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[1] Monthly temperature and precipitation data from 41 global climate models (GCMs)
of the Coupled Model Intercomparison Project Phase 5 (CMIP5) were compared to
observations for the 20th century, with a focus on the United States Pacific Northwest
(PNW) and surrounding region. A suite of statistics, or metrics, was calculated, that
included correlation and variance of mean seasonal spatial patterns, amplitude of seasonal
cycle, diurnal temperature range, annual- to decadal-scale variance, long-term persistence,
and regional teleconnections to El Niño Southern Oscillation (ENSO). Performance, or
credibility, was assessed based on the GCMs’ abilities to reproduce the observed metrics.
GCMs were ranked in their credibility using two methods. The first simply treated all metrics
equally. The second method considered two properties of the metrics: (1) redundancy of
information (dependence) amongmetrics, and (2) confidence in the reliability of an individual
metric for accurately ranking models. Confidence was related to how robust the estimate
of the metric was to ensemble size, given that for most of the models only a small number
of ensemble members (i.e., realizations of the 20th century) were available. A cursory
comparison with 24 CMIP3 models revealed few differences between the two generations
of models with respect to the statistics analyzed.
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1. Introduction

[2] Over the last several years, climate change impacts
assessments at regional and local scales have used 21st century
climate projections from global climate models (GCMs)
participating in the World Climate Research Programme’s
Coupled Model Intercomparison Project Phase 3 (CMIP3).
With Phase 5 (CMIP5) now well underway, and most simula-
tions from the new generation of GCMs already available,
many impact assessments and other applications are beginning
to use projections from CMIP5. The question, then, of how
well the CMIP5 GCMs simulate climate at regional scales is
of great interest to both researchers and resource managers.
[3] Two primary goals motivate the evaluation of GCMs.

The first is the principal goal of model developers’ evaluation
efforts: to identify model deficiencies and potential processes
responsible for the deficiencies. The second, and the one that
motivates this paper, is more application driven: to provide
information about model uncertainty beyond that associated

with climate projections. The latter evaluation is critical as
these models provide descriptions of climate change and are
used in impacts modeling. There are a variety of schools of
thought about the use of model evaluations for applications,
ranging from “model democracy” (e.g., Knutti [2010]) which
posits that each model simulation presents an equally valid
and equally likely depiction of the future, to evaluation that
is provided for informational purposes but not used to modify
projections of the future (e.g., Mote and Salathé [2010]), to
model weighting or culling, in which a model’s performance at
simulating 20th century climate (its “reliability” or “credibility”)
is taken into account numerically in future projections (e.g.,
Giorgi and Mearns [2002]). Model culling is effectively
weighting with binary weights. The justification for weighting
or culling models—necessarily an untestable hypothesis—is
that a model that fails to reproduce aspects of the past climate
will be less likely to produce a correct projection of future
climate. Mote and Salathé [2010] found that weighting
models made little difference in projected seasonal means of
temperature and precipitation in the Northwest, though for
other regions the same, or similar, approach made a bigger
difference [Giorgi and Mearns, 2002; Brekke et al., 2008;
Pitman and Perkins, 2008]. Others have demonstrated that
the appropriate determination of model weights is not trivial
and that weighting may simply serve to increase uncertainty
[Christensen et al., 2010; Weigel et al., 2010]. In addition to
quantifying the mean projected changes, though, it is often
of interest to quantify the uncertainty, and for these purposes
the model evaluation may have a bigger impact simply by
reducing the number of potential outlier models.

Additional supporting information may be found in the online version of
this article.
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[4] Our goal here is not to cull or weight models to narrow
or refine future projections, but rather to evaluate model per-
formance in order to make informed recommendations to
those who may use these model outputs. Downscaled climate
data from these models will be used as inputs to impacts
models, including models of forest and range dynamics, crop
growth, and hydrology, and these “downstream” modelers
may want to know how well these GCMs simulate particular
properties of the regional climate. For those who have the
capacity to run only a few scenarios, this paper may guide
the selection of which GCMs to use as inputs.
[5] Hawkins and Sutton [2009, 2011] have nicely illus-

trated the contributions of three sources of uncertainty to re-
gional- and global-scale projections, and these are addressed
well in the formulation of CMIP5: uncertainties in global

forcing (chiefly greenhouse gases), physical response as
represented by model formulation, and internal or unforced
variability. CMIP5 handles the first by the use of several
different “Representative Concentration Pathways” (RCPs).
The second is the primary motivation for using a large num-
ber of global models available through CMIP5 (Mote et al.
[2011] recommend at least 10) in describing future climate
or running impacts models. The third is the primary reason that
many modeling centers have contributed multiple “ensemble
members” to CMIP5—simulations whose boundary condi-
tions and model formulation are the same, but which differ
typically by having different initial conditions. In our model
evaluation, the first source of uncertainty is irrelevant (since
global forcing for the recent past is certain and well quantified)
but the second and third sources of uncertainty are important

Table 1. CMIP5 Models Used in This Study and Some of Their Attributes

Model Center

Number of Ensemble
Members:T/ P/ Tmin/

Tmax/

Atmospheric
Resolution
(Lon. × Lat.)

