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Abstract

Background: Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic

leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34

samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence in

situ hybridization (FISH).

Results: Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other

malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains

and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3,

10q23.31q23.33, 11q22.3, and 22q11.23.

Conclusions: Our results show that microarray analysis will detect known aberrations, including microscopic and

cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic

predictors or treatment targets for CLL in the future.
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Background
Chronic lymphocytic leukemia (CLL), the most common

leukemia diagnosed in adults from Western countries, is

characterized by a monoclonal population of mature

activated B lymphocytes that usually express CD5+ and

CD23+. However, the clinical features, disease course,

and outcomes are highly variable. Most patients diag-

nosed with CLL can survive for many years, but in a

subset of patients the course progresses more rapidly

and is fatal despite aggressive treatment.

Currently, the diagnosis of CLL is made using histo-

pathology; flow cytometry with a typical pattern of co-

expression of CD5, CD23, CD20(dim), and surface Ig

(dim); and chromosomal abnormalities detected by

fluorescence in situ hybridization (FISH) probes and

karyotyping. Conventional cytogenetics with karyotyping

requires the use of an immunostimulatory CpG-oligodi-

nucleotide DSP 30 plus IL-2 cocktail to enhance the

yield of detectable chromosome aberrations in CLL

cells. This cell culturing process is costly, time consum-

ing, and requires the clinical indication of CLL at sam-

ple submission. Alternatively, FISH has been used to

detect specific prognostic chromosome markers in CLL

using a panel of five to six probes. However, locus-spe-

cific FISH does not reveal the complete cytogenetic pic-

ture [1]. Prognostic markers, determined primarily using

FISH, include deletions of 13q, 17p, and 11q and tris-

omy 12. Most anomalies detected by cytogenetics in

CLL are copy number gains and losses; translocations

are rarely identified [2].
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Previously, clinicians waited until patients diagnosed

with CLL progressed to a specific stage to initiate ther-

apy. Rai et al. [3,4] and Binet et al. [5] created staging

systems that, until the past decade, were the hallmark

for defining disease extent, prognosis, and initiation of

treatment of CLL patients. Although these systems were

standard of care, they did not predict the disease course

for early-stage disease. In the past decade, our under-

standing of the pathophysiology of CLL has changed sig-

nificantly with discoveries such as somatic mutations in

the immunoglobulin heavy chain variable region (IGHV)

genes, which are associated with a good prognosis [6,7],

and lack of IGHV mutations and increased CD38 and

ZAP-70 expression, which are associated with poor

prognosis. Along with this has come a change in the

way CLL has been approached therapeutically [8].

Microarray-based comparative genomic hybridization

(aCGH) on neoplastic specimens has facilitated diagno-

sis and gene discovery with the ability to perform gen-

ome-wide investigations [7-18]. These array studies have

shown concordance with the cytogenetic and FISH

results. In addition, these studies demonstrated that

appropriate microarray design can facilitate the detec-

tion of clinically relevant findings that would be missed

using FISH panels. Although promising, most such

microarray studies of CLL to date have been technically

limited by the use of non-targeted BAC arrays [8,9,11],

CGH-based oligonucleotide arrays that have either been

non-targeted [10,19] or targeted to a relatively small

subset of cancer genes or genomic regions (~15) asso-

ciated with cancer [16,20], or SNP-based, whole genome

(non-targeted) arrays [21].

In a novel approach as compared to these previous

array studies, we developed a 135K-feature oligonucleo-

tide-based microarray specifically targeted to more than

1800 cancer genes and regions and evaluated 34 patients

diagnosed with CLL to compare the performance of this

array to that of chromosome analysis and FISH. Our

results further support microarray analysis as a diagnos-

tic tool to detect cytogenetic abnormalities associated

with CLL. In addition to the detection of known chro-

mosomal rearrangements, we identified cryptic and

novel DNA alterations using aCGH.

Results
We tested 34 samples, which had been previously

assessed by routine chromosome analysis and/or FISH,

on a CGH-based microarray designed for detecting copy

gains and losses associated with leukemia and lym-

phoma. Copy number alterations (CNAs) were identified

in all 34 samples (Table 1). Ten of the cases had prior

chromosome analysis, and all of these samples had an

abnormal karyotype. By karyotype, the number of

abnormalities detected ranged from 1 (trisomy 12) to 10

(complex with hypodiploidy) with an average number of

4 abnormalities detected per case. By comparison,

among all 34 cases, the average number of abnormalities

per case by microarray analysis was 4.4. We identified

additional cryptic and/or novel aberrations by aCGH in

20 of 34 (59%) cases (Table 1).

Discussion
Common aberrations identified by microarray analysis

Our results confirm prior studies that show the most

common abnormalities found in CLL and identifiable by

arrays are deletion of 13q14.3, trisomy 12, deletion of

11q22.3 and deletion of 17p13.1.

The 13q14 region has been identified as a recombina-

tion hot spot [9] and includes the RB1, DLEU1, and

DLEU2 genes and microRNAs MIR16-1 and MIR15A.

