, 91]. However, coverage

profiles in MDA-amplified viromes also showed low

coverage in regions where unamplified viromes exhibit

even profiles. To further analyse coverage evenness, we

drew Lorenz curves by plotting the cumulative fraction

of the contig covered by increasing read proportions

(Fig. 3b). As expected, curves with the smallest differ-

ence from the theoretical even distribution corresponded

to the unamplified virome followed by MDA, and SISPA

viromes, in this order. To quantify coverage evenness

over a representative number of contigs, we calculated

coefficients of coverage variation for all 38 inspected

contigs (Fig. 3c). By this approach, the highest coeffi-

cients of variation corresponded to contigs from the

SISPA2 virome, which had average values above 1, and

differences from other viromes were statistically signifi-

cant (p < 4.9 × 10−12; Mann-Whitney two-tailed tests).

Differences between contigs from MDA-amplified and

unamplified viromes were also statistically significant (p

= 0.002 for MDA_G1 vs. unamplified and p = 0.0009 for

MDA_T1 vs. unamplified), but their average coefficients

Table 2 Circular nature of most overrepresented contigs in MDA_G1 and MDA_G2 viromes

BLASTx best hit Overlapping ends

Contig* Size (bp) Fold change Species Family e value Custom script Minimus2

1473 3117 2965 Enterobacteria phage I2–2 Inoviridae 1 × 10−9 Yes Yes

917 4832 501 Microviridae Fen7918_21 Microviridae 4 × 10−84 Yes Yes

640 6738 356 Microviridae Fen685_11 Microviridae 3 × 10−24 Yes Yes

732 5884 277 Microviridae IME-16 Microviridae 0 Yes Yes

1041 4332 253 Microviridae IME-16 Microviridae 0 No No

1084 4182 205 Vibrio phage fs2 Inoviridae 2 × 10−21 Yes Yes

45 39,552 168 Dickeya phage Limestone Myoviridae 5 × 10−43 No No

781 5536 153 Ralstonia phage p12J Inoviridae 2 × 10−12 Yes Yes

674 6397 140 Parabacteroides phage YZ-2015a Microviridae 4 × 10−31 Yes Yes

211 18,180 130 Mycobacterium phage DrDrey Siphoviridae 2 × 10−21 No No

218 17,800 114 Bacillus phage AR9 Myoviridae 3 × 10−18 No No

1431 3182 86 Porcine stool-associated circular virus 5 Circoviridae 7 × 10−131 Yes Yes

413 10,049 55 Enterobacteria phage Min27 Podoviridae 1 × 10−18 No No

1465 3125 52 Enterobacteria phage I2–2 Inoviridae 6 × 10−9 Yes Yes

977 4555 50 Gokushovirus WZ-2015a Microviridae 3 × 10−7 No Yes

*Only those contigs with > 50× fold change in MDA_G1 and MDA_G2 are shown
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of variation (under 0.5) were similar to the unamplified

virome (0.3). Consistently, Pearson’s correlation values

between coverage profiles of amplified and unamplified

contigs (Fig. 3d) were lower for SISPA2 than for MDA,

and these differences were statistically significant in

Mann-Whitney two-tailed tests (p < 6.4 × 10−13).

In addition, SISPA viromes showed the lowest

number of mapped cross-contigs (Additional file 9:

Figure S3) and the worst assembly metrics in independ-

ent de novo assembly at several sequencing depths

(Additional file 10: Figure S4). All together, these

results demonstrate a better performance of MDA over

SISPA in terms of genome coverage evenness and

assembly metrics.

