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Abstract

Background: Protein interactions are crucial components of all cellular processes. Recently, high-throughput

methods have been developed to obtain a global description of the interactome (the whole network of protein

interactions for a given organism). In 2002, the yeast interactome was estimated to contain up to 80,000 potential

interactions. This estimate is based on the integration of data sets obtained by various methods (mass

spectrometry, two-hybrid methods, genetic studies). High-throughput methods are known, however, to yield a

non-negligible rate of false positives, and to miss a fraction of existing interactions.

The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise

interactions. In recent years clustering methods have been developed and applied in order to extract relevant

modules from such graphs. These algorithms require the specification of parameters that may drastically affect

the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL),

Restricted Neighborhood Search Clustering (RNSC), Super Paramagnetic Clustering (SPC), and Molecular

Complex Detection (MCODE).

Results: A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the

robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from

or adding edges to the test graph in various proportions.

Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were

compared with the annotated complexes.

We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values.

We also evaluated their robustness to alterations of the test graph.

We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the

resulting clusters with the annotated complexes.

Conclusion: This analysis shows that MCL is remarkably robust to graph alterations. In the tests of robustness,

RNSC is more sensitive to edge deletion but less sensitive to the use of suboptimal parameter values. The other

two algorithms are clearly weaker under most conditions.

The analysis of high-throughput data supports the superiority of MCL for the extraction of complexes from 

interaction networks.
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Background
Protein-protein interactions (PPI) play major roles in the
cell: transient protein interactions are often involved in
post-translational control of protein activity; enzymatic
complexes ensure substrate channeling which drastically
increases fluxes through metabolic pathways; large pro-
tein complexes play essential roles in basal cellular mech-
anisms such as DNA packaging (histones), transcription
(RNA polymerase), replication (DNA polymerase), trans-
lation (ribosome), protein degradation (proteasome) ...

Various methods have been used to detect PPI. Co-immu-
noprecipitation, co-sedimentation, and two-hybrid sys-
tems have traditionally been used to characterize
interactions at the level of a single protein complex. More
recently, high-throughput methods have been developed
for large-scale detection of pairwise interactions (two-
hybrid systems, the split-ubiquitin method) [1-3] or
multi-protein complexes (TAP-TAG, HMS-PCI) [4-7].

In 2002, von Mering et al. estimated that data resulting
from combined experimental and computational
approaches provide clues in favor of approximately
80,000 PPI in the yeast Saccharomyces cerevisiae [8].
Clearly, however, this information should be considered
with caution, since all methods are known to yield a non-
negligible amount of noise (false positives) and to miss a
fraction of existing interactions (false negatives). The error
rate depends strongly on the method, high-throughput
and computational methods being less reliable than tradi-
tional methods [9].

The network of interactions between proteins is generally
represented as an interaction graph, where nodes repre-
sent proteins and edges represent pairwise interactions.
Graph theory approaches have been applied to describe
the topological properties of the network: distribution of
node degree (number of incoming and outgoing edges per
node), network diameter (average of the shortest distance
between pairs of nodes), clustering coefficient (propor-
tion of the potential edges between the neighbors of a
node that are effectively observed in the graph). These
analyses have led to the observation of some apparently
recurrent properties of biological networks: power-law
degree distribution, small world, high clustering coeffi-
cients, and modularity [10-15].

Beyond these descriptive statistics, an important challenge
for modern biology is to understand the relationship
between the organization of a network and its function. In
particular, it is essential to extract functional modules
such as protein complexes [16] or regulatory pathways
[17] from global interaction networks.

To achieve this goal, several clustering methods have been
applied to the protein interactome graph in order to detect
highly connected subgraphs (e.g. [18-34]). These algo-
rithms rely on very different approaches. Each of them
requires specifying several parameters, some of which
may drastically affect the results. To our knowledge, no
systematic study has yet been performed to evaluate and
compare these programs. It is thus very difficult for a biol-
ogist to estimate the reliability of hypotheses emerging
from computer-based analyses of interaction networks.

In this paper we present a systematic quantitative evalua-
tion of the capability of four clustering methods for infer-
ring protein complexes from a network of pairwise
protein interactions. The four methods tested here are
Markov Clustering (MCL [35,36]), Restricted Neighbor-
hood Search Clustering (RNSC [21]), Molecular Complex
Detection (MCODE [19]), and Super Paramagnetic Clus-
tering (SPC [37]). For each program, we sample the
parameter space and select optimal parameters. We evalu-
ate the robustness of the programs to false positives and
false negatives. The algorithms are then applied to six data
sets from high-throughput experiments.

Results and discussion
Algorithms

The four algorithms tested here rely on distinct
approaches for extracting clusters from the graph (Table
1). We give hereafter a short conceptual description. More
information can be found in the supplementary material
[see Additional file 1] and original publications.

The Markov Cluster algorithm (MCL) [35,36] simulates a
flow on the graph by calculating successive powers of the
associated adjacency matrix. At each iteration, an inflation
step is applied to enhance the contrast between regions of
strong or weak flow in the graph. The process converges
towards a partition of the graph, with a set of high-flow
regions (the clusters) separated by boundaries with no
flow. The value of the inflation parameter strongly influ-
ences the number of clusters.

The second algorithm, Restricted Neighborhood Search
Clustering (RNSC) [21]), is a cost-based local search algo-
rithm that explores the solution space to minimize a cost
function, calculated according to the numbers of intra-
cluster and inter-cluster edges. Starting from an initial ran-
dom solution, RNSC iteratively moves a vertex from one
cluster to another if this move reduces the general cost.
When a (user-specified) number of moves has been
reached without decreasing the cost function, the program
ends up.

The third algorithm, Super Paramagnetic Clustering (SPC)
[37] is a hierarchical clustering algorithm inspired from



BMC Bioinformatics 2006, 7:488 http://www.biomedcentral.com/1471-2105/7/488

Page 3 of 19

(page number not for citation purposes)

an analogy with the physical properties of a ferromagnetic
model subject to fluctuation at nonzero temperature. At
first, SPC associates a spin with each node of the graph.
Spins belonging to a highly connected region fluctuate in
a correlated fashion and nodes with correlated spins are
placed in the same cluster. When the temperature
increases, the system becomes less stable and the clusters
become smaller.