Deletion of the 13q14.3 region distal to RB1 is the most

common chromosomal abnormality found in CLL [10],

and the DLEU2/MIR15A/MIR16-1 locus has been

shown to play a role in controlling the expansion of

mature B cells by down-regulating the genes that con-

trol entry into the cell cycle [11]. Twenty-two cases had

known deletions of 13q by karyotyping and/or FISH.

Figure 1A shows the 22 cases in which 13q deletions

were detected by microarray analysis. Nineteen samples

had a monoallelic deletion at 13q14.3 ranging in size

from 0.12 to 68.8 Mb, and three of the samples had a

biallelic deletion of 13q14.3 ranging in size from 0.88 to

1.12 Mb. Of the 19 cases with monoallelic deletions, 15

had deletion of RB1, MIR15A, MIR16-1, DLEU2,

DLEU1; two had deletion of DLEU2, DLEU1, MIR15A

and MIR16-1 without deletion of RB1; and one had

deletion of DLEU1, MIR15A and MIR16-1 without dele-

tion of RB1 or DLEU2. Case 23 had a 126-kb deletion

that did not include RB1, MIR15A, MIR16-1, DLEU2 or

DLEU1, although the deletion was seen in 29% of nuclei

by FISH. Of the three biallelic deletions, two retained

RB1 while MIR15A, MIR16-1, DLEU2 and DLEU1 were

deleted, and one had biallelic deletion of MIR15A,

MIR16-1, DLEU2, and DLEU1 and monoallelic deletion

of RB1 (Figure 1B). Case 19 showed a complex and

cryptic pattern with deletions of 13q13.3 and

13q14.2q14.3 and duplications of 13q14.11q14.12,

13q14.3q21.1, 13q21.1q21.2, 13q21.2, 13q21.31q21.32

and 13q21.33q34. Thus, our data and that of others[22]

confirm that aCGH can delineate the sizes and com-

plexities of 13q deletions better than conventional cyto-

genetic and FISH analyses. However, based on FISH

analysis [23], there appears to be no difference in overall

survival between patients with monoalleleic and bialle-

leic deletions. The precision gained in delineating break-

points and the genomic content in regions of deletions

using microarrays has the potential to uncover addi-

tional genomic variation in these patients that might be
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Table 1 Thirty-four samples validated on an oligonucleotide array designed for detection of aberrations in leukemia and lymphoma*

Case Karyotype FISH Concordant array results Discordant array
results

New findings by microarray

1 NA LSI D13S319 96% loss,
LSI 13q34 normal, LSI
ATM normal, CEP 12
normal, LSI p53 normal

13q14.2q14.3(47,613,553-50,628,718) × 1 NA 22q11.23(22,674,846-22,723,991) × 0

2 NA LSI D13S319 77% loss,
LSI 13q34 normal, LSI
ATM normal, CEP 12
normal, LSI p53 normal

13q14.2q14.3(47,123,245-50,443,082) × 1 NA NA

3 NA LSI D13S319 81% loss
(34% mono, 47% bi), LSI
13q34 normal, LSI ATM
normal, CEP 12 normal,
LSI p53 normal

13q13.3q14.3(36,736,548-51,816,512) × 1,
13q14.3(49,315,855-50,237,971) × 0

NA 15q11.2(19,129,891-19,224,501) × 3,
18p11.32q23(123,388-76,100,854) × 3,
22q11.23(22,674,846-22,723,991) × 0

4 NA LSI D13S319 42% loss,
LSI 13q34 normal, LSI
ATM normal, CEP 12
normal, LSI p53 normal

13q14.13q14.3(45,945,097-50,339,992) × 1 NA NA

5 NA LSI D13S319 normal, LSI
13q34 normal, LSI ATM
normal, CEP 12 92%
trisomy, LSI p53 normal

12p13.33q24.33(60,861-132,267,241) × 3 NA NA

6 NA LSI D13S319 97% loss,
LSI 13q34 normal, LSI
ATM normal, CEP 12
74% trisomy, LSI p53
normal

12p13.33q24.33(60,861-132,267,241) × 3,
13q14.3(49,074,574-50,628,718) × 1

NA 19p13.3q13.43(220,598-63,782,017) × 3

7 NA LSI D13S319 91% loss,
LSI 13q34 normal, LSI
ATM 89% loss, CEP 12
normal, LSI p53 normal

11q13.4q24.3(72,459,008-130,030,128) × 1,
13q14.11q21.1(43,421,790-53,019,141) × 1

NA 2p25.3p11.2(44,198-89,912,901) × 3

8 NA LSI D13S319 normal, LSI
13q34 normal, LSI ATM
normal, CEP 12 63%
trisomy, LSI p53 normal

12p13.33q24.33(60,861-132,267,241) × 3 NA NA

9 NA LSI D13S319 normal, LSI
13q34 normal, LSI ATM
normal, CEP 12 63%
trisomy, LSI p53 normal

12p13.33q24.33(60,861-132,267,241) × 3 NA NA

10 NA LSI D13S319 92% loss,
LSI 13q34 12% loss, LSI
ATM normal, CEP 12
normal, LSI p53 normal

13q14.3(49,407,720-50,523,594) × 0~1 Array did not detect
13q34 deletion seen
in 12% of cells by
FISH