Coverage unevenness induced by SISPA is partially explained

by peaks of high coverage in DNA stretches of low sequence

linguistic complexity

SISPA bias in coverage evenness has been previously

ascribed to preferential annealing of the constant 5′

end of the oligonucleotide. Therefore, pooling of

primers has been proposed as a strategy to mitigate bias

[51]. Accordingly, around 20% of high-coverage peaks

were primer-specific, and some of them were sur-

rounded by sequences with identity to the conserved

region of the primer employed (Fig. 4a). However, many

other high-coverage peaks were simultaneously ob-

tained by at least two of the three primers used in the

SISPA2 virome, suggesting the existence of an alterna-

tive source of bias. In agreement, no statistically signifi-

cant differences were achieved between coefficients of

coverage variation for the most abundant contigs

mapped with SISPA reads obtained by a single or pool

of three primers (Fig. 4c). Moreover, pooling three oli-

gonucleotides failed to improve the correlation index

between coverage profiles of SISPA and the unamplified

viromes (Fig. 4d). Importantly, we report here that

SISPA-induced coverage unevenness is caused, at least

in part, by high-coverage peaks in stretches of DNA

with low linguistic sequence complexity. Around 30%

of these abrupt changes in coverage were not

primer-specific but rather corresponded to regions of

diminished sequence complexity, as exemplified by

contigs shown in Fig. 3b. Regardless of the source of

bias, many of the high-coverage peaks were found close

to the ends of the contigs, suggesting that these peaks

of coverage can also hinder de novo assembly as previ-

ously reported [92].

These results indicate that SISPA bias is the result of

the convergence of multiple factors including preferen-

tial annealing of the constant part of the primer and

favoured PCR amplification of DNA regions with low

linguistic nucleotide complexity.

a b

c d

Fig. 3 Evenness of contig coverage in saliva viromes obtained by different amplification methods. a Coverage profiles across the whole length of
two of the most abundant cross-contigs. b Homogeneity of read distribution across contig positions is displayed by Lorenz curves. Dashed line
depicts the perfect theoretical curve. c Coefficients of coverage variation for the 38 most abundant cross-contigs that shared > 50× coverage
among analysed viromes. d Pearson’s correlations among coverage profiles of amplified and unamplified viromes for the same set of cross-contigs;
*p < 0.01; **p < 0.005; and ***p < 0.001
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Minimal impact of random amplification bias on beta

diversity studies of saliva viromes

Random amplification alters the relative abundance of

certain members of mock and natural viral assemblages.

To assess the impact of this bias at the whole commu-

nity level, we computed Bray-Curtis dissimilarities

among viromes based on cross-contig abundance of

normalised mapped reads expressed in RPKMs

(Additional file 11: Table S7). These dissimilarities were

subsequently drawn in NMDS ordination plots. In agree-

ment with the spectra of the most biased contigs

(Fig. 2a), ordination plots showed that viromes obtained

after MDA from 1 ng of template localised closer to the

unamplified virome than those amplified from 10 pg

(Fig. 5a). Furthermore, Pearson’s correlations of

0.69–0.78 were observed between the contig profiles of

Unamp1 and those amplified from 1 ng of template, in-

cluding the SISPA viromes, while correlations with vir-

omes amplified from 10 pg of template ranged from 0.35

to 0.46 (Table 3). Similar results were obtained with the

un-weighted Sorensen index (Fig. 5c), which is more

sensitive to any bias affecting detection of low abundant

individuals. Moreover, nearly the same distribution of

viromes was observed with only 200,000 mapping reads

(Additional file 9: Figure S3).

Importantly, inclusion of two new saliva viromes

(SaC25 and Sa33) from subjects that had not contrib-

uted to the Unamp1 pool sample in a second

cross-assembly (Additional file 12: Table S8) led to a

perfect overlap of Unamp1 and all derived viromes

obtained after random amplification in a Bray-Curtis-

NMDS plot (Fig. 5b). Unamp1 and MDA viromes ampli-

fied from 1 ng of template also clustered perfectly in a

Sorensen-NMDS plot (Fig. 5d). By contrast, the three

unrelated viromes exhibited strong separation in both

NMDS plots, with Bray-Curtis dissimilarity and Soren-

sen index values above 0.98 and 0.65, respectively, and a

near absence of Pearson’s correlation (Additional file 13:

Table S9–S11), reflecting the uniqueness of human saliva

viromes. Moreover, the cluster of Unamp1 and derived

a

b

c d

Fig. 4 Evenness of contig coverage in saliva viromes obtained by SISPA. a Two representative cross-contigs with high-coverage peaks surrounded by
sequences with similarity to the constant part of the primers (coloured triangles) used during SISPA. b Four representative cross-contigs from SISPA
viromes with high-coverage peaks in regions with low linguistic sequence complexity. c Coefficients of coverage variation for the 14 most abundant
contigs sharing > 50× average coverage among analysed viromes. d Pearson’s correlations among cross-contig coverage profiles of unamplified and
de-multiplexed SISPA-amplified viromes; *p < 0.01; **p < 0.005; and ***p < 0.001
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viromes in Bray-Curtis NMDS also included two add-

itional MDA-amplified viromes: one from a subject that

had been a donor for the Unamp1 pool (Sa101), and an-

other obtained from the pooled saliva of seven individ-

uals (Unamp2), six of whom had also contributed to

Unamp1 (Fig. 5b).

