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Abstract 

The anterior cingulate cortex (ACC) is a critical region of the brain for the emotional and 

affective components of pain in rodents and humans. Hyperactivity in this region has been 

observed in neuropathic pain states in both patients and animal models and ablation of this 

region from cingulotomy, or inhibition with genetics or pharmacology can diminish pain and 

anxiety. Two adenylyl cyclases (AC), AC1 and AC8 play an important role in regulating 

nociception and anxiety-like behaviors through an action in the ACC, as genetic and 

pharmacological targeting of these enzymes reduces mechanical hypersensitivity and anxiety-

like behavior, respectively. However, the distribution of these ACs in the ACC has not been 

studied in the context of neuropathic pain. To address this gap in knowledge, we conducted 

RNAscope in situ hybridization to assess AC1 and AC8 mRNA distribution in mice with spared 

nerve injury (SNI). Given the key role of AC1 in nociception in neuropathic, inflammatory and 

visceral pain animal models, we hypothesized that AC1 would be upregulated in the ACC of 

mice following nerve injury. This hypothesis was also founded on data showing increased AC1 

expression in the ACC of mice with zymosan-induced visceral inflammation. We found that AC1 

and AC8 are widely expressed in many regions of the mouse brain including the hippocampus, 

ACC, medial prefrontal cortex and midbrain regions, but AC1 is more highly expressed. 

Contrary to our hypothesis, SNI causes an increase in AC8 mRNA expression in NMDAR-2B 

(Nr2b) positive neurons in the contralateral ACC but does not affect AC1 mRNA expression. 

Our findings show that changes in Adcy1 mRNA expression in the ACC are insufficient to 

explain the important role of this AC in mechanical hypersensitivity in mice following nerve injury 

and suggest a potential unappreciated role of AC8 in regulation of ACC synaptic changes after 

nerve injury. 
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Introduction 

Adenylyl cyclases (ACs) catalyze the formation of cyclic AMP (cAMP) which is a key signaling 

molecule regulating the activity of protein kinase A (PKA) (Kandel, 2012). In addition to other 

actions such as phosphorylation of transcription factors, PKA plays an important role in 

regulating neuronal excitability by phosphorylating voltage gated ion channels, and it also 

regulates synaptic plasticity by coordinating trafficking and channel kinetics of ionotropic 

glutamate receptors including AMPA and NMDA receptors (Kandel, 2012; Wang and Zhang, 

2012). There are 10 ACs (Adcy gene family) in most mammalian genomes (Kandel, 2012).  

Nine of these are  membrane-bound ACs with 12 transmembrane segments ACs (1-9) and one 

is a soluble AC (sAC), each of these enzymes exhibits different regulatory properties and 

expression patterns (Sadana and Dessauer, 2009). Canonical activation of these ACs involves 

stimulation of a G protein-coupled receptor that signals via a Gαs subunit to bind and activate an 

AC enzyme. AC1 and AC8, which are predominantly expressed in the CNS, are known to be 

stimulated by Ca2+, in a calmodulin-dependent manner, and are commonly referred to as Ca2+-

sensitive ACs (Xia and Storm, 1997; Wang and Zhang, 2012).  In line with this neuron-specific 

expression, these ACs play specialized roles in synaptic plasticity in the spinal cord and brain of 

rodents (Wang et al., 2011; Griggs et al., 2019) where they augment NMDAR currents upstream 

of PKA phosphorylation of these channels (Liauw et al., 2005; Wang and Zhang, 2012). Genetic 

knockout of AC1 in mice demonstrates an important role for the Adcy1 gene in chronic 

hypernociception that occurs after nerve injury or other injuries (Vadakkan et al., 2006; Xu et al., 

2008; Wang et al., 2011; Corder et al., 2013; Griggs et al., 2019; Zhou et al., 2021). Genetic 

knockout of Adcy8 suggests a specialized role for this enzyme in anxiety-like behavior in mice 

(Bernabucci and Zhuo, 2016) but does not support a role in mechanical hypersensitivity after 

inflammation, although formalin nocifensive behavioral responses are attenuated in mice lacking 

the Adcy8 gene (Wei et al., 2002). 