12q24.12(110,684,027-110,768,579) × 3
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Table 1 Thirty-four samples validated on an oligonucleotide array designed for detection of aberrations in leukemia and lymphoma* (Continued)

11 NA LSI D13S319 normal,
LSI 13q34 normal,
LSI ATM normal, CEP
12 normal, LSI p53
normal

NA NA 1p31.3(64,811,810-68,404,781) × 3,
1q21.3q23.1(151,852,847-155,280,574) × 3,
2p16.1p15(59,245,962-62,672,016) × 3,
5q35.2q35.3(174,945,789-178,610,160) × 3,
11p15.4p15.3(7,907,684-11,413,676) × 3,
12p13.33p13.31(2,409,808-5,956,328) × 3,
16q24.1q24.2(82,968,178-86,062,471) × 3,
17q22q23.2(53,582,801-57,412,725) × 3,
18q21.32q22.1(57,089,022-60,760,895) × 3

12 NA LSI D13S319 45%
loss, LSI 13q34
normal, LSI ATM
47%, CEP 12 normal,
LSI p53 normal

11q14.1q24.3(79,218,490-128,057,190) × 1,
13q14.11q21.33(43,525,071-71,879,067) × 1

NA Yp11.31q12(2,706,656-57,735,230) × 0

13 NA LSI D13S319 93%
loss, LSI 13q34
normal, LSI ATM
normal, CEP 12
normal, LSI p53
normal

13q14.3(49,457,877-50,339,992) × 0 NA NA

14 NA LSI D13S319 normal,
LSI 13q34 normal,
LSI ATM normal, CEP
12 71% trisomy, LSI
p53 normal

12p13.33q24.33(60,861-132,267,241) × 3 NA 14q24.1q32.33 (68,329,913-105,393,508) × 1,
22q11.23(22,674,846-22,723,991) × 0

15 NA LSI D13S319 89%
loss, LSI 13q34
normal, LSI ATM 98%
loss, CEP 12 normal,
LSI p53 normal

11q14.3q23.2(88,551,231-114,026,260) × 1,
13q14.2q14.3(47,463,489-51,926,538) × 1

NA 2p16.1p14(56,499,065-66,570,230) × 3,
4p16.3p15.1(45,627-29,325,651) × 1,
5q33.2q35.3(152,262,081-180,619,169) × 3,
7q31.32q36.3(123,057,209-158,821,424) × 3

16 NA LSI D13S319 40%
loss, LSI 13q34
normal, LSI ATM
normal, CEP 12
normal, LSI p53
normal

13q14.2q14.3(47,691,117-50,339,992) × 1 NA 1q32.1(203,529,401-204,498,513) × 1,
12p13.33q24.33(60,861-132,267,241) × 2~3

17 NA LSI D13S319 92%
loss, LSI 13q34
normal, LSI ATM 11%
loss, CEP 12 90%
trisomy, LSI p53
normal

12p13.33q24.33(60,861-132,267,241) × 3,
13q13.3q21.1(37,240,922-55,410,522) × 1

Array did not detect
deletion of 11q22.3
seen in 11% of cells
by FISH

5p15.32p15.31(5,388,368-6,879,401) × 1,
10q21.1q21.3(58,227,677-67,149,424) × 1,
10q23.31q23.33(90,215,922-95,066,500) × 1,
11q22.1q22.2(101,471,877-101,736,881) × 1,
Yp11.32q12(1-57,735,230) × 0,

18 NA LSI D13S319 70%
loss, LSI 13q34
normal, LSI ATM 58%
loss, CEP 12 normal,
LSI p53 normal

11q14.1q25(78,733,283-131,062,293) × 1,
13q14.2q14.3(48,739,670-50,554,228) × 1

NA NA
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Table 1 Thirty-four samples validated on an oligonucleotide array designed for detection of aberrations in leukemia and lymphoma* (Continued)

19 NA LSI D13S319 96%
loss, LSI 13q34
normal, LSI ATM 98%
loss, CEP 12 normal,
LSI p53 normal

11q14.3q23.3 (91,814,326-116,080,874) × 1,
13q14.2q14.3(48,774,702-50,765,417) × 1

NA 2p25.3p14(44,198-66,539,084) × 3,
2p14p11.2(66,729,955-88,771,193) × 2~3,
4q32.3q35.2(166,094,098-191,152,793) × 1,
6q16.3q27(102,816,244-170,736,131) × 1~2,
7p22.1p11.2(6,480,544-55,435,373) × 2~3,
8q23.1q24.3(107,914,570-146,263,042) × 3,
11p15.1p14.3(21,533,469-22,367,835) × 1,
11p14.3(22,398,459-24,320,961) × 3, 13q13.3
(37,240,922-38,696,855) × 1, 13q14.11q14.12
(43,995,777-5,551,120) × 3, 13q14.3q21.1
(50,795,724-52,401,010) × 3, 13q21.1q21.2
(55,083,523-58,084,123) × 3, 13q21.2
(59,114,933-59,262,005) × 3, 13q21.31q21.32
(63,478,713-65,130,349) × 3, 13q21.33q34
(67,650,203-114,103,644) × 3, 19p13.3
(220,598-546,817) × 1, 21q22.3(42,101,144-
46,915,771) × 2~3

