
EVALUATION OF CLOSED CRACKS BY ANALYSIS OF SUBHARMONIC 
ULTRASOUND WITH CLOSURE STRESS 
Kazushi Yamanaka, Tsuyoshi Mihara and Toshihiro Tsuji 
Department of Materials Processing, Tohoku University, Japan 
 
Abstract: Cracks in solids can be detected by ultrasound if they are open.  However, their 
detection is not easy when they are closed with a closure stress, and it is a fundamental problem 
in ultrasonic testing.  Subharmonics with half the input frequency is potentially useful in the 
detection and evaluation of such cracks. We developed analytical and numerical theories 
accounting for the crack parameters, such as closure stress and crack surface conditions, for the 
first time and proved their validity by comparison with experiments on a well-defined fatigue 
crack in aluminum alloy. Based on these theories, we propose a novel method to estimate size of 
partially closed cracks, which solves the fundamental problem in ultrasonic testing. 
 
Introduction: Cracks in solids can be detected by ultrasound if they are open [1,2], since the 
ultrasound is reflected or scattered by the crack as shown in Fig.1(a).  However, it is very difficult 
when the crack is closed since the ultrasound is transmitted as shown in (c).  When the crack is 
partially closed with a closure stress, or by oxide films, as shown in Fig.1(b), the ultrasound is 
partially transmitted and the crack detection is not easy.  This has been a fundamental problem in 
ultrasonic testing (UT) of cracks which many researchers have tried to solve without complete 
success. 
To solve this problem, detection of superharmonic signals generated at cracks by the nonlinear 
effect of large amplitude ultrasound (Fig.1(d)), has been expected as the most promising 
approach[3-5]. However, the signal-to-noise (S/N) ratio of superharmonics is not very high, 
because it is generated also in piezoelectric transducers and liquid media, which becomes 
background noise. In particular, it is well known that the ultrasound characteristics in water, used 
in the liquid immersion UT, are highly nonlinear.  
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Fig. 1 Interaction of acoustic wave with 
cracks of different conditions. 

(a) Open crack 
(b) Partially closed crack 
(c) Closed crack 
(d Contact acoustic nonlinearity 
(e) Subharmonics 
(f) DC effect 

 

 
In this respect, subharmonics shown in Fig. 1 (e) [4,5] has much higher S/N ratio than 
superharmonics and potentially useful for accurate sizing of partially closed cracks. Based on the 
theory of nonlinear contact vibration in atomic force microscopy [6,7], we developed a theory for 
subharmonic generation. Unlike others, it can reproduce experimentally observed subharmonic 
signals, employing the van der Waals interatomic force and its extension to interaction between 
larger objects [10]. It can account for the effect of crack parameters, such as closure stress and 
crack surface conditions [8], and proved their validity by comparison with experiments on well-
defined fatigue cracks in aluminum alloy [9].  



 
Theory: A partially closed crack is modelled in Fig. 2 (a).  If a crack plane is divided into 
segments, each segment is represented by a mass and spring. The model of calculation is shown 
Fig.2 (b). Crack plane A is represented by the interaction force curve F  vibrated as )(xf=

ta ωsin  resulting in ) sin( taxfF ω−= . Crack plane B is modelled by the mass m  at 
position  supported by a spring of stiffness k . To calculate subharmonic waveforms, we 
solve,  
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where,  is the position of crack plane B,  is the magnitude of force, M is the repulsive 
force index, N is the attractive force index, 

)(tx 0f
κ  is the weight of repulsive force relative to 

attractive force, and σ  is a characteristic length for crack planes (e.g., interatomic distance, grain 
size or asperity height, etc.). The parameter  represents the equilibrium position of crack plane 
B without the interaction force , and a small value of corresponds to large closure stress.  
The parameters 

sx
)(xf sx

M,κ  and are given in the literature for various shapes of objects [10], as 
listed in Table 1. In this work, we assume that crack planes are a plane and a half space, and thus 
case (3) is employed.  To simulate a semi-rigid wall with negligible attractive force, we let 

N

100=κ  in case (4). 
 
 M N κ  
(1)Lennard-Jones atomic potential 13 7 2 
(2)Sphere－half space interaction 8 2 1/30 
(3) Plane－half space interaction 9 3 1 
(4) Semi-rigid wall (empirical) 9 3 100 
 
Table I  Repulsive and attractive force index and weight of repulsive force. 
 
