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Abstract

Background: Klebsiella pneumoniae is among the most frequently recovered etiologic agents from nosocomial infections. This 
opportunistic pathogen can generate a thick layer of biofilm as one of its important virulence factors, enabling the bacteria to attach to 
living or abiotic surfaces, which contributes to drug resistance.
Objectives: The resistance of biofilm-mediated infections to effective chemotherapy has adverse effects on patient outcomes and survival. 
Therefore, the aim of the present study was to evaluate the biofilm-formation capacity of clinical K. pneumoniae isolates and to perform a 
molecular characterization using enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) to determine the 
dominant biofilm-producing genotype.
Patients and Methods: In the present study, 94 K. pneumoniae isolates were obtained from two hospitals in Tehran, Iran. Biofilm formation 
was assayed by a modified procedure, then ERIC-PCR was carried out.
Results: The distributions of the clinical specimens used in this study were 61.7% from urine, 18.1% from wounds, 11.7% from sputum, and 
8.5% from blood. Among these isolates, 33% formed fully established biofilms, 52.1% were categorized as moderately biofilm-producing, 
8.5% formed weak biofilms, and 6.4% were non-biofilm-producers. Genotyping of K. pneumoniae revealed 31 different ERIC types. Biofilm-
formation ability in a special ERIC type was not observed.
Conclusions: Our results indicated that an enormous proportion of K. pneumoniae isolated from sputum and surgical-wound swabs 
produced fully established biofilms. It is reasonable to assume the existence of a relationship between the site of infection and the 
formation of biofilm. A high level of genetic diversity among the K. pneumoniae strains was observed.
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1. Background

Biofilm-forming bacteria are often seen on the surfaces 

of tissues (1-3) and biomaterials at sites of persistent in-

fection (4, 5). Medical implants and catheters are particu-

larly susceptible to biofilm formation because immune 

responses are significantly reduced in proximity to for-

eign bodies (6, 7). In fact, biofilm formation is a main cause 

of implant failure and often limits the lifetime of many 

indwelling medical devices (8). Biofilms protect microor-

ganisms from opsonization by antibodies, phagocytosis, 

and removal via the ciliary action of epithelial cells (5). In 

addition, bacterial populations in biofilms are consider-

ably more resistant than free-living planktonic cells are 

to antibacterial agents (9, 10). Therefore, treatment of an 

infection after a biofilm has been established is frequently 

futile with the current therapy options (11).

Klebsiella pneumoniae is frequently found in a variety 

of environmental niches, such as soil, vegetation, and 

water, including the drinking-water distribution system. 

It is also an important nosocomial pathogen involved in 

urinary tract infections, hospital-acquired pneumonia 

(HAP), ventilator-associated pneumonia (VAP), surgical-

wound infection, bacteremia, and septicemia (12-14). In-

terestingly, previous studies reported a high frequency of 

opportunistic infections caused by K. pneumoniae among 

persons with certain debilitating medical conditions, 

such as diabetes mellitus or bladder neuropathy (15, 16).

The most important virulence factors contributing to 

K. pneumoniae pathogenesis with regard to the severity 

of its infections are capsular polysaccharides, type 1 and 

type 3 pili, which can contribute to biofilm formation (14, 

17, 18). The first biofilm-forming K. pneumoniae strain was 

described at the end of the 1988s (19). These bacteria can 
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produce a thick layer of extracellular biofilm as a virulence 

factor that helps the organism attach to living or abiotic 

surfaces, preventing the effects of antimicrobial agents 

(20). For these reasons, detailed knowledge about biofilm 

formation and biofilm-producing bacteria is necessary for 

the management and treatment of related infections. In 

addition, the determination of genetic diversity for domi-

nant species identification can be useful for preventing 

the spread of infection in hospitals. Knowing the domi-

nant genotype of isolates can be helpful for the identifica-

tion of the source of an infection, and for implementing 

preventive procedures and applying infection control.

2. Objectives

The present study was designed to evaluate biofilm de-

velopment among K. pneumoniae clinical isolates, and to 

perform molecular genotyping using the enterobacterial 

repetitive intergenic consensus-polymerase chain reac-

tion (ERIC-PCR) method.