Finally, we modelled inter-subject (MDA1-G1, SaC25

and Sa33) distribution of homologous reads (10,000 iter-

ations of BLASTn comparisons between two randomly

selected subsamples of 10,000 reads) as an alternative

measure of distance. This distribution showed a mean

value of 1391.49 ± 86.28 SD homologous reads, which
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Fig. 5 Ordination plots of viromes based on cross-contig abundance profiles. Normalised cross-contig abundances (RPKM) were used to compute
Bray-Curtis dissimilarities (a and b) and Sorensen indexes (c and d) among viromes. a and c Dissimilarity matrices of an unamplified virome (Unamp1)
and eight derived randomly amplified viromes (MDA_G1-4, MDA_T1-2 and SISPA1-2) was plotted following the NDMS ordination system. b and d

Dissimilarity matrices of the coss-contig obtained with the previous nine viromes, together with two new partially related saliva viromes (Unamp2, an
unamplified virome from saliva samples pooled from seven individuals, six of whom also contributed to Unamp1; and Sa101, the GenomiPhi-amplified
saliva virome from a single individual who contributed to both Unamp1 and Unamp2 pool samples), and two unrelated samples (GenomiPhi-
amplified saliva viromes SaC25 and Sa33 from subjects who did not contribute to either of the pooled viromes tested) was also plotted by NMDS. The
NMDS plot at the right of panel b represents dissimilarities among all viromes, excluding S25 and S33 (note the differences in the magnitude of the
axes). Symbol shape indicates viromes from different samples; white, blue and red colours indicate viromes obtained without random amplification, or
randomly amplified by MDA or SISPA, respectively

Table 3 Pearson’s correlations of normalised cross-contig abundances among nine viromes derived from the same saliva sample

Unamp1 MDA_G1 MDA_G2 MDA_G3 MDA_G4 MDA_T1 MDA_T2 SISPA1

MDA_G1 0.76

MDA_G2 0.78 0.99

MDA_G3 0.43 0.63 0.62

MDA_G4 0.35 0.48 0.52 0.29

MDA_T1 0.74 0.92 0.91 0.53 0.35

MDA_T2 0.46 0.45 0.43 0.29 0.23 0.41

SISPA1 0.72 0.64 0.66 0.36 0.23 0.67 0.28

SISPA2 0.69 0.61 0.63 0.36 0.21 0.66 0.26 0.99
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was significantly lower (Mann-Whitney test p value < 2.2E−16)

than the one similarly obtained for three intra-sample

viromes, including Unamp1 and the two most biased

viromes (MDA-G4 and MDA_T2; mean value of

4790.81 ± 63.61 SD).

These results suggest that bias induced by isothermal

and PCR-based random amplification methods even from

picograms of DNA template has a minimal impact on beta

diversity studies of saliva viromes from different subjects.

Discussion

Viruses encompass a wide range of viral morphologies

and chemical constituents, which hinders the establish-

ment of universal protocols for purification of viral ge-

nomes. However, due to sample limitation and the

relatively low amount of viral genetic material in com-

parison to cellular organisms, the combination of viral

enrichment and random amplification protocols is

necessary for metagenomic studies of viruses in

animal-associated environments. Some protocols for the

preparation of human viromes skew the proportions of

different viruses [20, 93], hampering efforts to go beyond

merely descriptive studies. Some published benchmark

studies with mock viral communities have assessed the

relative impact of certain sources of bias. However, many

of them have employed limited sets of viruses that do

not reflect the wide range of morphology, size and gen-

ome type found in DNA viruses in nature, or used

uneven distributions of viruses that might prevent the

identification of some bias sources [18, 32, 33, 37, 94–

96]. In our study, we have focused exclusively on DNA

viruses because they outnumber RNA viruses in human

microbiota. Thus, we have used a mock community

composed of seven diverse DNA viruses to explore the

bias introduced by simple enrichment protocols (which

avoid some of the well-known sources of bias) and sev-

eral random amplification approaches that can deal with

nanograms of input DNA. Preparation of balanced mock

viromes must deal with enormous variability, as proto-

cols for stock preparation and storage can lead to

non-infectious viral genomes enclosed in partially dis-

rupted capsids or envelopes. We have followed an ori-

ginal approach to prepare balanced mock viral

assemblages based on quantification by absolute qPCR

after nuclease treatments. This method accurately quan-

tifies viral genomes protected by intact viral particles.