The fourth method, Molecular Complex Detection
(MCODE) [19], detects densely connected regions. First it
assigns a weight to each vertex, corresponding to its local
neighborhood density. Then, starting from the top-
weighted vertex (seed vertex), it recursively moves out-
ward, including in the cluster vertices whose weight is
above a given threshold. This threshold corresponds to a
user-defined percentage of the weight of the seed vertex.

Interaction graphs

From the collection of protein complexes annotated in the
MIPS database [38], we constructed an interaction graph
by instantiating a node for each protein, and linking by an
edge any two proteins that belong to the same complex.
This graph is hereafter referred to as the test graph. As
depicted in Figure 1A, the structure of the original test
graph is almost trivial: most complexes correspond to iso-
lated components. In this test graph each complex is rep-
resented as a clique (each protein is connected to each
other one). This generally does not reflect the actual com-
plex structure, where each protein is linked to specific
partners. Consequently, this original graph is of poor
value for evaluating the performances of clustering algo-
rithms on real data sets. This applies particularly to high-
throughput data sets, which are generally fragmentary
(missing interactions), and noisy (false interactions).

In order to evaluate the robustness of the algorithms to
missing and false interactions, we generated 41 altered
graphs from the original test graph, by combining addition
and removal of edges in various proportions. We refer to
altered graphs as Aadd,del, where add and del indicate respec-
tively the percentage of added and deleted edges (percent-
ages with respect to the number of edges in the original
test graph).

Figure 1B shows an example of an altered graph A100,40,

with 100% edge addition and 40% edge removal. Another
problem of evaluation is that a certain proportion of inter-
acting proteins can be assigned to the same cluster by
chance. In order to estimate the random expectation of
correct grouping, we built a random graph by shuffling the
edges between nodes of the test graph. With this type of
randomization, each node preserves the same number of
links as in the original graph.

We also built 41 altered random graphs from the random
graph, by randomly adding and removing random edges
in the same proportions as for the original test graph.

To each of these 84 graphs (test, altered test, random,
altered random), we applied the four algorithms
described above, with varying parameter values. As a sec-
ond way to estimate the random expectation, each cluster-
ing result was also randomized so as to obtain a set of
permuted clusters of the same sizes as those obtained from
the test graph or altered graphs.

Parameter optimization

The quality of a clustering result was evaluated by compar-
ing each cluster with each annotated complex. The com-
plex-wise sensitivity (Sn) represents the coverage of a

Table 1: Main features of the graph clustering approaches presented in this study.

Restricted Neighborhood 
Search Clustering (RNSC)

Markov Clustering (MCL) Molecular Complex 
Detection (MCODE)

Super-paramagnetic 
clustering (SPC)

Type Local search cost based Flow simulation Local neighbourhood density 
search

Hierarchical

Allow multiple 
assignations

No No Yes No

Allow unassigned nodes No No Yes No

Edge-weighted graphs 
supported

No Yes No Yes

First application Protein complex prediction Protein family detection Protein complex detection

Other applications / Identification of ortholog 
groups, protein complexes, 
peer-to-peer node clustering, 
image retrieval, Word Sense 
Discrimination, molecular 
pathway discovery, structural 
domains, ...

/ Image clustering, microarray 
data clustering, protein 
complexes detection, protein 
structure classification, 
identification of ortholog 
groups, ...

Availability Upon request http://micans.org/mcl/ ftp://ftp.blueprint.org/pub/
BIND/README

Upon request

Developper King AD Van Dongen S Bader GD and Hogue CWV Blatt M, Wiseman S, Domany E

References [21] [35] [19] [18]

http://micans.org/mcl/
ftp://ftp.blueprint.org/pub/BIND/README
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Graphical representation of interaction networksFigure 1
Graphical representation of interaction networks. (A) Test graph built from the complexes annotated in the MIPS data-
base (high-throughput data were excluded). (B) Altered graph A100,40 with 100% of random edge addition (red) and 40% of ran-
dom edge removal.

(A)

(B)
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complex by its best-matching cluster (the maximal frac-
tion of proteins in the complex found in a common clus-
ter). Reciprocally, the cluster-wise Positive Predictive Value
(PPV) measures how well a given cluster predicts its best-
matching complex (see the chapter Methods for a detailed
description of the matching statistics).

To estimate the overall correspondence between a cluster-
ing result (a set of clusters) and the collection of anno-
tated complexes, we computed the weighted means of all
PPV values (averaged over all clusters) and Sn values
(averaged over all complexes). The resulting statistics, clus-
tering-wise PPV and clustering-wise Sn, provide comple-
mentary and somewhat contradictory information: when
the number of clusters decreases, the Sn increases and, in
the trivial case where all proteins are grouped in a single
cluster, the calculated Sn reaches 1. Reciprocally, the PPV
increases with the number of clusters, reaching 1 in the
trivial case where each protein is assigned to one separate
cluster. In order to integrate the two statistics, we com-
puted a geometrical accuracy (Acc), defined as the geomet-
rical mean of the averaged Sn and PPV values.

Each algorithm has one or more parameters that influence
properties such as number of clusters, cluster size, and
cluster density (number of intra-cluster edges). For each
algorithm we measured the impact of the main parame-
ters on Sn, PPV and Acc and selected the combination of
parameters giving maximal accuracy. This analysis
revealed that some parameters have a drastic impact on
accuracy, whereas others have a limited effect.

Let us illustrate in more detail the procedure of parameter
selection with the inflation parameter of the MCL algo-
rithm. With the original test graph, interestingly, the effect
of this parameter is barely detectable (Figure 2A). Yet this
apparent robustness is an artifact due to the trivial struc-
ture of the graph. In the MIPS data set used as a reference,
most proteins (73%) are members of a single complex, so
that most complexes correspond to isolated components
in the test graph (Figure 1A) on which the clustering is
performed. Consequently, the clustering algorithm tends
to define one cluster per connected component, irrespec-
tively of the inflation parameter. Consistently with this
interpretation, the number of clusters is almost constant
whatever the inflation parameter value (Figure 2B, blue
curve). In contrast, when the same algorithm is applied to
a randomized graph, the number of clusters increases with
the inflation parameter (Figure 2B, gray curve).