Vertical Levels
in Atmosphere

BCC-CSM1-1 Beijing Climate Center, China Meteorological Administration 3/ 3/ 3/ 3 2.8 × 2.8 26
BCC-CSM1-1-M Beijing Climate Center, China Meteorological Administration 3/ 3/ 3/ 3 1.12 × 1.12 26
BNU-ESM College of Global Change and Earth System Science, Beijing

Normal University, China
1/ 1/ 1/ 1 2.8 × 2.8 26

CanESM2 Canadian Centre for Climate Modeling and Analysis 5/ 5/ 5/ 5 2.8 × 2.8 35
CCSM4 National Center of Atmospheric Research, USA 6/ 6/ 6/ 6 1.25 × 0.94 26
CESM1-BGC Community Earth System Model Contributors 1/ 1/ 1/ 1 1.25 × 0.94 26
CESM1-CAM5 Community Earth System Model Contributors 3/ 3/ 3/ 3 1.25 × 0.94 26
CESM1-FASTCHEM Community Earth System Model Contributors 3/ 3/ 3/ 3 1.25 × 0.94 26
CESM1-WACCM Community Earth System Model Contributors 1/ 1/ 1/ 1 2.5 × 1.89 66
CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici 1/ 1/ 1/ 1 3.75 × 3.71 39
CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici 1/ 1/ 1/ 1 0.75 × 0.75 31
CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici 1/ 1/ 1/ 1 1.88 × 1.87 95
CNRM-CM5 National Centre of Meteorological Research, France 10/ 10/ 10/ 10 1.4 × 1.4 31
CNRM-CM5-2 National Centre of Meteorological Research, France 1/ 1/ 1/ 1 1.4 × 1.4 31
CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organization/

Queensland Climate Change Centre of Excellence, Australia
10/ 10/ 10/ 10 1.8 × 1.8 18

EC-EARTH EC-EARTH consortium 5/ 7/ 4/ 4 1.13 × 1.12 62
FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 5/ 5/ 5/ 5 2.8 × 2.8 26
FGOALS-s2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 3/ 3/ 3/ 3 2.8 × 1.7 26
FIO-ESM The First Institute of Oceanography, SOA, China 3/ 3/ 3/ 3 2.81 × 2.79 26
GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, USA 5/ 5/ 5/ 5 2.5 × 2.0 48
GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA 3/ 3/ 1/ 1 2.5 × 2.0 48
GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory, USA 1/ 1/ 1/ 1 2.5 × 2.0 48
GISS-E2-H NASA Goddard Institute for Space Studies, USA 4/ 4/ 4/ 4 2.5 × 2.0 40
GISS-E2-H-CC NASA Goddard Institute for Space Studies, USA 1/ 1/ 1/ 1 2.5 × 2.0 40
GISS-E2-R NASA Goddard Institute for Space Studies, USA 2/ 2/ 2/ 2 2.5 × 2.0 40
GISS-E2-H-CC NASA Goddard Institute for Space Studies, USA 1/ 1/ 1/ 1 2.5 × 2.0 40
HadCM3 Met Office Hadley Center, UK 10/ 10/ 10/ 10 3.75 × 2.5 19
HadGEM2-AO Met Office Hadley Center, UK 1/ 1/ 1/ 1 1.88 × 1.25 38
HadGEM2-CC Met Office Hadley Center, UK 1/ 1/ 1/ 1 1.88 × 1.25 60
HadGEM2-ES Met Office Hadley Center, UK 5/ 5/ 5/ 5 1.88 × 1.25 38
INMCM4 Institute for Numerical Mathematics, Russia 1/ 1/ 1/ 1 2.0 × 1.5 21
IPSL-CM5A-LR Institut Pierre Simon Laplace, France 6/ 6/ 1/ 1 3.75 × 1.8 39
IPSL-CM5A-MR Institut Pierre Simon Laplace, France 3/ 3/ 1/ 1 2.5 × 1.25 39
IPSL-CM5B-LR Institut Pierre Simon Laplace, France 1/ 1/ 1/ 1 3.75 × 1.8 39
MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo),

National Institute for Environmental Studies, and Japan Agency
for Marine-Earth Science and Technology