AC1 promotes mechanical hypersensitivity via an action in the spinal cord and in the anterior 

cingulate cortex (ACC) of mice (Liu et al., 2020) and plays a critical role in inflammatory, 

muscle, visceral and neuropathic injury models, and in promotion of latent nociceptive 

sensitization (Vadakkan et al., 2006; Xu et al., 2008; Wang et al., 2011; Wang and Zhang, 2012; 

Corder et al., 2013; Qiu et al., 2014; Brust et al., 2017; Griggs et al., 2019; Liu et al., 2020; Zhou 

et al., 2021). Small molecule inhibitors of AC1 have been developed, such as NB-001 and 

ST034307, and these molecules reverse mechanical hypersensitivity behaviors in mice and 

rats, consistent with the notion that AC1 promotes pain through synaptic plasticity mechanisms 

in the CNS (Wang et al., 2011; Brust et al., 2017; Cheng et al., 2019; Griggs et al., 2019; Zhou 

et al., 2021). Direct injection of NB-001 into the ACC inhibits mechanical hypersensitivity in 

multiple mouse pain models in both sexes (Wang et al., 2011; Liu et al., 2020; Zhou et al., 

2021), suggesting that AC1 activity in the ACC is a key site for promotion of persistent pain. The 

ACC has long been recognized as an important brain region for the affective component of pain 

(Talbot et al., 1991; Rainville et al., 1997; Hofbauer et al., 2001).  This is further supported by 

the fact that anterior cingulotomy has been recognized as a surgical option for the management 

of intractable cancer and non-cancer pain in humans (Hassenbusch et al., 1990; Wilkinson et 

al., 1999). Collectively, these lines of evidence makes AC1 an attractive potential target for pain 

therapeutics. 

While Ca2+-sensitive ACs, encoded by Adcy1 and Adcy8, are recognized as important 

mediators of chronic changes in nociception in animal models (Wang et al., 2011; Wang and 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.29.462423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462423
http://creativecommons.org/licenses/by-nc/4.0/


 3 

Zhang, 2012), their mRNA expression distribution in the frontal cortex has not been examined in 

the context of a neuropathic injury model in male and female mice. In these studies, we used 

RNAscope in situ hybridization to define changes in Adcy1 and Adcy8 expression in cellular 

populations in frontal cortical areas in the spared nerve injury (SNI) neuropathic pain model in 

mice. We find that Adcy1 is widely expressed in important brain regions for pain, where it 

colocalizes with neurons that express NMDA receptors, but only Adcy8 shows increased 

expression in the cingulate cortex in the SNI model. Our work raises the testable hypothesis that 

AC8 may contribute to anxiety in neuropathic pain. 

Methods 

Animals 
All animal procedures were approved by the University of Texas at Dallas Institutional Animal 
Care and Use Committee. Female and male C57BL/6 mice were used for these experiments. 
Mice were 4 weeks of age at the start of experiments. For assessment of expression of markers 
across the mouse brain (experiment 1), a single male mouse was used. For the sham versus 
SNI mouse expression comparison (experiment 2), 12 mice were used (6 sham and 6 SNI) with 
3 males and 3 females per group.  
 
Surgery 
Spared nerve injury was performed by the ligation and cutting of the tibial and peroneal 
branches of the left sciatic nerve trifurcation, leaving the sural branch intact. Sham surgeries 
were performed the same way but without ligating/cutting the nerve. A single injection of the 
antibiotic gentamicin (3mg/kg s.q.) was given immediately following surgery. Mice were allowed 
to recover for 2 weeks following surgery before being assessed for neuropathy.  
 
Mechanical withdrawal threshold 
Tactile sensitivity was measured by probing the left outer surface of the left hind paw with a 
series of calibrated von Frey filaments. Withdrawal thresholds were calculated using the up-
down method (Chaplan et al., 1994). Mechanical withdrawal thresholds were assessed in all 
animals before and after (2 weeks) SNI to confirm neuropathic pain. 
 