20 NA LSI D13S319 normal,
LSI 13q34 normal,
LSI ATM normal, CEP
12 66% trisomy, LSI
p53 62% loss

12p13.33q24.33(60,861-132,267,241) × 3,
17p13.3p11.1 (49,128-22,116,415) × 1

NA 22q11.23(22,674,846-22,731,268) × 0~1,
Yp11.2q11.23(8,292,949-26,636,748) × 0

21 NA LSI D13S319 92%
loss, LSI 13q34
normal, LSI ATM
normal, CEP 12
normal, LSI p53
normal

13q14.2q14.3(46,444,224-50,554,228) × 1 NA NA

22 NA LSI D13S319 normal,
LSI 13q34 normal,
LSI ATM normal, CEP
12 35% trisomy, LSI
p53 normal

12p13.33q24.33 (60,861-132,267,241) × 3 NA NA

23 NA LSI D13S319 29%
loss, LSI 13q34
normal, LSI ATM
normal, CEP 12
normal, LSI p53
normal

13q14.3(49,604,393-49,730,034) × 1 NA NA

24 NA LSI D13S319 88%
loss, LSI 13q34
normal, LSI ATM
normal, CEP 12
normal, LSI p53
normal

13q14.2q14.3(46,444,224-50,554,228) × 1 NA NA
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Table 1 Thirty-four samples validated on an oligonucleotide array designed for detection of aberrations in leukemia and lymphoma* (Continued)

25 44~46,X,X,add(1)(p36.1),i(6)
(p10),del(8)(p21p23),add
(12)(p11.2),-13, del(14)
(q12q32),-15, add(17)
(p11.2),+2-6mar[cp11]/46,
XX[9]

LSI D13S319 34%
loss, LSI p53 49%
loss

13q14.2q14.3(47,524,866-50,523,594) × 1,
17p13.3p13.1(49,128-8,581,862) × 1

Array did not detect
del(14)(q12q32) seen
on karyotype; -15
shows complexity on
array

3p21.31(47,218,579-49,437,299) × 1,
5q35.1q35.3(168,342,673-180,619,169) × 3,
6p21.33p12.1(31,649,559-55,535,574) × 1,
7p22.3p15.3(130,978-21,156,763) × 3,
8p23.3p12(177,781-34,695,588) × 1,
8q24.13q24.3(126,709,259-145,344,434) × 3,
15q11.2q13.3(20,372,901-31,359,613) × 3,
15q13.3q15.1(31,388,923-39,994,112) × 1,
15q15.1q21.1(40,049,653-43,331,117) × 3,
15q21.1q22.2(43,385,070-58,614,700) × 1,
15q22.2q26.3(58,646,551-100,217,531) × 3

26 47,XY,+12[cp7]/46,XY[13] LSI D13S319 normal,
LSI 13q34 normal,
LSI ATM normal, CEP
12 77.5% trisomy, LSI
p53 normal

12p13.33q24.33(60,861-132,267,241) × 3 NA 7q34(141,693,456-141,719,136) × 1, 14q22.2
(53,498,118-53,858,816) × 3

27 46,XY,del(11)(q13q23)[5]/
47,idem,+12[8]/46,XY[7]

LSI D13S319 67%
loss, LSI ATM 93%
loss, CEP 12 15%
trisomy

11q13.5q23.3(76,383,882-117,091,784) × 1,
12p13.33q24.33(1-132,349,534) × 3,
13q14.2q14.3(47,172,707-50,586,402) × 1~2

NA NA

28 47,XY,+12[6]/46,XY[14] LSI D13S319 normal,
LSI 13q34 normal,
LSI ATM normal, CEP
12 61% trisomy, LSI
p53 normal

12p13.33q24.33(60,861-132,267,241) × 3 NA NA

29 45,XY,del(13)(q21q34),-17
[3]/46,XY,del(17)(p11.2)[3]/
46,XY[14]

LSI D13S319 normal,
LSI ATM normal, CEP
12 normal, LSI p53
45% loss

17p13.3p11.2(49,128-21,376,245) × 1 Array and FISH did
not detect del(13)
(q21q34) seen in 3/20
cells by karyotype

NA

30 47,XY,+12[4]/47,idem,del
(11)(q13q23)[4]/46,XY[8]

LSI D13S319 normal,
LSI 13q34 normal,
LSI ATM 10.5% loss,
CEP 12 85% trisomy,
LSI p53 normal

12p13.33q24.33(60,861-132,267,241) × 3 Array did not detect
11q22.3 deletion seen
in 10.5% of cells by
FISH and in 4/16 cells
by karyotype

13q12.2(27,492,830-27,493,700) × 3,
22q11.23(22,674,846-22,731,268) × 0

31 44~46,XY,del(6)(q15q23)[6]/
42~44, idem,-3,-4,add(4)
(p14),-8,add(10)(q22),del
(13)(q12q22),add(17)(p11.2)
[cp14]