3. Patients and Methods

3.1. Bacterial Isolation and Identification

In the present study, 94 K. pneumoniae strains were isolat-

ed at two hospitals in Tehran from February to July 2014. The 

K. pneumoniae strains were recovered from blood, sputum, 

surgical wound swabs, and urine samples of hospitalized 

patients. Definitive identification of isolates was performed 

using conventional biochemical tests (21). After recogni-

tion, the K. pneumoniae strains were stored in tryptic soy 

broth (TSB) (Merck Co., Germany) with 10% glycerol at -70°C. 

All isolates were freshly subcultured on brain-heart infu-

sion (BHI) agar (Merck Co., Germany) prior to every analysis.

3.2. Biofilm Model

Fresh colonies of K. pneumoniae isolates were used to in-

oculate 5 mL of brain-heart infusion (BHI) broth medium 

(Merck Co., Germany). The cultures were incubated for 18 

hours at 37°C with shaking at 200 rpm. Following incuba-

tion, the amount of cells in each culture was quantified 

and adjusted to 0.5 McFarland (1.5 × 108 CFU/ml), and 200 μl of each bacterial suspension was transported into eight 
wells of a 96-well microtiter plate containing BHI broth. 

Staphylococcus epidermidis RP62A and Pseudomonas aeru-

ginosa PAO1, both of which are well-recognized as biofilm-

forming strains, were used as two positive controls in 

the biofilm assays. Sterile BHI broth was incorporated as 

a negative control. A 96-peg plate was then located in the 

wells of the microtiter plate, allowing the pegs to be sub-

merged within the bacterial culture. The inoculated peg 

plate was relocated to a 96-well microtiter plate contain-

ing fresh BHI broth. The inoculated microtiter plates were 

incubated on a shaking platform at 37°C for two days, per-

mitting mature biofilms to be established. Each biofilm as-

sessment was repeated on two distinct occasions.

3.3. Semi-quantification of Biofilm Biomass

The biofilm biomass assay was semi-quantified after the 

modification of a procedure described by Mowat et al. (22). 

After incubation, the peg plate was removed from the mi-

crotiter plate, then washed with PBS to remove planktonic 

free-floating cells that were weakly attached to the surface. 

The cells were dried for 30 min at 37°C. Each replicate peg 

was stained with 0.5% (w/v) crystal violet for 5 min, and 

surplus crystal violet was eliminated by carefully rinsing 

the peg plate under running distilled water. The stained 

biofilms were decolorized by the addition of 100 ml of 95% 

ethanol to each well for 1 min. The ethanol was relocated to 

a clean 96-well microtiter plate and the optical density (OD) 

was measured using a microtiter plate reader.

The biofilm-forming capacity of each test isolate was 

compared with the positive and negative controls by ana-

lyzing the absorbance of the crystal violet stain obtained 

for each biofilm. The strains were classified into four 

groups: non-adherent (< 25% absorbance compression 

with positive control), weakly adherent (25% - 50%), mod-

erately adherent (51% - 75%), or highly adherent (76% - 100%), 

depending on the OD of the bacterial biofilm (Table 1).

3.4. Molecular Genotyping

To evaluate the genetic relatedness among the isolates, the 

ERIC-PCR method was performed as described previously 

(23). The banding profiles of the isolates were included in 

different types by visual inspection. An isolate was consid-

ered a different type if its banding pattern differed by two 

or more bands. In other words, isolates were classified as 

identical types when their banding patterns were different 

in one band only (24). The K. pneumoniae genotypes were 

named by K1 to Kn. To determine the similarity rate among 

the obtained types, they were analyzed using the unweight-

ed pair-group method with arithmetic mean (UPGMA).

3.5. Statistical Analysis

SPSS version 22.0 was used for statistical analysis. Chi-

square analysis was used for comparisons between the 

capacity of biofilm production and the type of clinical 

specimen.

4. Results

4.1. Distribution of Samples

Of 94 K. pneumoniae clinical isolates, 58 (61.7%) were 

obtained from urine specimens, 17 (18.1%) from surgical 

wounds, 11 (11.7%), from sputum, and 8 (8.5%) from blood.