5/ 5/ 5/ 5 1.4 × 1.4 40

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo), and National

Institute for Environmental Studies

3/ 3/ 3/ 3 2.8 × 2.8 80

MIROC-ESM-
CHEM

Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo), and National

Institute for Environmental Studies

1/ 1/ 1/ 1 2.8 × 2.8 80

MPI-ESM-LR Max Planck Institute for Meteorology, Germany 3/ 3/ 3/ 3 1.88 × 1.87 47
MPI-ESM-MR Max Planck Institute for Meteorology, Germany 3/ 3/ 3/ 3 1.88 × 1.87 95
MRI-CGCM3 Meteorological Research Institute, Japan 5/ 5/ 5/ 5 1.1 × 1.1 48
NorESM1-M Norwegian Climate Center, Norway 3/ 3/ 3/ 3 2.5 × 1.9 26
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and we address aspects of them in formulating our approach to
model evaluation.
[6] Our objective is to evaluate the CMIP5 models in terms

of their ability to recreate statistics of the 20th observed
climate for a particular region. Our region of interest is the
northwestern contiguous United States, also known region-
ally as the Pacific Northwest (PNW); therefore, this paper
in one sense serves as an extension of the CMIP3 evaluation
ofMote and Salathé [2010]. However, this study differs from
theirs in not only the generation of GCMs, but we also
expand the number and variety of statistics uses as evaluation
metrics, give explicit consideration to the third source of
uncertainty described above (i.e., internal variability), and
rank the models by two methods. We also briefly compare
the performance of CMIP3 and CMIP5 models.

2. Data and Methods

2.1. Data

[7] We chose to focus our evaluation on temperature and
precipitation, which are both the most commonly observed
variables and the most widely used in impacts modeling.
While other candidate variables have also been evaluated in
other papers, some (e.g., 500 mb height) are mainly used as
diagnostics for understanding errors in temperature and pre-
cipitation, and for others (e.g., solar radiation) it is difficult to
obtain high quality gridded data. Simulated values of near-
surface temperature (T), daily minimum (Tmin) and maximum
(Tmax) temperature, and precipitation rate (P) were acquired
from 41 GCMs (see Table 1) of the CMIP5 “historical” exper-
iment [Taylor et al., 2012]. The historical experiment includes
both natural and anthropogenic forcings for the years 1850–
2005, though precise start and end dates vary by modeling
group. For a given GCM, the number of members per ensem-
ble varied from 1 to 10, differing only by initial conditions.
The data were obtained at the monthly frequency, with the ex-
ception of Tmin and Tmax for three GCMs. IPSL-CM5A-LR,

IPSL-CM5A-MR, and IPSL-CM5B-LR had known problems
with monthly mean Tmin and Tmax, so monthly means were
calculated from the acquired daily data.
[8] Monthly mean temperature and precipitation rates from

24 GCMs were also acquired from the corresponding CMIP3
historical experiment known as “20cm3” that uses natural
and anthropogenic forcings for the years 1860–2000 (see
Table 2). Our study did not examine daily maximum and
minimum temperatures from CMIP3.
[9] Models were validated against observations; however,

there is not a definitive source of observed data and differ-
ences exist among available data sets. These differences arise
for many reasons: the different stations included, the dif-
ferent spatial resolution, the different methods of interpola-
tion that account for topographic effects, and the different
approaches to coping with nonclimatic driven changes in
the climate record (e.g., station relocation, instrumentation
change, urban heat island effect, and time of observation bias).
Rather than pick one “best” data set, we used five gridded data
sets of monthly means of the following variables: near-surface
daily minimum, maximum, and average temperature, and
surface precipitation rate. The data sets were (1) University
of East Anglia Climatic Research Unit (CRU) TS3.10.01,
0.5° × 0.5°, 1901–2009 [Harris et al., 2013], (2) Parameter-
elevation Regressions on Independent Slopes Model (PRISM),
2.5´ × 2.5´, 1895–2012 [Daly et al., 2008], (3) University of
Delaware Air Temperature and Precipitation (UDelaware)
v.3.01, 0.5° × 0.5°, 1901–2010 (Willmott and Matsuura,
2012, Terrestrial air temperature: 1900–2010 gridded monthly
time series, version 3.01, http://climate.geog.udel.edu/~climate/
html_pages/Global2011/README.GlobalTsT2011.html;
Willmott and Matsuura, 2012, Terrestrial precipitation: 1900–
2010 gridded monthly time series version, 3.02, http://climate.
geog.udel.edu/~climate/html_pages/Global2011/Precip_revised
_3.02/README.GlobalTsP2011.html), (4) National Center
for Environmental Prediction/National Center for Atmos-
pheric Research Reanalysis (NCEP), ~1.9° × 1.9°, 1948–2012

Table 2. CMIP3 Models Used in This Study and Some of Their Attributes

Model Center
Number of Ensemble
Members (T and P):

Atmospheric Resolution
(Lon. × Lat.)