NA 3p26.3p25.2(88,832-11,601,487) × 1,
3p24.3p21.31(21,821,826-45,382,789) × 1,
3p21.2p14.2(51,631,148-59,828,728) × 1,
3p11.2q21.3(88,616,646-129,821,181) × 1,
3q21.3q25.1(130,955,610-152,751,429) × 1,
4p16.3p14(45,627-39,064,794) × 1, 4p14p12
(40,689,654-48,288,082) × 1, 6q14.1q24.3
(83,060,798-147,519,394) × 1, 8p23.3p21.3
(1-21,077,797) × 1, 8p21.1q12.1(27,859,739-
56,426,895) × 1, 8q12.1q13.1(58,060,709-
66,596,062) × 1, 8q21.13q22.1(81,697,427-
96,822,423) × 1, 8q22.3q24.13(103,345,568-
125,046,236) × 1, 8q24.21q24.3(130,132,793-
141,102,164) × 1, 13q14.12q34(45,300,002-
114,103,644) × 1

NA 10q24.1q25.2(99,015,708-114,057,326) × 1,
11q22.1q23.3(101,560,685-116,463,713) × 1,
16p13.3p13.2(35,819-8,125,327) × 1,
16p13.13p13.12(12,434,601-14,674,345) × 1,
16q21(57,250,542-61,322,202) × 1,
17p13.3p11.2(49,128-21,376,245) × 1,
18q12.3(38,266,239-38,764,068) × 1,
20p13p12.2(517,864-11,841,120) × 1; Array
clarified a deletion on 13q to include
LAMP1
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Table 1 Thirty-four samples validated on an oligonucleotide array designed for detection of aberrations in leukemia and lymphoma* (Continued)

32 45~46,XX,del(17)
(p11.2p13),-20, +mar
[cp16]/45~46,idem,add(3)
(q25)[3]/46,XY[3]

LSI D13S319 72%
loss, LSI 13q34
normal, LSI ATM
normal, CEP 12
normal, LSI p53
79.5% loss

13q14.3(49,378,768-50,262,893) × 1,
17p13.3p11.2(49,128-21,247,183) × 1,
20p13p12.1(1,981,763-15,398,390) × 1,
20p11.21(23,271,365-25,666,747) × 1,
20q11.21q11.22(30,436,259-32,563,890) × 1

NA 3p21.31(46,911,912-49,973,212) × 1,
17q21.1q21.31(35,551,063-37,865,072) × 1

33 45,XY,-4, add(17)(p13)[1]/
44,idem,add(13)(p12),add
(14)(q32),-15, del(20)
(q11.2q13.3)[16]/46,XY[3]

NA 4p16.3p14(45,627-38,504,396) × 1,
4p13q22.3(41,631,408-96,524,997) × 1,
15q11.2q15.1(19,129,891-38,918,282) × 1,
15q21.2q22.2(49,131,112-57,212,181) × 1

del(20)(q11.2q13.3)
not detected by
aCGH

11q22.3q23.2(106,821,962-113,825,965) × 1,
13q12.11(19,508,097-20,625,750) × 1,
17p13.3(49,128-2,779,693) × 1, 17p13.1p11.2
(9,888,292-18,868,118) × 1, 17p11.2
(19,082,873-20,794,597) × 1, 22q11.23
(22,674,846-22,723,991) × 0

34 45,X,-Y[7]/46,XY,add(8)
(p11.2),add(11)(q13)[4]/46,
XY[9]

LSI D13S319 62.5%
loss, LSI 13q34
normal, LSI ATM 31%
loss, CEP 12 normal,
LSI p53 normal

11q13.4q25(72,590,406-134,425,038) × 1,
13q14.2q14.3(47,588,669-50,414,293) × 1

-Y not detected by
aCGH

7p22.3p12.2(130,978-49,815,456) × 3,
8p23.3p12(1-33,376,370) × 1, 22q12.2q13.33
(30,406,286-49,519,766) × 3

aCGH, array-based comparative genomic hybridization; NA, not applicable.

*Rearrangements at the immunoglobulin loci were excluded except for a T-cell receptor loci (13q14.2) and b T-cell receptor loci (7q34) since they can recombine in malignant B cells [19].
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a better predictor of overall survival than what can be

understood based on FISH. For example, it has been

suggested that genomic variation may offer insight into

the potential aggressive behaviors for the disease [12].

Larger deletions that include the RB1 locus have been

proposed to be associated with greater genomic com-

plexity and a more aggressive course. However, in the

current study, several cases (e.g., cases 19 and 32) had

13q14 deletions that did not encompass RB1 and still

presented with complex findings, and other cases had

deletions that encompassed RB1 but lacked significant

complexity. Further studies are warranted to determine

the prognostic value of sizing 13q deletions.

All trisomy 12-positive cases were detected by micro-

array analysis. The percentage of abnormal cells

detected ranged from 15% to 92% (as determined by

FISH). Trisomy 12 was identified by microarray analysis

in one additional case in which FISH analysis was

normal (case 16); follow-up studies on this case were

not possible.

Nine cases had known deletions of 11q22.3/ATM as

determined by FISH and/or karyotype. Eight of these

were identified by aCGH. The deletions ranged in size

from 0.27 Mb to 61.8 Mb. In case 17 with an 11q22.3

deletion not detected by aCGH, the deletion was present

in 11% of the interphase cells scored by FISH. Deletions

of 11q that include ATM were found by aCGH in two

cases that were missed by karyotype: case 31 had a 14.9-

Mb deletion at 11q22.1q23.3, and case 33 had a 7-Mb

deletion at 11q22.3q23.2. FISH was not performed in

either case.