The same qPCR method was used to monitor viral gains

and losses after four different treatments: low-speed cen-

trifugation, 0.22 and 0.45 μm filtration, and ultracentri-

fugation through an iodixanol cushion.

The total amount of nuclease-protected vaccinia WR

genomes, the largest of the viruses included in our mock

communities, was drastically reduced during the two

steps aimed at reducing bacterial contamination:

0.22 μm filtration and low-speed centrifugation. The

lower impact of 0.45 μm filtration agrees with previous

studies that reported the use of 0.45 instead of 0.22 μm

filters doubled viral yield [38] and provided a better rep-

resentation of large viruses such as phycodnavirus,

mimivirus and herpesviruses [37, 44, 96, 97]. Regarding

bacterial contamination removal, other authors have re-

ported a similar efficiency for 0.22 and 0.45 μm filtration

[36]. In our hands, two consecutive low-speed centrifu-

gation steps combined with 0.45 μm syringe filtration re-

duced the colony-forming units of three pure cultures of

bacteria by > 10 million-fold and reduce at least ten

times the 16S rDNA content in saliva viromes. Complete

physical separation of bacteria and viruses is not possible

because of their overlapping sizes, but our protocol

provides a good equilibrium between removing most

bacteria and including large viruses. A further reduction

in centrifugation speed could be explored in future

studies to better preserve large viruses such as vaccinia,

even more as the increasing output of NGS technologies

minimises the negative consequences of tolerating a

certain level of bacterial contamination.

The subtle but consistent loss of small viruses ob-

served during the viral enrichment steps was unex-

pected; further research is necessary to clarify a putative

role of aggregation of small viruses under these experi-

mental conditions. Iodixanol treatment was the viral en-

richment step that better preserved the community

composition, proving to be a reliable strategy of virus

concentration. Unlike CsCl density gradients, which effi-

ciently separate virus particles from bacteria but deeply

skew viral communities, iodixanol cushions preserve

viral communities but fail to exclude bacteria. Since both

protocols purify viral particles from low-density material

such as free cellular DNA, iodixanol cushions can work

synergistically with subsequent nuclease treatments to

reduce cellular contamination of viromes.

Stochastic or systematic biases have been associated

with all random amplification methods from < 1 ng of

template [51, 53, 55, 62, 71, 98]. However, the impact of

this bias largely depends on the extent of amplification

[99, 100]. In agreement, we found a higher proportion

and more divergent pattern of biased contigs in saliva

viromes obtained by MDA amplification from 10 pg of

DNA template than in those amplified from 1 ng. There-

fore, increasing template amount to the nanogram range

promotes a shift in the type of bias from stochastic to

systematic, reducing dissimilarities with the unamplified

virome, as shown in ordination plots. The systematic na-

ture of MDA bias from nanograms of template makes

pointless the efforts to reduce bias by pooling independ-

ent replicate MDA reactions [101].

Although SISPA and MDA viromes exhibited different

patterns of biased contigs, both methods showed similar
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Pearson’s correlation indexes (0.69–0.78) when com-

pared to the unamplified virome and were located at

similar distances in ordination plots. This relatively bet-

ter performance of MDA in saliva with respect to that

observed in mock communities might be explained by

the lower proportion small circular genomes in the

former, which are usually over-amplified by MDA. In

fact, circular contigs from the unamplified saliva virome

are only mapped by 0.51% of the total reads.