Tissue preparation  
Mice were decapitated under isoflurane and the brain was removed and frozen in powdered dry 
ice. The frozen brain was slowly embedded in OCT by adding thin layers of OCT around the 
sample in order to avoid tissue thawing. The OCT blocks were then stored in a -80°C freezer. 
On the day of the experiment, the tissues were removed from the -80°C, placed on dry ice, and 
transferred to the -20°C cryostat chamber for ~30 minutes for temperature acclimation. The 
brain was then sectioned coronally at 20 µm onto charged slides. For assessment of markers 
across the mouse brain, single sections of main regions throughout the brain were kept 
including the medial prefrontal cortex- prelimbic cortex (mPFC - prelimbic), hippocampus (CA1, 
CA2, CA3), dentate gyrus (DG), lateral amygdala (LA), basolateral amygdala (BLA), 
mediodorsal thalamus, medial habenula, septal nuclei, caudate putamen, lateral septum, 
piriform cortex, periaqueductal gray (PAG), retrosplenial cortex, and anterior cingulate cortex 
(Cg1, Cg2). These regions were located by following a mouse brain atlas (Paxinos and Franklin, 
2004) and looking for anatomical landmarks on the specimen.  
For the sham versus SNI mouse experiments, at 3 weeks post-SNI, the animals were 
euthanized and the brains were prepared as described above. 20 µm sections targeting Cg1, 
Cg2 anterior cingulate cortex (Bregma +1.1 mm to -0.22 mm) were kept. While sectioning, a 
hole was made using a needle through the lateral portion of the hemisphere contralateral to 
injury. The slides were stored in a -80°C freezer. 
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RNAscope and Nissl Staining 
On the day of RNAscope experiments, the slide box was removed from the -80°C freezer, 
placed on dry ice, and transferred to the lab. The slides were immediately immersed in cold 
10% formalin (pH 7.4) and processed for RNAscope using the fresh frozen protocol with a 1–2-
minute Protease IV digestion as described by Advanced Cell Diagnostics (ACD; acdbio.com). 
The probes used are shown in Table 1. The combinations used are shown in individual images. 
The DAPI step was not performed on all sections. Instead, following completion of RNAscope, 
the slides were submerged in a coplin jar containing cold blocking solution (10% Normal Goat 
Serum, 0.3% Triton-X 100 in 0.1M Phosphate Buffer (PB)) for 1 hour at room temperature. The 
coplin jar was covered in tin foil to protect the slides from light-exposure. Following blocking, the 
slides were rinsed with 0.1M PB. Each slide was then placed in light-tight humidity control tray 
and Blue Fluorescent Nissl stain (Molecular Probes Neurotrace 435/455; Invitrogen Cat 
N21479) diluted in blocking solution (1:250) was pipetted onto the slide within the hydrophobic 
boundaries. This was performed one slide at a time to prevent tissue drying. The slides were 
incubated for 30 minutes, and then washed in 0.1M PB. The slides were then air dried, cover 
slipped with Prolong Gold and allowed to cure over-night.  

 

 

 

 

 

 

 

Table 1. RNAscope probes 
 
Imaging and Analysis 
Images were acquired on an Olympus FV3000 confocal microscope at 20X magnification. For 
experiment 1, a single image was acquired of all major brain regions listed above. For 
experiment 2, one 20X image was acquired of the contralateral Cg1 and Cg2 from each section, 
and 3-5 sections were imaged per animal (n=6 per group; 3 males and 3 females). The 
acquisition parameters were set based on guidelines for the FV3000 provided by Olympus (gain 
= 1, HV ≤ 600, offset = 4) and only laser power was adjusted. Given that probe intensity varies 
depending on the number of bound amplifiers (thereby, fluorescence intensity is not 
representative of abundance in this technology), each image was acquired using optimal 
settings to best visualize the mRNA puncta as instructed by ACD. Images were 
brightened/contrasted and analyzed in Olympus CellSens (v1.18).  
 
To estimate mRNA abundance in experiment 2, ~25 Nr2b, Adcy1, and Adcy8 co-positive 
neurons were randomly selected across all laminae in each image and their somas (Nissl 
signal) were traced using the polygon ROI tool. The area of Adcy1 and Adcy8 signal within the 
ROI was measured using the Count and Measure tool which highlights the mRNA signal using a 
thresholded detection. A manual threshold was applied to each image so that all mRNA signal 
was highlighted within the ROI. Any signal detected that was smaller than 1 µm was 
automatically not highlighted by the program. Since mRNA puncta is estimated to be ~1.5µm2 in 
size, we divided the area of detected Adyc1 and Adcy8 signal by 1.5 to estimate the number of 
mRNA puncta. The number of puncta was then divided by the area of the ROI (neuronal soma) 
to calculate Adcy1 puncta/µm2 or Adcy8 puncta/µm2.  
 