4.2. Biofilm Formation

Our findings indicated that 93.6% of K. pneumoniae isolates 

formed biofilms. The strains were divided into four catego-

ries as described above. According to the biofilm analysis, 

52.1% (n = 49) of the 94 tested K. pneumoniae isolates were 
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categorized as moderately biofilm-producing strains, 33% (n 

= 31) formed fully established biofilms, 8.5% (n = 8) produced 

negligible biofilms, and 6.4% (n = 6) of the strains were non-

biofilm producers. The K. pneumoniae strains that were 

isolated from sputum, surgical-wound swabs, and urine 

samples had a remarkably greater ability to form fully and 

moderately established biofilms, compared with isolates 

obtained from blood samples (Table 2). high (+++) biofilm-

formation ability among the isolates obtained from spu-

tum was more than other isolates (P < 0.001) significantly.

4.3. ERIC-PCR Typing

Genotyping of K. pneumoniae revealed 31 different ERIC 

types,while 11 isolates were non-typeable because they had 

no banding pattern after PCR reaction and electrophoresis. 

The K1 type was the most common and included 26 isolates, 

followed by type K2,which comprised 19 patterns. The K09 

to K31 types were unique, and each contained one isolate ex-

clusively. Figure 1 indicates the rates of genetic relatedness 

between the obtained ERIC types. The banding patterns of 

31 types are shown in Figure 2.

Table 1. Classification of Biofilm-formation Capacity in 

Comparison With Positive Controls

Biofilm Production, % Classification

< 25 None

25 - 50 Weak

50 - 75 Moderate

> 75 High

Table 2. Correlation Between Type of Specimen and Biofilm Formationa

Biofilm 
Formation

Type of Specimen

Blood Sputum Surgical-Wound 
Swab

Urine Total

None (0) 4 (50) 0 (0) 0 (0) 2 (3.5) 6 (6.4)

Weak (+) 3 (37.5) 0 (0) 1 (5.9) 4 (6.9) 8 (8.5)

Moderate (++) 1 (12.5) 3 (27.3) 5 (29.4) 40 (68.9) 49 (52.1)

High (+++) 0 (0) 8 (72.7) 11 (64.7) 12 (20.7) 31 (33)

Total 8 (100) 11 (100) 17 (100) 58 (100) 94 (100)
aData are presented as No. (%).

Figure 1. Dendrogram Indicating the Genetic Relationships Among ERIC Types of K. pneumoniae Isolates

K01

K02

K29

K03

K04

K25

K19

K05

K06

K36

K28

K27

K31

K07

K11

K21

K22

K23

K10

K12

K13

K16

K20

K17

K18

K24

K08

K09

K14

K15

K30

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

The highest similarity coefficient was associated with the K05 and K06 types (90% similarity). K30 had less than 5% genetic similarity to other types.
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Figure 2. Photograph of Different ERIC Types of K. pneumoniae Isolates

SM, size marker (100bp).Other lanes indicate ERIC-PCR banding patterns.

5. Discussion

In the present study, we assayed the capacity for biofilm 

production in isolates of K. pneumoniae obtained from 

clinical specimens. Our findings indicated that an enor-

mous proportion (more than 93%) of isolates were bio-

film-producing strains. Biofilm-forming bacteria cause 

infections, such as catheter- and implant-related infec-

tions, as well as life-threatening disorders in patients with 

cystic fibrosis, chronic wounds, and chronic otitis media. 

These bacteria affect millions of people around the world 

every year, with a high mortality rate (25). The ability of 

nosocomial opportunistic microorganisms such as K. 

pneumoniae to produce biofilms on host-tissue surfaces 

is a critical stage in the development of infection. Biofilm 

formation affects the efficacy of antimicrobial therapies 

and the outcomes of subsequent infections (18, 26).