Positive MDA bias towards small circular viral

genomes has been previously quantified as 56× and

212× increases in the relative abundances of two < 2 kb

circular viral genomes in soil samples [58], and in

5.7× and 72.6× for two other slightly larger circular

ssDNA genomes (5.3 and 6.1 kb) from mock communities

[29]. Here, we report a lower MDA over-amplification for

the 6.4 kb circular genome of M13 (3.2–7.2×) and for the

1.8 kb circular genome of PCV2a (3.2–14.7×). The higher

over-amplification of PCV2a over M13 might correspond

to the lower nicking probability of smaller circular mole-

cules. However, an enormous variability in the extent of

the bias was observed in small circular contigs from

MDA-amplified viromes from the same saliva sample.

Since this variability cannot be explained by differences in

GC content or contig length, other unknown factors must

be participating, such as the stoichiometry between small

circular viruses and competing linear templates.

Many of the most over-amplified contigs from MDA

saliva viromes corresponded to small circular genomes;

however, this source of bias had a minor influence on

the global profile of contig abundances, as only two of

these contigs were included among the 200 most abun-

dant viruses of the community. Moreover, Bray-Curtis

dissimilarities between unamplified and amplified

viromes and their relative location in ordination plots

remained unaltered after subtraction of small circular

contigs. Our study also demonstrated that MDA induces

systematic bias against DNA molecules with extremely

low and high GC content, and in turn, over-amplifica-

tion of contigs with average %GC in the range of 45–

60%. This type of bias was also identified after SISPA in

our studies and has been previously reported for MDA

[60–64, 102, 103], LASL [27, 53, 104–106] and in gen-

eral any method based on PCR amplification [67, 68,

107, 108]. Problems with polymerase accessibility or pre-

mature chain termination at the beginning of GC-rich

secondary structures have been hypothesised as the most

likely cause of their under-representation [60, 66]. Due

to the high number of contigs affected, this source of

bias might represent the major force that separates un-

amplified and randomly amplified viromes. Here, we

propose that the different ability to deal with regions of

high or low GC content might explain the observed dif-

ferences between SISPA and MDA viromes. Thus, SISPA

viromes showed a strong negative bias in reads with

%GC between 35 and 40%, while MDA based on ran-

dom hexamers under-amplified sequences with %GC be-

tween 58 and 65%. Interestingly, MDA based on random

primers synthesised by DNA primase activity (MGA_T1)

outperformed SISPA when dealing with DNA molecules

of low GC content, and MDA based on random hexam-

ers when dealing with high GC contigs, as previously re-

ported [71]. These features likely contribute to the

nearly perfect overlap of the MDA_T1 and Unamp1 vir-

omes in ordination plots. Picher et al. recently showed

no differences between the two alternative priming

strategies of MDA in high GC content regions [72].

The discrepancy with our results may be due to the use

of different denaturation strategies, MDA kit suppliers

of MDA based on random priming or template

amounts.

We also identified several biased contigs in saliva vir-

omes that could not be explained by their circular nature

or extreme GC content. Similarly, studies on mock com-

munities amplified by MDA revealed a strong negative

bias against the ~ 5 kb linear ssDNA genome of MVMp.

This genome harbours 43% GC content, excluding any

relationship with the previously described negative bias

towards GC-rich regions. One possible explanation for

under-amplification of small linear templates compared

to longer competitors could be a higher impact of pro-

gressive template size reduction during MDA.

Coverage evenness has been traditionally used to

measure bias induced by random amplification of single

genomes. Comparison of three indicators of coverage

evenness (Lorenz curves, coefficients of coverage vari-

ation and Pearson’s correlation with the unamplified vir-

ome coverage) from 38 abundant contigs revealed a

better performance for MDA than SISPA. This result

was mainly attributable to the presence of multiple

peaks of high coverage detected in many contigs from

SISPA viromes. Although some of these peaks have been

previously ascribed to preferential annealing of the con-

stant part of the pseudo-degenerate primers [50, 109],

only a minor proportion of contigs from our saliva vir-

omes harboured primer-specific peaks. Consequently,

we failed to improve general parameters of coverage

evenness for a set of 14 abundant contigs by pooling

three PCR products obtained with alternative primers.