Statistics 

mRNA ACD Probe Cat No. 
Adcy1 451241-C2 
Adcy8 462041 
Nr2a (Grin2a) 481831 
Nr2b (Grin2b) 417391-C3 
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Statistical tests are described in figure legends. An α value of p < 0.05 was considered 
significant. 
 
Results 
 

We first assessed expression of Adcy1, Adcy8, Nr2a (also known as N-Methyl D-
Aspartate Receptor Subtype 2A; GluN2A; Grin2a), Nr2b (also known as N-Methyl D-Aspartate 
Receptor Subtype 2B; GluN2B; Grin2b) in a single male mouse. Our probe combinations in this 
set of experiments were Adcy1/Nr2a/Nr2b and Adcy1/Adcy8. We chose Nr2a and Nr2b as these 
NMDAR subunits predominate in the forebrain and are important downstream targets of AC 
activity (Liauw et al., 2005). We compared marker expression to the in situ hybridization 
database on the Allen Brain Atlas (ABA) and saw similar probe-specificity in all assessed 
regions. For instance, in the hippocampus, Adcy1 showed low expression in the CA1 and CA3 
subregions but was more pronounced in CA2 and the DG (Fig 1A-B) while Adcy8 had very low 
expression in CA1 (Fig 1B). This pattern closely resembled the ABA expression map (Fig 2C) 
supporting that our probes were target-specific. We saw widespread expression of Adcy1 
throughout the brain and limited Adcy8 expression (Fig 1-2; S Fig 1-4). Adcy1 was highly 
expressed in the cortical areas of the brain including the dorsal (Cg1) and ventral (Cg2) areas of 
the mouse ACC, the prelimbic cortex, retrosplenial cortex c and amygdala, and appeared to co-
express Nr2a and Nr2b (Fig 2; S Fig 1). Adcy1 showed little expression in the caudate 
putamen, medial habenula, medio-dorsal thalamus, and PAG (S Fig 1-2). Adcy1 showed higher 
expression in all brain regions examined than Adcy8 (S Fig 3-4). These results largely parallel 
Allen Brain Atlas (mouse.brain-map.org) and mousebrain.org datasets (Zeisel et al., 2018). 
Additionally, data from the proteinatlas.org shows that AC1 protein expression is higher in the 
human brain than AC8 but both are enriched in brain versus other tissues (Thul et al., 2017). 

After establishing the specificity of these probes, and the overlap of Adcy1 with Adcy8, 

Nr2a and Nr2b expression in many brain regions, we sought to determine if Adcy1 or Adcy8 

mRNA expression was altered in the SNI model of neuropathic pain. SNI surgery was 

conducted, and the presence of mechanical hypersensitivity was established by von Frey 

testing 3 weeks after surgery. SNI mice showed mechanical hypersensitivity compared to sham 

controls (S Fig 5). Brains were taken from mice and then processed for mRNA assessment. We 

examined the ACC because AC1 has been associated with neuropathic pain-like behaviors 

through a mechanism that involves the ACC in mice (Xu et al., 2008; Wang et al., 2011; Brust et 

al., 2017; Zhou et al., 2021). To determine changes in mRNA expression we estimated signal 

abundance in neurons as shown in Fig 3. We used a Nissl staining technique to label whole 

neurons, and then calculated the area of the neuron covered with mRNA signal for each probe 

to estimate abundance (Fig 3A-C). We then used this method to assess changes in Adcy1 and 

Adcy8 mRNA abundance in neurons of the dorsal (Cg1) and ventral (Cg2) areas of the mouse 

ACC on the side contralateral from SNI or sham surgery.  We found an increase in Adcy8 

abundance in neurons of the Cg1 area, but no change in Adcy1 mRNA (Fig 4). In the Cg2 

region neither Adcy1 nor Adcy8 were significantly increased by SNI (Fig 5). We used an equal 

split of male and female animals in these experiments. No sex differences were noted, but the 

sample size was not large enough to directly assess sex differences. 