The crucial impact of the inflation parameter becomes
obvious when MCL is applied to highly altered graphs.
For example, for the altered graph A100,40 (Figure 2C), the
increase in inflation causes a decrease in Sn (red curve)
and an increase in PPV (blue curve). These effects are

explained by the fact that the number of clusters increases
with the inflation parameter (Figure 2D). The optimal
tradeoff between Sn and PPV is obtained for an inflation
value of 1.7, and yields an Acc of 66% (green curve).

We performed the same analysis and selected the optimal
parameter values for each one of the 42 graphs (test and
altered), as summarized in Table 2 for the MCL algorithm.
Since the optimal parameter values depend on the level of
alteration, we cannot view one value as systematically
optimal. We chose as a general optimum the most fre-
quent value in this table. This criterion ensures a good
robustness to graph alteration (it covers the widest range
of graph alterations).

Note that in the case of the inflation parameter, the most
frequent value (1.8) is especially well suited for graphs
with a high level of alteration, such as those resulting from
high-throughput data. In addition, for the less altered
graphs, the accuracy is generally more robust to fluctua-
tions of the inflation (the extreme case of the unaltered
test graph shown in Figure 2A,B is discussed above).

For the RNSC algorithm, we tested the impact of 7 param-
eters on the quality of the clustering. This represents a
total of 2,916 combinations of parameter values. Figure 3
displays the Sn (abscissa) and PPV (ordinate) obtained
with the same altered graph as in Figure 1B (A100,40). Each
dot corresponds to one particular combination of param-
eter values. This figure shows that the RNSC algorithm is
remarkably robust to the choice of parameter values: all
the results are grouped in a cloud, with an almost constant
PPV (58%) and a restricted range of Sn (between 61% and
87%).

The same analysis was carried out for each parameter of
each algorithm. The complete tables of optimal values for
the 42 graphs using both Accuracy and Separation (see
next section) are available as supplementary material [see
Additional file 2 and 3]. Table 3 synthesizes the optimal
values obtained for the four tested algorithms. These opti-
mal values were systematically used for the robustness
analysis in the next section.

Robustness analysis

In this analysis, we chose fixed parameter values for each
algorithm (Table 3) and analyzed the robustness of the
different algorithms to various levels of graph alteration
(edge removal and addition).

Figure 4A displays the impact of edge addition on the geo-
metric accuracy. Increasing proportions of edges (0%, 5%,
10%, 20%, 40%, 80% and 100%) were randomly added
to the test graph. MCL and RNSC are barely affected by
addition of up to 100% edges (blue and red curves,
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respectively). The performances of MCODE and SPC are
reasonably good for low values of noise, but drop to 40%
when the percentage of added edges increases to 100%
(orange and green curves, respectively).

To estimate the random expectation, we performed for
each clustering result a permutation test, by shuffling the
proteins between clusters. The number of clusters and
their respective sizes thus remained unchanged. The geo-
metric accuracy of the permuted clusters is displayed with
dotted lines in Figure 4A. For MCL, RNSC and MCODE,
the accuracy is relatively stable (between 15% and 22%).
For SPC, surprisingly, the accuracy of the permuted clus-
ters progressively increases with the addition of edges,
reaching 38% when more than 80% egdes are added. This
value almost equals that obtained with the non-random
altered graph A100,0. This illustrates the importance of the
permutation test: the test makes it possible to estimate the

performance of an algorithm in terms of gains relative to
the random expectation. We inspected the clustering
result in more detail in order to understand why the pro-
gram can yield high accuracy values even when clusters are
permuted. This effect comes from the fact that, under the
chosen conditions, SPC yields a huge cluster of 567 pro-
teins, plus a multitude of very small clusters of 1 or 2 pro-

Table 2: Optimal values for MCL inflation parameter for the test 

and altered graphs

% removal\% addition 0 5 10 20 40 80 100

0 3.4 3.1 2.7 2.4 2 1.8 1.8

5 5.7 4 2.6 2 1.9 1.8 1.8

10 2.35 2.2 2.2 2.3 1.8 1.8 1.8

20 1.7 2.2 2.1 2 1.8 1.7 1.8

40 1.8 1.8 1.8 1.9 1.7 1.7 1.7

80 1.3 1.4 1.5 1.5 1.5 1.6 1.6

Impact of the inflation parameter on MCL clustering resultsFigure 2
Impact of the inflation parameter on MCL clustering results. (A) Impact of the inflation parameter on the clustering-
wise Sensitivity (Sn), Positive Predictive Value (PPV) and geometric accuracy (Acc). Each curve represents the value of one eval-
uation statistics (ordinate) as a function of the inflation parameter (abscissa). Color code: blue : Sn; red : PPV; green : Acc; grey : 
geometrical accuracy for the first random control (randomized graph); orange : geometrical accuracy for the second random 
control (permuted clusters). (B) Number of complexes predicted as a function of the inflation factor for the original test 
graph. Color code: blue : test graph; red : random graph. (C) Sn, PPV and Acc scores obtained with a highly altered graph 
(A100,40). (D) Number of complexes predicted as a function of the inflation factor for A100,40.

(A) (B)

(C) (D)
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teins. The effect of the huge cluster is to artificially increase
the Sn, since a good fraction of each complex is covered by
this cluster. Each of the very small clusters yields a high
PPV : single-element clusters have by definition a PPV of
1, and 2-member clusters have a minimal PPV of 0.5. This
particular distribution of cluster sizes thus creates an arte-

factual situation by reaching, for two separate reasons,
reasonably high scores for both criteria (Sn and PPV).

In order to circumvent this problem, we defined an addi-
tional statistic, which we call separation, as the product of
the proportion of complex elements found in the cluster
by the proportion of cluster elements found in the com-
plex (see Methods for the formula). High separation val-
ues indicate a bidirectional correspondence between a
cluster and a complex: a maximal value of 1 is reached
when a cluster corresponds perfectly with a complex, i.e.
when it comprises all of its proteins and nothing more.