A more detailed inspection of the high-coverage peaks

detected by at least two of the primers allowed us to as-

sociate many of them with regions of low linguistic se-

quence complexity. Low-complexity sequences are

usually avoided when designing PCR primers [110] or

filtered out in BLAST searches [111] in order to prevent

unspecific annealing or matching, respectively. These se-

quences have also been associated with false-positive

peak calls due to collapsed repeats in ChIP-s and other
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sequencing-based functional assays [112]. In our study,

we ruled out methodological issues based on mapping

or assembling, as high-coverage peaks were obtained by

mapping with Bowtie2 under parameters that forced

reads to be recruited only once, and detailed inspection

of these regions showed no evidence of collapsed re-

peats. Furthermore, intrinsic issues regarding the low

complexity of the template were also excluded because

these peaks were absent in the same contigs mapped

with reads from MDA or unamplified viromes. Although

further research is necessary to understand the molecu-

lar basis of this bias towards low linguistic complexity

sequences, we hypothesise that preferential annealing of

pseudo-degenerate primers to these template regions

might be due to the overrepresentation of primers with

low sequence complexity. It is well-known that primers

with low sequence complexity show favoured stoichiom-

etry for primer-dimer formation, and these dimers might

serve as a template during subsequent rounds of PCR

amplification, increasing their relative abundance over

primers with higher linguistic complexity. Indeed, we

show that > 80% of the reads mapping to these

high-coverage peaks located in regions with low linguis-

tic complexity contain primer-dimers (Additional file 14:

Figure S5). This priming bias, together with the negative

bias of genomes with extreme GC content may hamper

de novo assembly and contribute to skew the relative

contig abundance of SISPA viromes.

Current [27, 64, 70–72, 103, 113] and future efforts to re-

duce the impact of random amplification bias are desirable

and will improve the robustness of longitudinal studies on

human viromes. However, our studies suggest that their im-

pact on inter-subject beta diversity may be negligible, due

to the well-known uniqueness of human viromes [17, 21,

114]. Our inter-subject saliva viromes showed a signifi-

cantly lower proportion of homologous reads than those

shared by intra-sample viromes, regardless of the random

amplification strategy used. This explains why ordination

plots based on Bray-Curtis dissimilarities among

contig-abundance profiles showed that pooled saliva vir-

omes obtained with or without random amplification per-

fectly overlapped in a single cluster, separated from two

other non-related saliva viromes. Furthermore, this cluster

also included the individual saliva virome from a participant

from the pooled saliva sample, even though the pool con-

tained equivalent parts of saliva from six other donors. This

result agrees with previous studies that showed clustering

of saliva viromes from subjects cohabiting in the same

household even though only a small proportion of their

bacteriophages were shared [22, 28, 115].

Conclusions
Monitoring balanced mock communities composed of

seven different DNA viruses by qPCR revealed that

ultracentrifugation through iodixanol cushions, 0.45 μm

filtration and random amplification by SISPA preserve

the original composition of nuclease-protected viral ge-

nomes. By contrast, low-force centrifugation and

0.22 μm filtration led to under-representation of large vi-

ruses, and MDA introduced positive bias towards viruses

with small circular genomes and negative bias towards

small linear genomes.

Comparison of random amplification methods in 13

human saliva viromes (12.22 Gbp) showed that the amp-

lification grade, but not the extension time, was the

major source of bias. Thus, stochastic bias observed by

amplification from 10 pg of DNA template became sys-

tematic when using 1 ng. MDA over-amplification of

small circular genomes explains many of the most posi-

tively biased contigs but has a minor influence in viral

communities dominated by dsDNA bacteriophages such

as those found in the oral cavity. In contrast, a negative

bias towards DNA sequences with extreme GC content is

likely the major force behind isothermal (MDA) and

PCR-based (SISPA) systematic bias. MDA priming based

on DNA primase activity provided a better representation

of contigs with high CG content than that achieved by

MDA with random hexamer priming and nearly perfect

overlapping with the unamplified virome in ordination

plots. SISPA viromes showed uneven coverage profiles

with many high-coverage peaks, some of which were pri-

mer specific and thus surrounded by sequences with simi-

larity to the constant part of the primer. However, many

others were not primer-specific and corresponded to re-

gions of low linguistic sequence complexity.

Amplified and unamplified viromes from the same sal-

iva sample exhibited high proportions of homologous

reads and clustered together, separate from unrelated

saliva viromes in ordination plots. Therefore, because of

the uniqueness of human viromes, random amplification

bias has a minimal impact on inter-subject beta diversity

studies.
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