The force towards x− acted by the linear spring to crack plane B F )( Sxxk −=  is shown by 
the straight line which intersects with the x -axis at x . The intersection of curves 

and  gives two equilibrium positions of crack plane B under the 
interaction force. In this example they are at around 

S

)( SxxkF −= )(xf=F
σ  and 10σ . 
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Figure 2. Model  (a) A segment model of a partially closed crack (b) Two force acting to crack plane B  
 
Potential energy of crack plane B in the field of linear spring and interaction potential is given by  
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where  is position of crack plane A. Fig. 3(a) shows potential energy Px U with σ/Px =-10, -4, 
0, 4, 10, where =15 and k =0.2 for case (4). The parabola represents the linear spring and the 
steep wall located at 

0f
2// +≅ σσ Px x represents the repulsive force.  

Since subharmonic generation is a strongly nonlinear phenomenon and is not fully understood, it 
is instructive to see how crack plane B behaves for an amplitude-modulated input signal. Fig. 3 
(b) shows vibration waveform of crack plane B with the input amplitude σ/a  varied from 0 to 
20, where m =1, γ =0.5 and initial value of =1.4)(tx σ .  
When the frequency is low ( ω =0.5), the crack moves to the equilibrium position at 

12/ =σSx (time A) and stays there. When the amplitude reaches σ/a =10, clapping starts and 
the crack starts to vibrate at frequency ω  (time B). After that, the amplitude increases and 
decreases almost in proportional to the input wave amplitude. When the frequency is high (ω =1), 
the crack behaves similarly for low amplitudes. When the amplitude reaches σ/a =10, the 
clapping contact starts and the crack plane starts to vibrate at frequency ω /2 (time B) at 
subharmonic frequency. After that, the subharmonic amplitude increases. However, it then 
decreases at time C and after that no subharmonic signal appears at time D, where the amplitude 
is reduced. Inset of lower figure (b) shows instance of clapping at 7 cycles before time C, and it 
shows how the subharmonic signal decays. 
It is interesting to note that for larger damping (γ =1) the subharmonic signal survives at time C 
until time D (not shown here). From these results, it is shown that the subharmonic generation 
requires time delay due either to inertia (high ω ) or viscosity (large γ ). Also it is noted that 
there is a hysteresis of subharmonic amplitude [5] since the waveform for ω =1 is asymmetric. 
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  (a)      (b) 
Fig. 3  Explanation of subharmonic generation. (a) Potential energy of crack plane B in the field of linear 
spring and interaction potential. (b) Vibration waveform of crack plane B due to amplitude modulated input 
signal. Inset of lower figure (b) shows instance of clapping contact at 7 cycles before time C. 
 
In usual testing, we propose to use constant amplitude tone burst with a few carriers, rather than 
an amplitude-modulated signal. The observed ultrasonic wave may be a kind of acoustic emission, 



which is generated by the variation of the crack opening displacement (COD) rather than a 
vibration of a single crack plane. Waveforms in Fig. 4 represent the COD tatxx  sin)( ω−=∆  
normalized by the characteristic length σ  for the equilibrium position x  = 10s σ  and constant 
input wave amplitude of (a) σ3=a , (b) σ8=a and (c) σ10=a . Other parameters are =15, 

=1, 
0f

m γ =0.5, =0.2, k ω =1, initial value of x =1.8)t( σ . The waveform in (a) is a linear 
response with the power spectrum peak only at the input wave frequency . Here, crack plane B 
is trapped at the equilibrium position close to x  = 10

f

s σ . The observed vibration of COD is 
mainly due to the motion of crack plane A. The waveform in (b) appears to have a frequency of 

, but it is not exactly periodic (slightly chaotic), whereas that in (c) is periodic with a 
frequency of . This is a stable subharmonic wave. Here, crack plane B is sometimes lifted 
from the equilibrium position close to  = 10

7/f
2/f

sx σ . 
This calculation has important implication in the NDE of objects which may have partially 

closed cracks; If we find subharmonic waves when increasing the input wave amplitude, there is a 
partially closed crack, hidden in the object. Such a crack gives linear response when the input 
wave amplitude is small, which is similar to the response of objects without cracks or those with 
open cracks. Therefore, a capability of changing input wave amplitude in a wide range is essential 
for reliable NDE of objects with partially closed cracks. 
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Figure 4.  Calculated subharmonic waveforms with the parameters; =15, =1, 0f m γ =0.5, =0.2, k ω =1, 

initial value of =1.8)(tx σ . The equilibrium position of crack plane B =10sx σ  
(a) Linear response with the input amplitude =3a σ  
(b) Chaotic response with the input amplitude =8a σ  
(c) Subharmonic wave with the input amplitude =10a σ  
 
Comparison with Experiment:  In this section, we verify the theories in previous sections by 
using a fatigue crack in an aluminum alloy (Al7030). The crack was extended from a notch in a 
bending fatigue test with the maximum stress intensity factor K  =14 kgf/mmmax

3/2 and the 
minimum stress intensity factor =2 kgf/mmminK 3/2. The crack tip echo from the oblique incidence 
longitudinal wave was monitored during the fatigue test, in order to confirm the arrival time 
variation of the echo when the stress intensity factor was varied between K  and . The max minK



nonlinear ultrasonic measurement was performed using either a normal incidence or an oblique 
incidence longitudinal wave.  For the oblique incidence, we employed a 45 degree polystyrene 
wedge. 