The complex-wise separation indicates how well a given

complex is isolated from the other complexes. The maxi-

mal value for complex-wise separation is 1. The simplest

way to obtain  = 1 is the perfect match, i.e. when all

the proteins in the complex are contained in a single clus-

ter, and this cluster does not contain any other protein

(Table 4, cluster 1/complex 1). Yet the value of 1 can also

be reached if the complex is split into two or more clus-

ters, if each of these clusters contains only members of the

complex (Table 4, complex 2 split into clusters 2 and 3).

In other words,  = 1 indicates that the clustering

algorithm separates this complex perfectly from all other

complexes (although this complex may be split into sev-

eral clusters).

Similarly, we defined a cluster-wise separation, which indi-

cates how well a given cluster isolates one or several com-

plexes from the other clusters. The maximal value, 

Sepcoi

Sepcoi

Sepcl j

Impact of the RNSC parameters on the clustering of an altered graph A100,40Figure 3
Impact of the RNSC parameters on the clustering of 
an altered graph A100,40. Each dot represents the cluster-
ing-wise PPV and Sn value for one combination of the seven 
tested parameters. Color code: blue : altered graph A100,20 

(100% random edge addition and 20% of random edge 
removal); orange : randomized graph R100,40; grey : permuted 
clusters.
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Table 3: Optimal parameters

Algorithm Parameter Optimized for accuracy Optimized for separation

MCL Inflation 1.8 1.8

MCODE Depth 100 5

Node score percentage 0 0

Haircut TRUE TRUE

Fluff FALSE FALSE

Percentage for complex fluffing 0.2 0.9

RNSC Diversification frequency 50 50

Shuffling diversification length 9 3

Tabu length 50 50

Tabu list tolerance 1 1

Number of experiments 3 3

Naive stopping tolerance 1 15

Scaled stopping tolerance 15 15

SPC Number of nearest neighbours 15 10

Temperature 0.132 0.116
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= 1, indicates that a cluster fully and exclusively comprises

all the elements of one or several complexes, i.e. it con-

tains all the proteins of the considered complex(es), and

no other cluster contains any of these proteins.

The clustering-wise separation statistic integrates separation
values over all complexes and clusters, and indicates the
general correspondence between a clustering result and
the set of annotated complexes. Separation is particularly
relevant to assessing clustering algorithms like MCODE,
which permit assigning a protein to multiple clusters.
Under some particular parameter combinations, this pro-
gram tends to yield highly redundant clusters. Table 5
shows a fragment of the contingency table indicating the
number mutual intersections between the 607 clusters
obtained from the unaltered test graph. For example, the
50 first rows/columns show a series of imbricated clusters,
each resulting from the addition of one node to the pre-
ceding cluster. Such strongly overlapping clusters artifi-
cially increase the performance, since a set of clusters
representing the same complex will be taken into account
multiple times in the average PPV.

Cluster-wise separation penalizes this effect by using the
marginal sums rather than the cluster size. Thus, if a
method generates many redundant clusters, each one
intersecting with a given complex, the marginal sum will
increase drastically, and Sepcl will be reduced accordingly.
Note that the result of Table 5 is not representative of all
MCODE conditions: when appropriate parameters are
chosen, the level of mutual overlap between clusters is
reasonable.

Figure 4B displays the impact of edge addition on cluster-
ing-wise separation. The general trends are similar to
those revealed by the accuracy curves (Figure 4A), but the
random expectation curves are now roughly horizontal
for SPC as well as for the other algorithms. We defined a
second set of parameters optimized for separation, in the
same way as described above for accuracy. These separa-
tion-optimized parameters are displayed in Table 3 and
were used for all separation curves in this robustness anal-
ysis (right panels in Figure 4).

In Figure 4C and 4D, increasing proportions (0%, 5%,
10%, 20%, 40%, and 80%) of edges are randomly
removed from the test graph. The general trend is for
RNSC and MCL to outperform the other two algorithms
under most conditions. RNSC, however, shows a higher
sensitivity to edge removal, and its performance strongly
decreases when more than 40% of the edges are removed.
SPC is quite robust to edge removal, but its performance
remains lower than that of MCL under all conditions.
Note that this removal experiment is not very indicative of
algorithm capability under realistic conditions, because

the partitioning of the test graph corresponds almost with
complex composition (Figure 1A). Thus, when edges are
simply removed, this partitioning is mostly maintained:
given the high level of intra-complex connectivity, most
complexes remain linked, and no new inter-complex link
is created.

In order to obtain a realistic estimate of algorithm robust-
ness, we thus need to combine edge addition and
removal. Figure 4E and 4F shows the robustness to edge
removal, starting from a graph with 100% edge addition.
The performances of all programs are of course reduced as
compared to Figures 4C and 4D. In terms of accuracy (Fig-
ure 4E), RNSC and MCL show grossly similar behaviours:
the accuracy shows a good robustness in the low range of
removal percentages (0–40%) but strongly decreases at
higher percentages (80%). Yet in terms of separation (Fig-
ure 4F), RNSC shows a better performance than MCL at
low rates of removal. The separation values of all algo-
rithms drop to their respective levels of the random expec-
tation when 80% of the edges are removed. MCODE and
SPC show generally low performance, and are drastically
affected by the combination of addition and removal. The
performance of SPC is similar to that obtained by select-
ing random clusters, in terms of both accuracy (Figure 4E)
and separation (Figure 4F).

Figures 4G and 4H show the effect of edge addition on
graphs from which 40% of the edges had previously been
removed. These curves confirm the trends observed in Fig-
ures 4A and 4B: MCL and RNSC are weakly affected by
edge addition, but as little as 20% edge addition suffices
to prevent SPC from identifying the complexes (Figure
4H). MCODE is relatively robust to edge addition, but
shows a weaker performance than MCL and RNSC over
the whole range of conditions.