Vertical Levels
in Atmosphere

bccr_bcm2_0 Bjerknes Centre for Climate Research 1 1.9 × 1.9 31
ccma_cgcm3_1_t47 Canadian Centre for Climate Modelling and Analysis 5 2.8 × 2.8 31
ccma_cgcm3_1_t63 Canadian Centre for Climate Modelling and Analysis 1 1.9 × 1.9 31
cnrm_cm3 Centre National de Recherches Météorologiques 1 1.9 × 1.9 45
csiro_mk3_0 Commonwealth Scientific and Industrial Research Organisation 3 1.9 × 1.9 18
csiro_mk3_5 Commonwealth Scientific and Industrial Research Organisation 4 1.9 × 1.9 18
gfdl_cm2_0 Geophysical Fluid Dynamics Laboratory 3 2.5 × 2 24
gfdl_cm2_1 Geophysical Fluid Dynamics Laboratory 3 2.5 × 2 24
giss_aom Goddard Institute for Space Studies 2 4 × 3 12
giss_e_h Goddard Institute for Space Studies 5 5 × 4 20
giss_e_r Goddard Institute for Space Studies 9 5 × 4 20
iap_fgoals1_0_g Institute of Atmospheric Physics 3 2.8 × 2.8 26
ingv_echam4 Instituto Nazionale de Geofisica e Vulcanologia 1 2.8 × 2.8 19
inmcm3_0 Institute of Numerical Mathematics 1 5 × 4 21
ipsl_cm4 Institut Pierrre Simon Laplace 1 3.75 × 2.5 19
miroc3_2_hires Center for climate System Research 1 1.1 × 1.1 56
miroc3_2_medres Center for climate System Research 3 2.8 × 2.8 20
miub_echo_g Meteorological Institute University of Bonn 5 3.9 × 3.9 19
mpi_echam5 Max Planck Institute for Meteorology 4 1.9 × 1.9 31
mri_cgcm2_3_2a Meteorological Research Institute 5 2.8 × 2.8 30
ncar_ccsm3_0 National Center for Atmospheric Research 7 1.4 × 1.4 26
ncar_pcm1 National Center for Atmospheric Research 4 2.8 × 2.8 26
ukmo_hadcm3 Hadley Centre for Climate Prediction and Research 2 3.75 × 2.75 19
ukmo_hadgem1 Hadley Centre for Climate Prediction and Research 2 1.9 × 1.3 38
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[Kalnay et al., 1996], and (5) European Centre for Medium-
Range Weather Forecasts 40 Year Re-analysis (ERA40),
~2.5° × 2.5° mid-1957 to mid-2002 [Uppala et al., 2005].
While CRU, PRISM, and UDelaware are data sets based on
surface station observations, NCEP and ERA40 are reanalysis
data sets based on a numerical model of the atmosphere that
assimilates observations to update model states. Some con-
sider reanalysis data sets to be a fairer benchmark with which
to evaluate GCMs [Mote and Salathé, 2010].
[10] It is known that NCEP contains a spurious pattern in the

winter precipitation fields at high latitudes, most notable pole-
ward of about 50° [Sheffield et al., 2004]. Though adjustments
have beenmade to NCEP data sets to improve the precipitation
fields [Sheffield et al., 2004, 2006], these adjustments were
made only over land. Moreover, these adjusted data sets rely
heavily on CRU in their correction procedure, and we already
included CRU in our analyses. Therefore, we chose to use
NCEP as is, while keeping in mind the problems with its
representation of precipitation.
[11] CRU, UDelaware, NCEP, ERA40, and CMIP data

sets were regridded to a common resolution of 1° × 1° using
an inverse-distance-weighting interpolation algorithm.
PRISM data sets were regridded by averaging all native cells
within the coarser 1° × 1° cell. Grid cell centers were located
on the whole degree.

2.2. Performance Metrics

[12] A variety of metrics have been proposed for evaluating
climate models, some of which summarize features of the cli-
matological mean state, while some others summarize temporal
variability. Common metrics include the correlation between
the modeled and observed climatological mean global or
regional field, and the second spatial moment of these same
fields (e.g., Gleckler et al. [2008]). Other metrics include the
statistical moments of the time series averaged over a given
area; typically, the first or second moments are utilized,
though a small number of studies include the third moment
(e.g., Brekke et al. [2008]) or effectively all moments through