These cases with commonly found abnormalities illus-

trate the ability and limitations of aCGH to detect a

relatively low number of cells with the abnormal clone

(~15%) and to detect aberrations missed by conventional

chromosome analysis and FISH. The high-density

Figure 1 Microdeletions of 13q14.3 detected by microarray analysis. (A) Green bars represent deletion sizes for each case (based on UCSC

2006 hg18 assembly). Cases 3, 10 and 13 had biallelic deletions, represented by navy blue bars. Red boxes represent genes of interest in the

interval. (B) Microarray results for case 3. Microarray analysis showed biallelic deletion of MIR15A/MIR16-1, DLEU2, and DLEU1 (shaded in dark blue)

and monoallelic deletion of RB1 (shaded in light blue). Probes are ordered on the x-axis according to physical mapping positions, with the most

proximal 13q probes on the left and the most distal 13q probes on the right. Values along the y-axis represent log2 ratios of patient:control

signal intensities. Results are visualized using Oncoglyphix (Signature Genomics).
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coverage afforded by the array design used in the cur-

rent study likely contributes to both improved sensitivity

in detecting known lower-level mosaic alterations and

an improved ability to recognize new alterations. How-

ever, lower-level limits of resolution do persist for

aCGH due to the nature of the technology. Thus, even

with the improvements described herein, this assay

should be used only for new diagnoses or relapse and

not for monitoring for minimal residual disease.

Microarray analysis can clarify the karyotypes

Karyotype complexity can be delineated by aCGH. For

example, case 25 had a reported karyotype of monos-

omy 15 with two to six markers. Microarray analysis

identified a series of gains and losses that included

15q11.2q13.3 × 3, 15q13.3q15.1 × 1, 15q15.1q21.1 × 3,

15q21.1q22.2 × 1, and 15q22.2q26.3 × 3. This result

may represent the markers seen by karyotyping,

although FISH was not performed to confirm these find-

ings. For some cases in which karyotyping was not per-

formed, we found highly complex genomic changes (e.g.,

cases 11 and 19).

In several cases, karyotyping showed abnormalities

that should have been detected by microarray analysis

but were not (Table 1). For example in case 29, karyo-

typing showed deletion of 13q that was not detected by

array or locus-specific FISH, and in case 33 karyotyping

showed a deletion at 20q11.2q13.3 in 16 of 20 cells that

was not identified by microarray analysis. These results

may indicate that the karyotype was not interpreted cor-

rectly and that no deletions are present at these loci.

Finally, aCGH clarified the deletion/rearrangement of

17p13.1 identified by prior karyotyping in two cases

(cases 31 and 33). In both cases, microarray analysis

identified a deletion of 17p. In case 31, the deletion

encompasses TP53 that by karyotyping had been inter-

preted as an add(17p). Case 33 also had an add(17p) by

karyotype analysis. Array analysis showed a deletion of

17p, but the deletion does not include TP53. Deletion of

17p is considered an independent prognostic factor with

resistance to treatment, shorter treatment-free interval,

and shorter overall survival [17]. Thus, aCGH can clarify

the chromosome results, and in some cases, the identifi-

cation of a deletion involving TP53 would change the

prognosis for the patient and may be used to alter treat-

ment or patient management. Additional cases in which

the array results changed the prognosis are discussed in

the following section.

New prognostic information obtained by microarray

analysis

In addition to common aberrations, we identified clini-

cally significant or potentially significant gains or losses

that were not known prior to submitting the sample for

array analysis in the majority of cases (20/34), including

trisomy 18 and 19 and deletions of 6q, which are high-

lighted here.

Trisomy 18 and trisomy 19, each seen in separate

cases in our study, are uncommon in CLL. Trisomy 18

generally presents as the sole abnormality or with a kar-

yotype that includes trisomy 12 or trisomy 19 [18]. Tris-

omy 19 in addition to trisomy 12 has been associated

with IGHV gene mutation [13]. In that study of 705

cases of CLL, trisomy 19 was seen in 11 (1.6%) cases, all

of which also had trisomy 12; nine had mutated IGHV

genes. Those cases that did not have trisomy 19 but had

trisomy 12 primarily had unmutated IGHV genes [13].

In our study, trisomy 12 was seen with trisomy 19 in

case 6, although the IGHV mutational status is not

known. In case 3 with trisomy 18, neither trisomy 12

nor 19 was detected.

Large (~64 Mb) deletions of 6q were detected in two

cases, one of which, case 19, was not known prior to

array analysis presumably because chromosome analysis

was not performed. Cases of CLL with deletions of 6q

are characterized by atypical lymphocyte morphology,

CD38 positivity, and intermediate incidence of IgVH

somatic hypermutation [14]. Cases of CLL with deletion

of 6q (specifically at 6q21) are seen in less than 5% of

CLL cases, have been shown to require a more demand-

ing treatment regimen, and have been suggested to

comprise an intermediate-risk group [14,15]. Deletion of

6q with or without other abnormalities may also be pre-

dictive of shorter survival [15].