Analysis of data sets obtained in high-throughput 

experiments

In the previous chapters our evaluations were based on
artificial graphs obtained by adding and removing various
proportions of edges to a reference network (the MIPS
complexes). The next step was to evaluate the capability of
these algorithms to extract relevant information from
high-throughput data sets. To this end, we downloaded
from the GRID database [39] six data sets representing the
network of protein interactions in the yeast Saccharomyces
cerevisiae. Two of these data sets consist of pairs of inter-
acting proteins detected by the two-hybrid technique pub-
lished respectively by Uetz et al. [1] and Ito et al. [2]. The
four other data sets contain protein complexes character-
ized by mass spectrometry, published respectively by
Gavin et al. [4,6], Ho et al. [5], and Krogan et al. [7] (Table
6). For each of these data sets we built a graph with one
node per protein, and one edge per interaction.
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Robustness of the algorithms to random edge addition and removalFigure 4
Robustness of the algorithms to random edge addition and removal. Each curve represents the value of accuracy (left 
panels) or separation (right panels). (A-B) edge addition to the test graph. (C-D) edges removal from the test graph. (E-F) 
Edge removal from an altered graph with 100% of randomly added edges. (G-H) Edge addition to an altered test graph with 
40% of randomly removed edges. Color code: blue : MCL, red : RNSC, orange : MCODE, green : SPC. Dotted lines show the 
results obtained by permuting the clusters (negative control).

(A) (B)

(C) (D)

(E) (F)

(G) (H)
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We then ran the four clustering algorithms on these
graphs, with the optimal parameters determined in the
first part of this study. The clusters obtained from these
high-throughput networks were compared with the com-
plexes annotated in the MIPS database by computing the
same statistics as described above (Table 6, Figure 5). In
each case, a negative control was done by calculating the
same statistics on permuted clusters (shaded boxes in Fig-
ure 5).

Some precautions should be taken before interpreting
these results. In particular, it is not trivial to interpret the
"positive predictive value", as our reference set is the MIPS
collection, filtered to discard any high-throughput result.
This collection should by no means be considered exhaus-
tive, since the complexes detected by previous studies rep-
resent only a fraction of all existing complexes. High-
throughput methods are thus expected to yield many
complexes that have not previously been characterized by
other methods. Thus, interactions detected by high-
throughput methods that are not annotated in MIPS can-
not be considered "false positives". The same holds true
for cluster-wise separation. Thus, the PPV and cluster-wise
separation values should be interpreted as an indication
of the fraction of high-throughput results which are also
detected by other methods and have been annotated in
the MIPS so far. In contrast, the sensitivity is likely to yield
more directly relevant information, by indicating the frac-
tion of annotated complexes recovered in the clusters
obtained from high-throughput data. Bearing in mind
these limitations, we may now analyse the data presented
in Table 6 and Figure 5.

An important criterion for this analysis is the contrast
between the scores reached with the real clustering results
and the random expectation estimated with permuted
clusters. A look at this contrast already reveals some gen-
eral characteristics of the data sets. Whatever the clustering
method used, the Sep values obtained were similar for the
real and pemuted clusters in the case of the data sets
resulting from two-hybrid experiments [1,2]. This con-
firms the conclusions of Von Mering et al., who compared
the positive predictive value (called "accuracy" in their
paper) and sensitivity ("coverage") of the interaction
graphs obtained by various high-throughput methods [8],
and who also observed very poor values for the two-
hybrid data sets. The HMS-PCI data set [5] shows a better
contrast between real and permuted clusters, but the best
results are clearly obtained with the three other mass-spec-
trometry data sets [4,6,7]. We will thus focus on these
three data sets in our comparison of the algorithms.

Compared to the other algorithms, MCODE yields a
lower number of clusters, with a higher number of pro-
teins per cluster. It generally yields a moderate sensitivity,

a low PPV. It is characterized by very weak cluster-wise
separation (Figure 5A), contrasting with a very high com-
plex-wise separation (Figure 5B). The resulting clustering-
wise separation values (Figure 5C) are lower than for the
other algorithms. Despite its relatively weak general per-
formance, MCODE interestingly shows the best perform-
ances for the negative control (i.e. the lowest values). This
reflects the fact that this algorithm has the capability to
discard nodes from the clustering result (unassigned
nodes). Apparently, this property enables the program to
discard most nodes when a random graph is submitted,
but this seems to be at the expense of sensitivity with real
interaction graphs.

SPC is characterized by a high sensitivity and a low PPV.
Yet the high sensitivity is an artifact due to the presence of
one mega-cluster, generally accompanied by a multitude
of mini-clusters. The asymmetry between cluster sizes is
revealed by the differences between the mean and median
numbers of proteins per cluster. For Gavin (2002), for
example, SPC yields 87 clusters with a mean size of 15.5
but with a median of only 2 proteins per cluster. The
mega-cluster includes no less than 1074 proteins and thus
comprises most complexes, raising the sensitivity to Sn =
91.8%. The artificial aspect is indicated by the fact that the
permuted clusters also reach a very high score Sn = 81.4%.
As discussed above, this bias is avoided by the separation
statistics, which yield relatively low values for SPC. Simi-
lar figures are obtained with the other data sets.

For all the data sets, RNSC yields a large number of mini-
clusters (the average number of proteins per cluster is typ-
ically 2, the median is 1 or 2), plus a few clusters of rea-
sonable size (up to 35 proteins per cluster). It shows a
relatively high cluster-wise separation value (Figure 5A)
but a lower complex-wise separation value (Figure 5B),
resulting in a reasonable tradeoff in terms of clustering-
wise separation (Figure 5C). The contrast between real
and permuted clusters is low, however, even for the mass-
spectrometry data with which other algorithms reach a
good contrast.

Finally, MCL clearly outperforms the other algorithms in
terms of general performance (Table 6, Acc, Sep) and also
as regards the contrast between real and permuted clusters
(Table 6, Figure 5). This general performance results from
a good balance between cluster-wise (Figure 5A) and clus-
tering-wise (Figure 5B) separation.