the use of the entire probability density function (pdf)
(e.g., Perkins et al. [2007]). Another means of evaluating
models is to quantify how well they simulate internal modes
of climate variability, such as the El Niño Southern
Oscillation (ENSO), and how well they reproduce regional
teleconnections of these modes [Joseph and Nigam, 2006;
Brekke et al., 2008; Pierce et al., 2009; Mo et al., 2012].
Some other metrics are long-term linear trends [Brekke et al.,
2008; Mote and Salathé, 2010] and the amplitude and phase
of the intraannual cycle [Brekke et al., 2008;Pierce et al., 2009].
[13] Lacking any established standard methodology for

evaluating climate models at a regional scale [Gleckler
et al., 2008], we proceeded in the spirit of Brekke et al.
[2008], and selected a number of metrics that consider
both properties of the regionally averaged time series and
larger-scale patterns having regional influence. Metrics were
selected on the basis of having theoretical merits as well as
being relevant for impacts modeling. For temperature and
precipitation, we examined the following metrics to assess
the performance of the GCMs for the PNW (see also Table 3
for details):
[14] 1. Climatological mean of annual value (Mean).
[15] 2. Mean seasonal amplitude (SeasonAmp).
[16] 3. Spatial standard deviation (SpaceSD) of the clima-

tological mean field, by season.
[17] 4. Spatial correlation (SpaceCor) of the observed to

modeled climatological mean fields, by season.
[18] 5. Linear time trend of annual values (Trend).
[19] 6. Time series variance (TimeVar) for temperature and

coefficient of variation (TimeCV) for precipitation: calculated
at frequencies ranging from 1 to 10 years.
[20] 7. Persistence (Hurst) measured using the

Hurst exponent.
[21] 8. Strength of ENSO teleconnection (ENSO)

in winter.
[22] Also, but for temperature only, we calculated one

additional metric:
[23] 9. Mean diurnal temperature range (DTR), by season.

Table 3. Definitions of Performance Metrics and the Confidence in the Metrics for Model Ranking

Metrica Confidence Category Description

Mean-T Highest Mean annual temperature (T) and precipitation (P), 1960–1999
Mean-P Highest
DTR-MMMc Highest Mean diurnal temperature range, 1950–1999
SeasonAmp-T Highest Mean amplitude of seasonal cycle as the difference between warmest and coldest month (T),

or wettest and driest month (P). Monthly precipitation calculated as percentage
of mean annual total, 1960–1999.

SeasonAmp-P Higher

SpaceCor-MMM-T Highest Correlation of simulated with observed the mean spatial pattern, 1960–1999.
SpaceCor-MMM-Pc,b Higher
SpaceSD-MMM-T Highest Standard deviation of the mean spatial pattern, 1960–1999. All standard deviations

are normalized by the standard deviation of the observed pattern.SpaceSD-MMM-Pc,b Higher
TimeVar.1-T Lower Variance of temperature calculated at frequencies (time periods of aggregation) ranging

for N= 1 and 8 years, 1901–1999.TimeVar.8-T Lowest
TimeCV.1-P Lower Coefficient of variation (CV) of precipitation calculated at frequencies

(time periods of aggregation) ranging for N= 1 and 8 water years, 1902–1999.TimeCV.8-P Lowest
Trend-T Lower Linear trend of annual temperature and precipitation, 1901–1999.
Trend-P Lowest
ENSO-T Lower Correlation of winter temperature and precipitation with Niño3.4 index, 1901–1999.
ENSO-P Lowest
Hurst-T Lowest Hurst exponent using monthly difference anomalies (T) or fractional anomalies (P), 1901–1999.
Hurst-P Lowest

aUnless otherwise noted, metrics are average over PNW domain: 124.5°W – 110.5°W, 41.5°– 49.5°N.
bExpanded domain: 165°W – 100°W, 20°N – 60°N.
cMMM is the season designation: DJF, MAM, JJA, and SON.
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Figure 1. Metrics for 25 CMIP3 and 41 CMIP5 GCMs. Points show the mean of the ensemble of values
from each GCM, the box-whisker plots give the 5th, 25th, 50th, 75th, and 95th percentiles, and the horizontal
dashed lines are the observed value (or mean where more than one observation data set was used). Metric
names followed by “*” indicate a statistically significant difference in the mean between CMIP3 and
CMIP5 (p-value< 0.1).
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[24] The previous evaluation of CMIP3 GCMs for the
PNW by Mote and Salathé [2010] considered only features
of climatologic means and long-term trends of annual values
(metrics 1, 3–5). In this study we expand our evaluation to
include other properties of the climate. For one, interannual
to decadal variability in mean annual temperature and water
year (October–September) precipitation were examined to as-
sess models’ ability to represent the magnitude of natural var-
iability at 1–10 year time scales irrespective of factors and

processes that drive that variability. We quantified variability
with the standard deviation for temperature and the coefficient
of variation (CV) for precipitation. Both metrics are justifiable
for time series with a standard Gaussian distribution, and may
not accurately represent the true distribution.
[25] Furthermore, we characterized persistency in the

monthly anomaly time series, with the mean seasonal cycle
removed. The chosen persistence metric is a dimensionless
scaling exponent H first described by Hurst [1951] in his

Figure 2. Relative error of the ensemble mean of each metric for each CMIP5 GCM. Models are ordered
from least (left) to most (right) total relative error, where total relative error is the sum of relative errors from
all metrics.