In four cases (cases 7, 11, 15 and 19) for which only

limited FISH was performed prior to aCGH analysis,

new information was revealed and showed gains of 2p,

which encompassed 2p16.1p15, ranging in size from 3.4

Mb to 89.8 Mb that included the REL and BCL11A

genes. Gains in the 2p16.1p15 region have been asso-

ciated with a poor prognosis and have been seen more

frequently in cases that have deletion 17p- [16],

although we did not see this association. The ability to

perform microarray analysis on residual or archived

material provides an opportunity to analyze the cancer

genome in an unbiased and comprehensive approach.

Novel aberrations identified by microarray analysis

We found 10 novel changes by microarray analysis that

were not identified by karyotype or FISH and that may

have clinical significance. For example in case 17, micro-

array detected additional losses, including a 265-kb loss

on 11q that included BIRC3. This gene is part of the

inhibitor of apoptosis (IAP) family, which plays a role in

apoptosis and the inflammatory process [24] and, when

fused by translocation to MALT1, is associated with

MALT-type lymphoma [25]. Interestingly, we have iden-

tified a novel translocation of BIRC3 to SETBP1 in a

Kolquist et al. Molecular Cytogenetics 2011, 4:25
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separate case of CLL (unpublished observation).

Furthermore, an NF-ĸB inhibitor has recently been

shown to achieve apoptosis induction with potential

therapeutic value for CLL in cases with reduced expres-

sion of BIRC3 [26]. This suggests that BIRC3 status may

be an important factor in determining appropriate ther-

apy and prognosis. However, further investigations are

warranted. A recent publication reported atypical dele-

tions of 11q in patients with CLL [27]. However, their

minimal deletion region, as established by BAC array

analysis, did not include BIRC3, as found in case 17 in

our study.

In six cases (cases 1, 3, 14, 20, 30 and 33), a biallelic

deletion at 22q11.23 of 49 to 56 kb that includes GSTT1

was found by array only (Figure 2). GSTT1, along with

GSTM1 and GSTP1, is part of the glutathione S-trans-

ferase family, which encodes for enzymes that catalyze

the conjugation of reduced glutathione to a variety of

electrophilic and hydrophobic compounds. The enzyme

activity of GSTT1 towards methyl chloride in erythro-

cytes can be measured and placed into three groups:

nonconjugators, low conjugators, and high conjugators.

Nonconjugators are assumed to have the GSTT1-null

genotype and have been noted to have increased geno-

toxic affects such as sister chromatid exchanges after

exposure to toxic agents such as methyl bromide [28].

Individuals with the GSTT1-null genotype have been

shown to be at a increased risk for developing MDS

[22], and polymorphisms in GSTM1 and GSTP are asso-

ciated with a higher risk of developing CLL [29]. Based

on BAC-array analysis, Gunn and coworkers [30] identi-

fied deletions of 22q11.22 involving the genes GGTLC2

and PRAME. This region is proximal to and appears

non-overlapping with the novel deletions reported here

of GSTT1 in 22q11.23.

Additional, novel aberrations included case 11 that

had a 3.6-Mb gain that encompassed 5q35.2q35.3 and

included CDHR2 (Figure 3A), a tumor suppressor

Figure 2 Microarray results for six cases (cases 1, 3, 14, 20, 30 and 33) with a biallelic deletion at 22q11.23 of 49 to 56 kb that

includes GSTT1. Probes are ordered on the x-axis according to physical mapping positions, with the most proximal 22q probes on the left and

the most distal 22q probes on the right. Values along the y-axis represent log2 ratios of patient:control signal intensities. Results are visualized

using Oncoglyphix (Signature Genomics).

Kolquist et al. Molecular Cytogenetics 2011, 4:25
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candidate [31]. In case 17, a 4.8-Mb deletion at

10q23.31q23.33 was identified that includes MIR107 and

FAS (Figure 3B). MIR107 plays a role in inhibiting dif-

ferentiation in granulocytic, monocytic, and B-lymphoid

lines [32], whereas FAS is involved with apoptosis, and

mutations in FAS are known to cause autoimmune lym-

phoproliferative syndrome [33]. Cases 25 and 32 had a

deletion at 3p21.31 of 2.2 Mb and 3.06 Mb, respectively,

that included CDC25A (Figure 3C), which is required

for progression from G1 to S phase in the cell cycle

[34]. Both cases 25 and 32 exhibit deletions of MIR15A/

MIR16-1 and TP53, but not ATM. This may prove to be

related to the acquisition and/or significance of the

CDC25A deletion. Identification of additional cases with

deletions of these novel genes may assist in understand-

ing their potential roles in CLL.