Conclusion
We have evaluated the capability of four graph-based clus-
tering algorithms to extract protein complexes from net-
works of protein-protein interactions. This evaluation has
led us to elaborate a testing procedure for the selection of
optimal parameters and the analysis of robustness to
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Table 4: Schematic illustration of a contingency table, and the derived statistics

Counts

T cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 sum complex size

complex 1 7 0 0 0 0 7 7

complex 2 0 6 8 0 0 14 14

complex 3 0 0 0 14 3 17 20

complex 4 0 0 0 4 5 9 8

sum 7 6 8 18 8 47

cluster size 7 6 8 16 8

Positive Predictive Value (PPV)

PPV cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

complex 1 1 0 0 0 0

complex 2 0 1 1 0 0

complex 3 0 0 0 0.78 0.38

complex 4 0 0 0 0.22 0.62

cluster-wise PPV 1 1 1 0.78 0.62

Sensitivity

Sn cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 complex-wise Sn

complex 1 1 0 0 0 0 1

complex 2 0 0.43 0.57 0 0 0.57

complex 3 0 0 0 0.70 0.15 0.70

complex 4 0 0 0 0.50 0.62 0.62

Frequency per row

Frow cluster 1 cluster 2 cluster 3 cluster 4 cluster 5

complex 1 1 0 0 0 0

complex 2 0 0.43 0.57 0 0

complex 3 0 0 0 0.82 0.18

complex 4 0 0 0 0.44 0.56

Separation

C cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 complex-wise separation

complex 1 1 0 0 0 0 1

complex 2 0 0.43 0.57 0 0 1

complex 3 0 0 0 0.64 0.07 0.71

complex 4 0 0 0 0.10 0.35 0.45

cluster-wise 
separation

1 0.43 0.57 0.74 0.41

Clustering-wise sensitivity 0.69
Clustering-wise PPV 0.85
Accuracy 0.77
Average cluster-wise separation 0.63
Average complex-wise separation 0.79
Clustering-wise separation 0.70
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noise. We have defined new matching statistics called sep-
aration to circumvent some pitfalls of classical estimators
(Sensitivity, PPV, Accuracy). The methodology proposed
here could be used as well to assess the capabilities of
other clustering algorithms with other data sets.

To study the ability of the tested algorithms to extract pro-
tein complexes from an interaction network, we built a
test graph from the complexes annotated in the MIPS
database.

In a first step we assessed the impact of the parameters of
each algorithm, and determined the optimal values for
extracting complexes from an interaction network. This
analysis shows that under most conditions, RNSC and
MCL outperform MCODE and SPC. RNSC is remarkably
robust to variations in the choice of parameters, whereas
the other algorithms require appropriate tuning in order
to yield relevant results. Secondly we assessed the robust-
ness of these programs to noise and to missing informa-
tion in the data, by randomly adding and removing edges
from the test graph. This analysis clearly revealed differ-
ences between the algorithms, highlighting the robustness
of MCL, and to a lesser extent RNSC, to graph alterations.

We then applied the same four algorithms to interaction
networks obtained from six high-throughput studies. This
analysis revealed that whatever the algorithm used, some
data sets provide insufficient information for extracting
the correct protein complexes. An analysis of the more
informative data sets confirmed the general superiority of
MCL over the three other algorithms tested here.

An important limitation of the present evaluation is that
it was performed by naive users. Any algorithm is likely to
work better in the hands of its own developer than in

those of external users. As we did not participate in the
development of any of the tested algorithms, our evalua-
tion may underestimate the capabilities of some of the
algorithms tested here. An advantage of such an external
evaluation, however, is that the evaluators are not biased
by better knowledge of one particular algorithm. Conse-
quently, our evaluation might be biased in favour of algo-
rithms which are more user-friendly, or easier to
configure. It thus reflects a compromise between algo-
rithm user-friendliness and efficiency.

Another limitation is that all of our analyses were per-
formed on unweighted graphs, because our reference
graph (the MIPS complexes) does not contain any infor-
mation that would enable us to assign reliability values
(weights) to the edges. It should be mentioned that MCL
and SPC can deal with weighted graphs and are likely to
give better performances if the weights reflect the reliabil-
ity of the links between proteins [20].

Methods
Test graphs

Annotated protein complexes

In order to test the ability of each algorithm to extract
complexes from a network of binary interactions, we built
a graph representing a large collection of experimentally
characterized complexes. We collected from the MIPS
database the collection of protein complexes annotated
for the yeast Saccharomyces cerevisiae [40], from which we
discarded those resulting from high-throughput experi-
ments [41]. The filtered collection contains some cases of
hierarchically related complexes. For example, the com-
plex annotated as "ribosome" includes the small and large
ribosomal subunits. In such cases, we discarded the parent
complex (ribosome) and retained the sub-complexes only
(small and large subunits). The final set comprises 220

Table 5: Mutually overlapping clusters obtained under some parameter conditions with MCODE

cluster\cluster 1 2 3 4 5 ... 49 50 51 52 ... 102 103 ... 607

1 81 80 79 78 77 ... 47 46 0 0 ... 0 32 ... 0

2 80 80 79 78 77 ... 47 46 0 0 ... 0 32 ... 0

3 79 79 79 78 77 ... 47 46 0 0 ... 0 32 ... 0

4 78 78 78 78 77 ... 47 46 0 0 ... 0 32 ... 0

5 77 77 77 77 77 ... 47 46 0 0 ... 0 32 ... 0

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

49 47 47 47 47 47 ... 47 46 0 0 ... 0 32 ... 0

50 46 46 46 46 46 ... 46 46 0 0 ... 0 32 ... 0

51 0 0 0 0 0 ... 0 0 46 0 ... 0 0 ... 0

52 0 0 0 0 0 ... 0 0 0 46 ... 32 0 ... 0

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

102 0 0 0 0 0 ... 0 0 0 32 ... 32 0 ... 0

103 32 32 32 32 32 ... 32 32 0 0 ... 0 32 ... 0

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

607 0 0 0 0 0 ... 0 0 0 0 ... 0 0 ... 3
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)Table 6: Main features of the four large scale data sets and clustering performances of the algorithms when applied to them