Figure 3. Forty-one CMIP5 GCMs ranked according to normalized error score from empirical
orthogonal function (EOF) analysis of 18 performance metrics. Ranking is based on the first five
principal components (filled blue circles). The open symbols show the models’ error scores using
the first two, four, and all principal components (PCs). The best scoring model has a normalized error
score of 0.
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study of river flows. The Hurst exponent takes on value
between 0 and 1, where H> 0.5 signifies long-term positive
autocorrelation, H= 0.5 signifies no autocorrelation, and
H< 0.5 signifies anticorrelation. We estimated the Hurst
exponent with the rescaled range method [Hurst, 1951].
See Appendix B for details.
[26] Finally, ENSO teleconnections are important for char-

acterizing the relationships between sea surface temperatures
(SSTs) and seasonal climate over the PNW. Note that we
did not evaluate a model’s ability to simulate ENSO itself,
which is beyond the scope of this study and is already the
subject of recent papers [Kim and Yu, 2012; Bellenger
et al., 2013]. Previous studies have shown that CMIP3
models generally do well at reproducing its mean spatial
pattern [Pierce et al., 2009] and temporal variance [Joseph
and Nigam, 2006; Mo et al., 2012]; however, accurate
modeling of the ENSO evolution has been mixed [Joseph
and Nigam, 2006]. As we expect much ongoing and future
examination of ENSO within the CMIP5 models by the
research community, we have excluded any such analysis
here. Early results do indicate that CMIP5 models perform
better at simulating some characteristics of ENSO [Kim
and Yu, 2012; Bellenger et al., 2013].
[27] ENSO teleconnections to the PNWwere quantified by

linearly regressing winter (January–February–March; JFM)
average temperature and total precipitation against the
Niño3.4 index averaged over the months of November

through March (NDJFM). The Niño3.4 index is an average
of sea surface temperature (SST) in the region bounded by
120°W–170°W and 5°S–5°N. For the observations, we used
the Niño3.4 index derived from the HadISST1 global sea
surface temperature data set [Rayner et al., 2003]. For each
CMIP5 simulation, we calculated the Niño3.4 index from
the simulated near-surface air temperature (tas) instead of
SST. This was to avoid downloading and processing the
corresponding SST data sets for each simulation, not all of
which were available at the time of writing. The use of
near-surface air temperature (T) instead of SST should have
only a very minor effect on the slope of the linear regression
because monthly T follows SST closely in the Niño3.4
domain. Using, for example, the four-member ensemble of
HadGEM2-ES to calculate the Niño3.4 index using both T
and SST, we find the two Niño3.4 series to be very strongly
correlated (r = 0.99) with nearly identical standard deviation
(the ratio of the standard deviation using T to the standard
deviation using SST is 0.97).
[28] We evaluated most metrics over the PNW, defined

here as the area bounded in longitude by 124.5° and 110.5°
W, and in latitude by 41.5° and 49.5°N. This domain covers
the states of Oregon, Washington, Idaho, western Montana,
and small slices of adjacent states and British Columbia.
However, because (1) the spatial resolution of the models is
such that they represent the PNW with as few as 24 grid
points (4 × 6) (which gives little spatial detail over the
region), and (2) the climate of the PNW is driven by larger-
scale oceanic and atmospheric patterns that we want to be
faithfully simulated, the spatial variance and correlation met-
rics were examined over a large domain (165°W – 100°W,
20°N – 60°N). This expanded domain covers a large portion
of western North America and the eastern Pacific Ocean and
therefore includes a part of the Pacific Ocean with regionally
relevant ocean circulation features such as the Alaskan Gyre
and California Current.
[29] We calculated several metrics (Mean, SeasonAmp,

SpaceSD, SpaceCor) over the latter four decades of the 20th

century (1960–1999), and DTR over 1950–1999, in order

Figure 4. Loadings of the first four principal components
(PC1, PC2, PC3, PC4) from EOF analysis of 18 evaluation
metrics (includes diurnal temperature range) and 41 CMIP5
GCMs. “Obs” indicates the observation data set.