Conclusions
We have used a novel approach of targeting over 1800

cancer feature genes while also providing whole genome

Figure 3 Novel aberrations by microarray. (A) Microarray results for case 11 showing a 3.6-Mb gain (shaded in pink) encompassing

5q35.2q35.3 that includes CDHR2, a tumor suppressor candidate. Probes are ordered on the x-axis according to physical mapping positions, with

the most proximal 5q probes on the left and the most distal 5q probes on the right. (B) Microarray results for case 17 showing a 4.8-Mb

deletion (shaded in blue) at 10q23.31q23.33 that includes MIR107 and FAS. Probes are ordered on the x-axis according to physical mapping

positions, with the most proximal 10q probes on the left and the most distal 10q probes on the right. (C) Microarray results for cases 25 and 32

with deletions (shaded in blue) of 3p21.31 that include CDC25A. Case 25 has a 2.2-Mb deletion, and case 32 has a 3.1-Mb deletion. CDC25A is

required for progression from G1 to S phase in the cell cycle. Probes are ordered on the x-axis according to physical mapping positions, with

the most distal 3p probes on the left and the most proximal 3p probes on the right. For A–C, values along the y-axis represent log2 ratios of

patient:control signal intensities. Results are visualized using Oncoglyphix (Signature Genomics).
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coverage to identify novel changes and delineate break-

points of alterations. Using this approach, we have

shown that such an array design in CLL will identify

cryptic and novel alterations, clarify the karyotype

results and refine breakpoints, which may lead to better

prognostic precision in CLL, and may influence treat-

ment or patient management. This approach is likely

superior to using small, targeted arrays that may miss

important novel changes or high-density, whole-genome

arrays that have arbitrary coverage and may yield find-

ings that are difficult to interpret in the context of the

patient’s disease. Arrays also may be useful for cases in

which the chromosome analysis and FISH results are

discordant with each other, with the pathology, or with

disease course. Because the array uses DNA extracted

directly from the specimen, aCGH may be useful for

cases of tissue culture failure. Finally, microarrays may

be helpful when cytogenetics is negative or ambiguous.

Because CLL rarely involves balanced translocations,

which are not detectable by aCGH, this technology may

be particularly useful for these patients, especially in

understanding the cancer genomes for the 10–20% of

cases representing young patients [35], who exhibit a

significantly reduced life expectancy relative to healthy

controls once symptomatic with this disease [36].

Materials and methods
DNA extraction

DNA was extracted from 34 samples collected from

patients with either newly diagnosed CLL or recurrent

disease. All samples were karyotypically abnormal by

conventional cytogenetics, FISH, or both. The samples

consisted of 22 peripheral bloods, 11 bone marrow aspi-

rates, and one lymph node. The specimens were de-

identified for demographic details but retained data

regarding prior chromosome and FISH analyses. The

protocol of testing of de-identified, discarded specimens

was approved by the Institutional Review Board (IRB)

Spokane, and IRB approval was obtained by the source

laboratories where required by local regulations.

Genomic DNA was extracted from unenriched blood

and bone marrow specimens using the Gentra Puregene

Blood kit (Qiagen, Germantown, MD) according to the

manufacturer’s instructions. Two million cells or 150 μl

(if cell counts were unavailable) of blood or bone mar-

row were used as starting material. Additional cell lysis

solution (Gentra Puregene Blood kit) was added to sam-

ples with high viscosity to ensure complete cell lysis.

Samples were stabilized in cell lysis solution within 24–

48 hours when possible to ensure high-quality DNA for

use on the microarray.

DNA quality was assessed by measuring DNA concen-

tration, 260/280 and 260/230 readings on a Nanodrop

2000 Spectrophotometer (Thermo Scientific, Waltham,

MA). The DNA was also run on a 1% agarose gel with

ethidium bromide to determine if degradation was pre-

sent. To be included in the study, samples had to have

minimal degradation with 260/280 values near 1.8 and

260/230 readings greater than 1.35.

Oligonucleotide microarray labeling, hybridization, and

analysis

Oligonucleotide-based microarray analysis was per-

formed using a 135K-feature whole-genome microarray

(Signature OncoChip™, designed by Signature Genomic

Laboratories, Spokane, WA; manufactured by Roche

NimbleGen, Madison, WI). This microarray targets 1893

cancer features, including genes with known roles in

hematologic malignancies or solid tumors in which dele-

tions or mutations had been previously reported; genes

with suspected roles in cancer based on prior expression

studies without specific evidence of genomic copy

changes; genes with previously speculated roles based

solely upon association with a biological pathway or

gene family; and genes involved in protein and miRNA

coding. The microarray has an average oligonucleotide

coverage of one oligo per 0.2–7 kb for targeted cancer

features with additional genomic backbone coverage of

approximately one oligo per 35 kb. Purified genomic

DNA from the diagnostic specimens was labeled with

Cyanine dye Cy5, and DNA from a chromosomally nor-

mal control was labeled with Cyanine dye Cy3, using a

Roche NimbleGen Dual-Color DNA Labeling Kit

according to the manufacturer’s instructions. Array

hybridization and washing were performed as specified

by the manufacturer (Roche NimbleGen). Arrays were

scanned at 5 microns using an MS 200 Microarray

Scanner (Roche NimbleGen) and analyzed using MS

200 1.0 Scanning Software (Roche NimbleGen), NG

Packager 1.0 (Signature Genomics) and NimbleScan 2.6

(Roche NimbleGen). Results were then displayed using

custom oligonucleotide aCGH analysis software (Onco-

glyphix™, Signature Genomics).
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