Dataset Nb nodes Nb edges Mean degree Mean clust coeff MCL MCODE RNSC SPC

real permuted real permuted real permuted real permuted

Uetz et al. [1] 926 865 1.175 0.018 Number of clusters 288 10 48 234

Mean nb prot/cluster 3.22 11.2 1.91 3.96

Median nb prot/cluster 3 4.5 2 2

Largest cluster size 16 53 6 276

Sn 57.3% 38.6% 84.3% 74.5% 49.4% 36.5% 65.5% 43.3%

PPV 53.8% 45.9% 25.5% 21.6% 59.6% 54.4% 38.0% 38.9%

Accg 55.6% 42.3% 54.9% 48.0% 54.5% 45.5% 51.8% 41.1%

Sepco 23.0% 20.6% 48.9% 62.5% 15.5% 14.8% 19.1% 21.2%

Sepcl 30.1% 26.9% 2.2% 2.8% 34.3% 32.7% 20.3% 22.6%

Sep 26.3% 23.5% 10.4% 13.3% 23.1% 22.0% 19.7% 21.9%

Ito et al. [2] 2937 4038 2.682 0.019 Number of clusters 630 9 1746 410

Mean nb prot/cluster 4.66 97.8 1.68 7.16

Median nb prot/cluster 3 11 2 2

Largest cluster size 157 485 4 1928

Sn 34.9% 26.0% 66.9% 68.0% 31.4% 24.0% 73.2% 64.6%

PPV 42.7% 38.5% 8.2% 5.8% 63.6% 61.8% 24.3% 23.8%

Accg 38.8% 32.2% 37.5% 36.9% 47.5% 42.9% 48.8% 44.2%

Sepco 12.7% 11.8% 41.6% 33.0% 7.1% 7.0% 11.3% 11.0%

Sepcl 36.2% 33.9% 1.7% 1.3% 56.7% 55.9% 20.1% 20.4%

Sep 21.4% 20% 8.4% 6.7% 20.1% 19.8% 15.4% 15.0%

Ho et al. [5] 1564 3600 4.6 0.029 Number of clusters 314 13 957 63

Mean nb prot/cluster 4.98 49.5 1.63 24.8

Median nb prot/cluster 3 13 1 3

Largest cluster size 34 432 8 1383

Sn 50.6% 28.2% 81.2% 76.5% 37.0% 27.4% 90.1% 92.1%

PPV 47.1% 35.6% 12.9% 8.5% 61.5% 57.1% 10.4% 8.2%

Accg 48.9% 31.9% 47.1% 42.5% 49.3% 42.2% 50.2% 50.2%

Sepco 22.6% 19% 44.7% 37.2% 11% 10.5% 19.3% 13.8%

Sepcl 32.3% 27.1% 2.6% 2.2% 48% 45.6% 5.5% 4.0%

Sep 27.0% 22.7% 10.9% 9.0% 23% 21.9% 10.3% 7.4%
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Gavin et al. [4] 1352 3210 4.7 0.148 Number of clusters 212 27 709 87

Mean nb prot/cluster 6.38 32.5 1.91 15.5

Median nb prot/cluster 4 7 1 2

Largest cluster size 54 414 16 1074

Sn 74.1% 24.2% 67.0% 51.1% 52.1% 20.8% 91.8% 81.4%

PPV 57.0% 23.9% 20.4% 9.4% 62.0% 46.0% 18.1% 10.7%

Accg 65.6% 24.0% 43.7% 30.3% 57.1% 33.4% 54.9% 46.0%

Sepco 39.4% 17.6% 44.5% 16.1% 14.5% 11.3% 34.4% 15.7%

Sepcl 38.0% 17.0% 5.5% 2.0% 46.9% 36.5% 13.6% 6.2%

Sep 38.7% 17.3% 15.6% 5.6% 26.1% 20.3% 21.6% 9.8%

Gavin et al. [6] 1430 6531 9.1 0.348 Number of clusters 189 39 487 136

Mean nb prot/cluster 7.57 40.3 2.94 10.5

Median nb prot/cluster 4 9 2 3

Largest cluster size 90 697 35 620

Sn 75.7% 23.7% 58.3% 43.2% 60.8% 20.9% 79.8% 48.4%

PPV 54.3% 21.0% 20.6% 8.0% 63.3% 37.3% 37.0% 16.5%

Accg 65.0% 22.4% 39.5% 25.6% 62.1% 29.1% 58.4% 32.4%

Sepco 38.1% 15.5% 44.7% 15.3% 20.1% 12.9% 34.9% 14.9%

Sepcl 32.7% 13.3% 7.9% 2.7% 44.5% 28.6% 21.6% 9.2%

Sep 35.3% 14.4% 18.8% 6.4% 29.9% 19.2% 27.4% 11.7%

Krogan et al. [7] 2675 7088 5.296 0.146 Number of clusters 813 70 1405 114

Mean nb prot/cluster 4.93 28.3 2.1 10.3

Median nb prot/cluster 3 5.5 2 3

Largest cluster size 50 387 21 1724

Sn 62.8% 19.8% 56.3% 30.9% 53.1% 19.1% 82.6% 64.0%

PPV 56.2% 33.5% 21.9% 9.7% 63.3% 51.1% 25.4% 17.2%

Accg 59.5% 26.7% 39.1% 20.3% 58.2% 35.1% 54.0% 40.6%

Sepco 20.0% 12.1% 33.2% 13.6% 10.3% 8.7% 20.3% 11.9%

Sepcl 49.5% 29.9% 8.8% 3.6% 59.6% 50.3% 24.0% 14.1%

Sep 31.5% 19.0% 17.0% 7.0% 24.7% 21.6% 20.9% 12.9%

Table 6: Main features of the four large scale data sets and clustering performances of the algorithms when applied to them (Continued)



BMC Bioinformatics 2006, 7:488 http://www.biomedcentral.com/1471-2105/7/488

Page 15 of 19

(page number not for citation purposes)

Application of clustering on high-throughput data setsFigure 5
Application of clustering on high-throughput data sets. (A) Cluster-wise separation. (B) Complex-wise separation. 
(C) Clustering-wise separation. Color code: blue : mass-spectrometry data set from Gavin et al. (2002); green : mass-spec-
trometry data set from Gavin et al. (2006); grey : mass-spectrometry data set from Ho et al. (2002); orange : two-hybrid data 
set from Ito et al. (2001); yellow : two-hybrid data set from Uetz et al. (2000); purple : mas-spectrometry data set from Krogan 
et al. (2006). Shaded boxes show the results obtained by permuting the clusters (negative control).

(A)

(B)

(C)
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complexes. It was converted to a graph where each node
represents one polypeptide. A link (edge) was created
between each pair of polypeptides involved in a common
complex. The resulting graph (referred to as test graph)
contains 1,095 polypeptides and 12,261 interactions (Fig-
ure 1A).

Altered graphs

A series of 41 altered graphs was derived from the test
graph described above by combining various proportions
of random edge deletions (0%, 5%, 10%, 20%, 40%,
80%) and additions (0%, 5%, 10%, 20%, 40%, 80%,
100%). We refer to altered graphs as Aadd,del where add and
del indicate, respectively, the percentage of added and
deleted edges.