Table 4. Loadings by Metric of the Leading Five Empirical

Orthogonal Functions (EOFs)a

Metric EOF 1 EOF 2 EOF 3 EOF 4 EOF 5

Mean-T 0.04 0.15 �0.42 0.42 �0.42

Mean-P �0.31 0.10 �0.04 �0.23 0.07
SeasonAmp-T 0.31 0.10 0.04 0.39 0.07
SeasonAmp-P 0.37 �0.06 �0.04 0.19 0.14
Trend-T 0.13 �0.33 �0.30 �0.23 0.05
ENSO-T 0.07 �0.23 �0.40 �0.31 �0.10
TimeVar.1-T 0.28 �0.32 �0.16 �0.04 �0.16
TimeCV.1-P 0.34 �0.17 �0.14 0.06 �0.15
DTR-DJF 0.26 0.10 0.05 �0.31 �0.07
DTR-JJA 0.34 0.13 �0.10 0.15 0.09
SpaceCor-DJF-T 0.03 0.27 0.07 �0.17 �0.78

SpaceCor-JJA-T 0.26 0.16 0.07 �0.41 �0.03
SpaceCor-DJF-P 0.19 0.36 �0.11 �0.05 0.17
SpaceCor-JJA-P 0.24 0.35 �0.07 �0.28 0.18
SpaceSD-DJF-T 0.21 0.04 0.45 �0.06 �0.18
SpaceSD-JJA-T 0.24 �0.28 0.33 �0.06 �0.05
SpaceSD-DJF-P �0.04 0.45 �0.06 0.01 0.05
SpaceSD-JJA-P 0.05 �0.18 0.42 0.14 �0.12

aStrongest loadings (absolute values ≥ 0.260) are in bold italics.
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to include the shorter NCEP and ERA40 data sets in the anal-
ysis. However, those metrics that are more sensitive to record
length (i.e., those that do not simply describe the mean state
of the time series) were calculated over the 20th century
(1901–1999) and consequently only for CRU, PRISM, and
UDelaware.
[30] In addition to calculating each metric for each

ensemble member of each model, we also calculated a
“multimodel mean” value. Given that models have differ-
ent numbers of ensemble members, those with larger
ensembles will generally give better estimates of a partic-
ular statistic than those models with smaller ensembles.
However, for simplicity, we gave each model equal weight
when calculating a mean. We also tested weighting each
model by the square root of the number of members in a
model’s ensemble (inspired by the definition of standard
error), but found it made little difference with respect to
our conclusions.

2.3. Model Ranking by Overall Performance

[31] While a large number of metrics helps to elucidate
the different strengths and weaknesses of models, it also

presents a challenge for selecting a subset of more cred-
ible models, for two reasons. For one, some metrics may
be more important than others for a particular applica-
tion, and the rankings may depend on which set of
metrics are selected (e.g., Santer et al. [2009]). For an-
other, there may be redundancy in the metrics, given that
not all are independent, either statistically or physically.
In either situation, treating all metrics equally might
be inadvisable.
[32] We applied two methods for ranking the models. The

first simply treated all metrics equally, while the second did
not. We describe both methods below.
[33] The first method included all performance metrics and

assigned equal weight to each metric. For a given model i and
metric j, we first defined an error Ei, j as

Ei; j ¼ xobs; j � xi; j
�

�

�

� (1)

where xobs and xi are the observed metric and simulated
ensemble mean metric, respectively. Application of equation

Figure A1. PNW mean annual temperature and precipitation bias for 41 CMIP5 GCMs. For each GCM,
black-filled circles show the ensemble average, yellow-filled circles show the first ensemble member, and
the open circles show the remaining ensemble members. Observed (Obs) values are from NCEP (red),
ERA40 (magenta), CRU (dark green), PRISM (blue), UDelaware (Cyan), and average of observations
(black).
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(1) included correlations (where xobs necessarily equaled 1).
Furthermore, we defined a relative error E�

i; j as

E�
i; j ¼

Ei; j � min Ei; j

� �

max Ei; j

� �

� min Ei; j

� � (2)

and then summed the relative error across all m metrics:

E�
i; tot ¼ ∑

m

j¼1

E�
i; j (3)

to get the total relative error E�
i;tot per model. Ordering the

models by their respective total relative error determined
the ranking.
[34] The second, more considered approach to ranking

took into account redundancy in information among metrics
and in the confidence in the rankings of the individual met-
rics. To address the latter, we first excluded those metrics that
were identified as not being robust. This exclusion of metrics
is described in detail in section 3.2. Also, so as not to so
heavily weight those metrics calculated for each of four sea-
sons, we used only the winter (DJF) and summer
(JJA) values.
[35] To address the matter of information redundancy, we