Discussion 

Our findings confirm that AC1 and AC8 are expressed throughout the mouse brain including 

many cortical regions. AC1 is more widely expressed, corroborating previous brain-wide 

expression mapping studies done by the Allen Brain Institute (mouse.brain-map.org) and the 

Human Protein Atlas (proteinatlas.org). Given the extensive literature on the ACC’s involvement 
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in the affective aspects of pain in people (Hassenbusch et al., 1990; Talbot et al., 1991; 

Rainville et al., 1997; Wilkinson et al., 1999; Hofbauer et al., 2001) and its involvement in 

chronic pain models in rodents as well as the role of AC1/AC8 in modulating injury-associated 

and anxiety-like behaviors in this region (Xu et al., 2008; Blom et al., 2014; Pereira et al., 2014; 

Gu et al., 2015; Kang et al., 2015; Sharim and Pouratian, 2016; Sellmeijer et al., 2018; Deng et 

al., 2019), we investigated whether AC1 and AC8 mRNA expression in this region changed after 

nerve injury. In the SNI mouse model of neuropathic pain, 3 weeks after injury, we found that 

Adcy8 mRNA expression was increased in the dorsal, but not ventral ACC, likely reflecting an 

increase in Adcy8 expression in neurons that either did not express Adcy8 previously, or only 

expressed it on a low level. Based on previous experiments demonstrating increased AC1 

expression in the zymosan visceral inflammation model in mice (Liu et al., 2020), we expected 

to observe increased Adcy1 expression in the dorsal ACC, but our findings did not support our 

original hypothesis. Our findings do not discount that AC1 plays an important role in neuropathic 

pain-like behaviors in mice as both knockout of Adcy1 gene, and inhibition of AC1 with 

pharmacological blockers, reduces neuropathic mechanical hypersensitivity in mice (Wei et al., 

2002; Wang et al., 2011).  

A hypothesis emerging from our findings that could be tested in future experiments is that 

increased expression of Adcy8 in the ACC may be linked to anxiety produced by neuropathic 

pain.  The presence of neuropathic pain in humans often causes comorbid anxiety (Nicholson 

and Verma, 2004). While anxiety caused by peripheral nerve injury has not been consistently 

observed in mouse models (LaGraize et al., 2004; Urban et al., 2011; Sheahan et al., 2017), 

some studies suggest that mice and rats can develop anxiety after nerve injury (Seminowicz et 

al., 2009; Sellmeijer et al., 2018; Li et al., 2021), or develop changes in gene expression 

consistent with anxiety phenotypes (Descalzi et al., 2017). Previous studies using Adcy8 

knockout mice suggest that AC8 may be important for persistent anxiety caused by 

environmental cues (Bernabucci and Zhuo, 2016). A possible interaction of the Adcy8 gene with 

SNI-induced anxiety could be tested in future studies. 

There are several limitations to our study. We were not powered to look at sex differences, but 

we did use mice of both sexes. Given the small experimental variability, we think our findings of 

increased Adcy8 expression in the Cg1 region likely occurs in both sexes.  We only examined a 

single time point after nerve injury, but we chose a time point that is consistent with most 

published studies in the field. Anxiety may develop at later time points after injury (Seminowicz 

et al., 2009), so we may expect greater changes in Adcy8 as time goes on. We did not examine 

potential changes in other brain regions because the existing literature has focused mostly on 

Ca2+-sensitive ACs in the ACC in pain models. Finally, we did not clarify the cell types in the 

ACC that show changes in Adcy8 expression, but these neurons clearly express the NMDAR 

subunit, NR2B. 

We conclude that the extensive literature on the role for AC1 in enhanced nociception after 
injury in mice cannot be explained by increased expression of Adcy1 mRNA in neurons in the 
ACC. This does not discount the possibility that protein levels may increase or that enzyme 
activity might increase due to enhanced Ca2+ signaling in these neurons after peripheral nerve 
injury. Nevertheless, our work highlights a potentially unappreciated role for AC8 that can be 
further explored using transgenic mice or through pharmacological manipulation. The latter may 
require further development of tool compounds as most pharmacological development on Ca2+-
sensitive ACs has focused on AC1. 
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Figure 1. Example of RNAscope Adcy1, Adcy8, Nr2a, and Nr2b probe specificity in the 