Yang and colleagues conducted a study in 2008 on bio-

film formation by K. pneumoniae strains isolated from 

urine samples, sputum, wound swabs, and blood (27). 
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They found that 62.5% of the isolates generated biofilms, 

which is less than the results obtained in our study. This 

may be due to differences in geographical area and sam-

ple size. Saeed and colleagues evaluated biofilm forma-

tion in three K. pneumoniae strains, and showed that all of 

them produced biofilms (28). The reason for the discrep-

ancy in our results compared to their findings may be 

due to their small sample size (n = 3). Some studies, such 

as one by Saxena et al., evaluated biofilm production in 

other bacteria by assessing biofilm formation in P. aerugi-

nosa with the qualitative tube method (29). The findings 

revealed that 20%, 21.25% and 58.75% of the isolates, respec-

tively, were highly potent biofilm producers, moderate 

producers, or weak/non-biofilm producers. According to 

these results, the ability of K. pneumoniae strains to form 

biofilms may be higher than that of P. aeruginosa strains.

Clinical observations and experimental investigations 

have clearly confirmed that in most cases, antibiotic 

therapy alone is inadequate to eradicate biofilm-forming 

infections (30). Consequently, the successful treatment 

of biofilm-associated infections with currently accessible 

antibiotics, and the evaluation of outcomes, has become 

important and urgent for clinicians.

PCR-based fingerprinting techniques, such as ERIC-PCR, 

are quick methods for typing the strains of K. pneumoniae. 

The ERIC-PCR method is most reliable when two or more 

band differences are used as the cutoff (24). In the pres-

ent study, this method was used for molecular typing of 

K. pneumoniae isolates from two hospitals in Tehran. Most 

of the type K1 strains (20 out of 26) were isolated from uri-

nary infections at one hospital, where the most prevalent 

nosocomial type was K1. Strong genetic similarity was seen 

between the K5 and K6 types, which were both obtained 

from the same hospital. The highly heterogeneous strains 

were most often isolated from urine, followed by wounds.

Cartelle et al. indicated that ERIC-PCR has a discrimi-

natory power similar to that of pulsed-field gel electro-

phoresis (PFGE). Therefore, itis an acceptable technique 

for molecular classification compared to PFGE, as a gold 

standard method (24). In a previous study performed on 

various clinical samples, a high level of genetic diversity 

among K. pneumoniae strains was reported, which is simi-

lar to the results of the present study (31). This heteroge-

neity may be due to the survival of K. pneumoniae on dry 

surfaces in the hospital environment, making accidental 

contamination of patients possible.

In our study, we did not observe any correlation between 

ERIC type and biofilm formation; in other words, the abil-

ity of biofilm formation in a specific ERIC type was not 

seen. Our results were in contrast with those of Diago-

Navarro et al., who showed that the K. pneumoniae isolates 

with a strong capacity for biofilm formation were classi-

fied in a particular sequence type (32). This contradiction 

may be related to differences in typing methods. There-

fore, according to Diago-Navarro et al.’s study, multilocus 

sequence typing can be helpful in the determination of 

the dominant types of biofilm-producer isolates. Biofilm 

formation is an important cause of bacterial resistance to 

the immune system and to antibacterial agents (5, 9). New 

approaches, such as photodynamic therapy and the utili-

zation of medicinal plants, have recently been introduced 

against bacterial biofilms (33, 34). We suggest the use of 

these strategies to eliminate biofilm-producing bacteria 

from the hospital environment and to treat infections.

In conclusion, our results showed that an enormous 

proportion of K. pneumoniae isolates from sputum and 

surgical-wound swabs produced fully established bio-

films. In contrast, K. pneumoniae strains isolated from 

blood exhibited weaker tendencies to form massive bio-

films. Given these findings, there is reason to assume a 

relationship between infection and biofilm formation. 

In molecular genotyping, no correlation between ERIC 

types and biofilm-formation ability was observed. There-

fore, other molecular genotyping methods are useful. 

Supplementary research into the mechanisms of biofilm 

formation in K. pneumoniae, as well as the design and use 

of new and effective approaches, will ultimately aid in 

the treatment of biofilm-mediated infections and in the 

reduction of morbidity and mortality in patients suffer-

ing from life-threatening nosocomial infections.
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