 
A sinusoidal wave packet with 20 carriers at the frequency of 6.4 MHz was amplified with a 
gated amplifier up to 1.2 kV. The displacement amplitude of the generated longitudinal wave was 
estimated using a laser interferometer. The amplitude of the observed waveform turned out to be 
larger than 40 nm peak to peak (p-p) in the case of normal incidence and 20 nm p-p in the case of 
oblique incidence, both at the position of the crack. For the detection, we used a broadband 
longitudinal wave transducer with the center frequency of 10 MHz. 
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Figure 5. Effect of crack closure stress on the subharmonic generation:  (a) calculated and (b) 
experimental waveforms in aluminium alloy fatigue crack specimen.  

 
The crack was opened and closed by applying and removing a static bending load. The 
relationship between superharmonics and subharmonics and the crack closure was investigated. 
The waveforms (Fig. 5) are plotted with different bending loads in the oblique incidence test 
illustrated in the top figure.  The amplitude of the input wave was measured to be 10.7 nm by 
using a Michelson-type laser interferometer.  As the partially closed crack was opened by the 
bending load of up to 100 kgf, the amplitude of the echo decreased, and the amplitude of adjacent 
carriers became clearly different, resulting in the generation of subharmonics. It should be noted 
that the subharmonics was already evident within the first two carriers, showing that the temporal 
resolution could be made much higher than in CAN or conventional nonlinearity, where more 
than 10 carriers are required in order to obtain a sufficiently high S/N ratio in the power spectra.   
In the corresponding power spectra, the intensities of 2  and 3  components were observed 
together with that of the subharmonic /2 component at 3.2 MHz.  The subharmonic intensity 
was even larger than the fundamental intensity at bending loads above 100 kgf. 

f f
f

The amplitude dependence of the subharmonic intensity is verified both experimentally and 
theoretically in Fig. 6. 
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Figure 6. Effect of input wave amplitude on the subharmonic generation:  (a) calculated and (b) 
experimental waveforms in aluminium alloy fatigue crack specimen.  
 
Discussion: Although subharmonics have attracted considerable attention in the medical 
ultrasound, there is a significant difference in the physical process between the subharmonics 
generated at bubbles and at crack planes. The latter is closer to impact collision and the contact 
vibration at the solid surface, and it is simpler since the subharmonics is generated at only one 
position, and it is repetitive and coherent with the input wave. 
There is a marked similarity between the theory of nonlinear crack vibration and the theory of 
nonlinear contact vibration in AFM. In fact, analytical equations explaining the DC effect and 
subharmonics were first derived to describe the demodulation of high frequency vibration in the 
ultrasonic force microscopy, which is a preliminary version of AFM realizing elasticity 
evaluation of stiff materials that conventional AFM cannot realize[11-15].  
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Figure 7 Accurate sizing of partially closed crack by time of flight of subharmonic wave  
 



The major application of observing subharmonic signal is to improve the accuracy of crack sizing, 
especially where the accuracy is insufficient due to crack closure caused by residual stresses or 
interfacial oxide films. The depth of partially closed crack can be determined in a configuration 
shown in Fig. 7 as  
 

( ) [ ] 2222 2/)(2/ lttVlVtd −∆−−−=    (3) 

 
where  is the lateral distance between the transducer and crack, t  is the propagation time of the 
linearly scattered wave of weak input wave, 

l
t∆  is the propagation time difference between the 

linearly scattered wave of weak input wave and the subharmonic wave generated by the strong 
input wave and V is velocity of ultrasound. When the crack has irregular shape, as is the case for 
stress corrosion cracks, phased array is employed after filtering at subharmonic frequencies. Such 
a novel equipment is being development and it will significantly reduce the sizing error problem 
in aged atomic power plants.  
 
Conclusions: Subharmonics generated at partially closed cracks are potentially useful to detect 
cracks which are not easy to detect by conventional ultrasonic testing or superharmonics in 
nonlinear ultrasound.  In this work, we developed analytical and numerical theories accounting 
for the crack parameters such as closure stress and crack surface conditions, for the first time, and 
prove their validity by comparison with experiments on well-defined fatigue cracks in aluminum 
alloy.  It will be possible to estimate the size, closure stress and physical properties of partially 
closed crack planes by comparing measured waveforms and theoretical predictions. We expect 
this approach to be useful for solving the fundamental problem in the ultrasonic testing of cracks. 
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