Random expectation

The random expectation of clustering results was esti-
mated in two ways: with randomized graphs and per-
muted clusters.

Randomized graphs

A randomized graph was obtained by shuffling all the edges
of the test graph. This procedure preserves the connectiv-
ity of each node while reallocating edges at random. We
also generated 41 altered randomized graphs by randomly
adding edges to and deleting edges from the random
graph in the same proportions as for the test graph. We
refer to altered randomized graphs as Radd,del, where add
and del indicate respectively the percentage of added and
deleted edges.

Permuted clusters

A set of permuted clusters can be obtained from a cluster-
ing result by shuffling the associations between proteins
and clusters. This randomization procedure preserves
cluster sizes. We applied it to each clustering result
obtained with the test graph and the altered graphs.

Matching statistics

Each clustering result was compared with the annotated
complexes by building a contingency table, as schemati-
cally exemplified in Table 4. Having n complexes and m
clusters, the contingency table T is a n·m matrix where
row i corresponds to the ith annotated complex, and col-
umn j to the jth cluster. The value of a cell Ti,j indicates the
number of proteins found in common between complex i
and cluster j. Note that some proteins belong to several
complexes, and that with one one algorithm (MCODE),
some proteins may be assigned to multiple clusters or not
assigned to any cluster. The marginal sums (per row or per
column) of the contingency table thus do not always cor-
respond with complex or cluster sizes. For example, clus-
ter 4 in Table 4 contains 16 proteins, but the sum of
intersections between this cluster and all complexes is 18,

because complexes 3 and 4 have 2 proteins in common.
Complex 3 contains 20 proteins, but the sum of its inter-
sections with clusters is 17, because 3 of its proteins are
not assigned to any cluster. On the contrary, the fourth
complex of Table 4 contains 8 proteins, but there are 9
assignations to clusters in all, because one protein is
assigned to two separate clusters.

Sensitivity, positive predictive value (PPV), and accuracy
are classically used to measure the correspondence
between the result of a classification and a reference. We
describe hereafter how these concepts can be adapted to
measuring the match between a set of protein complexes
and a clustering result. As discussed in the text, these sta-
tistics can in some particular cases lead to erroneous inter-
pretations. We thus define an additional statistic, which
we call separation.

Sensitivity

Considering the annotated complexes as our reference
classification, we define sensitivity as the fraction of pro-
teins of complex i which are found in cluster j.

Sni,j = Ti,j/Ni

In this formula, Ni is the number of proteins belonging to

complex i. We also calculate a complex-wise sensitivity 

as the maximal fraction of proteins of complex i assigned

to the same cluster.  reflects the coverage of complex

i by its best-matching cluster.

To characterize the general sensitivity of a clustering

result, we compute a clustering-wise sensitivity as the

weighted average of  over all complexes.

Positive predictive value

The positive predictive value is the proportion of mem-
bers of cluster j which belong to complex i, relative to the
total number of members of this cluster assigned to all
complexes.

T.j is the marginal sum of a colum j. As exemplified by the

fourth cluster in Table 4, this marginal sum can in some
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cases differ from the cluster size, because some proteins

can belong to several complexes. We also calculate a clus-

ter-wise positive predictive value , which represents

the maximal fraction of proteins of cluster j found in the

same annotated complex.  reflects the reliability

with which cluster j predicts that a protein belongs to its

best-matching complex.

To characterize the general PPV of a clustering result as a

whole, we compute a clustering-wise PPV as the weighted

average of  over all clusters.

Accuracy

The geometric accuracy (Acc) indicates the tradeoff between
sensitivity and predictive value. It is obtained by comput-
ing the geometrical geometrical mean of the Sn and the
PPV.

The advantage of taking the geometric rather than arith-
metic mean is that it yields a low score when either the Sn
or the PPV metric is low. High accuracy values thus require
a high performance for both criteria. It is of particular
importance to use the geometric accuracy, as the arithme-
tic mean would give a false idea of quality in the trivial
cases where all proteins are assigned to a single cluster (Sn
= 1 ⇒ Accarithm > 0.5) or where, on the contrary, each pro-
tein is assigned to a single-element cluster (PPV = 1 ⇒
Accarithm > 0.5).

Separation

The contingency table indicates the absolute frequency of

intersections between complexes and clusters. From these

values, we derive relative frequencies with respect to the

marginal sums, either per row ( ) or per column

( ).

Note that the frequency per column is identical to the PPV
defined above. The frequency per row, on the contrary,
can differ from the sensitivity for some algorithms, if the
algorithm permits assigning a protein to multiple clusters
(Table 4, complex 4), or leaving some proteins unas-
signed (Table 4, complex 3). In such cases, the frequency
per row provides a more drastic criterion than the sensitiv-
ity defined above.

We define the separation as the product of column-wise
and row-wise frequencies.

The separation is comprised between 0 and 1. The maxi-
mal value Sepi,j = 1 indicates a perfect and exclusive corre-
spondence between complex j and cluster i: it indicates
that the cluster contains all the members of the complex
and only them (Table 4, complex 1 and cluster 1). In addi-
tion, the separation statistic deals efficiently with multiple
assignations. It penalizes cases where proteins of a given
complex are assigned to multiple clusters, by using row
sums rather than complex sizes.

The complex-wise separation  is calculated as the sum

of separation values for a given complex i.

Reciprocally, we calculate a cluster-wise separation, which
reflects the concentration of one or several complexes
within a given cluster.

To estimate a clustering result as a whole, clustering-wise

Sepco and Sepcl values are computed as the averages of

 over all complexes, and of  over all clusters,

respectively.
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We then compute the geometrical separation (Sep) as the
geometrical mean of Sepco and Sepcl.

Computation

Clustering was performed on a PC cluster of 40 nodes. Sta-
tistical treatments were done and figures made with the
freeware statistical package R [42]. Graphical representa-
tions of the interaction networks were done with Cyto-
Scape, an open-source, platform-independent
environment for the visualization and analysis of biolog-
ical networks [43,44].

Graphs of protein interactions were manipulated using
the Java classes developed by the aMAZE group [45,46].
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