brain. We conduced RNAscope in situ hybridization for Adcy1/Nr2a/Nr2b and Adcy1/Adcy8 on 

a single mouse brain. To confirm probe specificity, we compared expression of these markers to 

the in situ hybridization database on the Allen Brain Atlas. A) For example, in the CA1, CA2 and 

dentate gyrus (DG) subregions of the hippocampus, Adcy1 (red), Nr2a (green), Nr2b (white) 

and B) Adcy1 (red), and Adcy8 (green) show differential expression in abundance and region-

specificity C) which closely resembles the expression map found on the Allen Brain Atlas. We 

confirmed there was similar expression in all other assessed regions as well. All other images 

can be found in supplementary figures 1-4. Panel A-B: Images are 20X; scale bar = 50 µm. 

Panel C: scale bar = 210 µm. 
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Figure 2. Adcy1, Adcy8, Nr2a, and Nr2b probe expression in the frontal cortex. We 

conduced RNAscope in situ hybridization for Adcy1/Nr2a/Nr2b and Adcy1/Adcy8 on a single 

mouse brain. A) Adcy1 (red), Nr2a (green), Nr2b (white) and B) Adcy1 (red), and Adcy8 (green) 

in the dorsal anterior cingulate cortex (Cg1), ventral anterior cingulate cortex (Cg2) and medial 

prefrontal cortex (mPFC)-prelimbic area. Adcy1 had higher expression in the cortex than Adcy8 

C) which closely resembles the expression map found on the Allen Brain Atlas (coronal sections 

include Cg1/Cg2). We assessed coronal images of the ABA expression map when available. 

We confirmed there was similar expression in all other assessed regions as well. All other 

images can be found in supplementary figures 1-4. Panel A-B: Images are 20X; scale bar = 50 

µm. Panel C: scale bar = 932 µm. 
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Figure 3. mRNA abundance analysis method. A) Example image of Nissl (cyan), Nr2b 

(green), Adcy1 (blue), and Adcy8 (red) signal in the Cg1 region of the anterior cingulate cortex. 

20x image; Scale bar = 50 µm. B) Zoom-in of area highlighted (white box) in panel A. Scale bar 

= 20 µm. C) Example of how the abundance analysis is conducted on a single neuron (white 

box shown in Panel B). The soma of a randomly selected Nr2b, Adcy1, Adcy8 co-positive 

neuron is traced using the Nissl stain as boundaries. The area of Adcy1 and Adcy8 signal is 

detected using the Count and Measure tool in Olympus CellSens. The area is then divided by 

1.5 µm2, the estimated average size of an mRNA puncta, to approximate mRNA puncta / µm2. 

Scale bar = 2 µm. 
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Figure 4. Adcy1 and Adcy8 mRNA abundance in the dorsal anterior cingulate cortex 

(Cg1). A) 20X images of Cg1 (area between white dotted lines) stained for Adcy1 (blue), Adcy8 

(red), Nr2b (green) and Nissl (cyan) from male and female mice with SNI or sham surgeries. 

Scale bar = 50 µm. B) A cropped zoomed-in image shows mRNA signal in Cg1 neurons. Scale 

bar = 20 µm C) Significantly more Adcy8 mRNA puncta was detected in Nr2b+ neurons in Cg1 

of SNI mice. Unpaired t-test *p<0.05.  

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 1, 2021. ; https://doi.org/10.1101/2021.09.29.462423doi: bioRxiv preprint 

https://doi.org/10.1101/2021.09.29.462423
http://creativecommons.org/licenses/by-nc/4.0/


 17

 

 

Figure 5. Adcy1 and Adcy8 mRNA abundance in the ventral anterior cingulate cortex 

(Cg2). A) 20X images of Cg2 (area below white dotted line) stained for Adcy1 (blue), Adcy8 

(red), Nr2b (green) and Nissl (cyan) from male and female mice with SNI or sham surgeries. 

Scale bar = 50 µm. B) A cropped zoomed-in image shows mRNA signal in Cg2 neurons. Scale 

bar = 20 µm. C) There was no significant difference in amount of Adcy1 nor Adcy8 mRNA 

puncta / µm2 in the Cg2 subregion between SNI and sham mice. Unpaired t-test p>0.05.  
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