conducted an empirical orthogonal function (EOF) analysis
on the remaining metrics following Pierce et al. [2009].
This allowed us to reduce the large number of metrics, some
of which covary and others of which add little information,
down to a reduced number of orthogonal and more conse-
quential metrics. The EOF analysis was done on the values
x, which include both observed (xobs) and simulated (xi)
values for each metric. In other words, the observations were
treated like another model. Note that for the EOF analysis,

we normalized the values by the mean and standard deviation
for a particular metric. North’s “rule of thumb” [North et al.,
1982] was used to objectively determine which EOFs were
statistically distinct; this provided the basis for selecting a
relatively small number of leading EOFs to use as the final
performance measures.
[36] While the leading EOFs will provide a greatly reduced

number of metrics, to arrive at a single ranking of overall
model performance, we simply calculated the Euclidean dis-
tance from the observations to each model in EOF space
across all dimensions of the leading EOFs. We used this dis-
tance as the overall error score per GCM, and normalized it to
range from 0 (least error) to 1 (most error).

3. Results and Discussion

3.1. CMIP3 and CMIP5

[37] A detailed discussion of the skill of the CMIP5 models
with regards to each performance metric is given in
Appendix A. Here we provide merely a cursory comparison
of the performance of the models in CMIP3 and CMIP5.
[38] Overall, we found few outstanding differences between

the CMIP3 and CMIP5 multimodel ensembles across
30 performance metrics (Figure 1). We used a two-tailed
Wilcoxon rank sum test to compare CMIP3 and CMIP5
multimodel means. We found that SpaceCor.DJF-T,
Hurst-P, TimeCV.1yr-P, SpaceCor.JJA-P, TimeVar.1yr-T,
and ENSO-P, in order, showed differences at a significance
level of 0.9.
[39] Based on the above comparison of means and visual

inspection of the distributions, the most notable change from
CMIP3 to CMIP5 was the increases in temporal variability of
both precipitation and temperature at the annual scale. Also
of note was the apparently stronger response of PNW precip-
itation to ENSO in CMIP5, indicating an improvement in
PNW teleconnections to ENSO. This result is consistent with
the improvement in CMIP5, reported by Polade et al. [2013],
in reproducing the observed covariance of the main mode of
SST variability in the North Pacific (which has contributions
from both ENSO and the Pacific Decadal Oscillation) with
the main mode of precipitation variability over North
America. In contrast, the change in precipitation persistence
as represented by the Hurst exponent was actually in the
direction away from the observed value, but only slightly:
the CMIP3 and CMIP5 multimodel mean Hurst exponents
were still effectively similar (0.62 and 0.61, respectively).
[40] A more extensive comparison of CMIP3 and CMIP5

would quantify differences in the spread and shape of the
distributions, not simply changes in the mean. Additionally,
one could isolate those models that have been improved,
changed, and/or enhanced between CMIP3 and CMIP5
from those that are new arrivals in CMIP5 [e.g., Knutti
et al., 2013; Polade et al., 2013]. We leave such analyses
to future studies.

3.2. Intramodel and Intermodel Variability

[41] Internal variability may hinder the evaluation of
model performance for some metrics. The importance of
internal variability is exemplified by intramodel variability
for a given performance metric. Given an adequate ensemble
size for each model, a performance metric may be estimated
with a high degree of confidence (i.e., low standard error) and

Figure A2. Mean seasonal cycle of temperature (upper
panel) and relative precipitation (lower panel) averaged over
the PNW. Monthly means calculated from gridded observa-
tion data sets (NCEP, ERA40, CRU, PRISM, UDelaware)
and from all ensemble members from 41 CMIP5 GCMs.
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consequently models can be ranked with a degree of confi-
dence. For a given metric, an adequate ensemble size can
be related to the spread of the ensembles of the individual
models relative the spread across all models. Compare, for
example, the intramodel spread with the intermodel range
for mean annual temperature (Figure A1, upper panel) and
for 20th century temperature trend (Figure A10). Visual
inspection of Figures A1 and A10 illustrates that adequate
ensemble size varies greatly with the particular metric. For
example, the 40 year climatological mean annual temperature
over the PNW shows little intramodel spread relative to total
model spread. The consequence is that even though we only
have one ensemble member for about one third of the
models, and three or fewer members for roughly two third
of the models, the ranking for this statistic would change little
with additional ensemble members. In other words, a
model’s position in the ranking would likely only move at
most one or two positions in either direction. This is not the
case with long-term temperature trend, however. Below we
describe how we apply this attribute of our metrics to rank
their robustness.

[42] The most robust set of rankings are for the climato-
logical mean annual temperature and precipitation
(Figure A1), the amplitude of the annual temperature cycle
(Figure A3, upper panel), the mean diurnal temperature
range (Figure A6), and the spatial standard deviation and
spatial correlation of seasonal temperature (Figure A9,
upper panel). A second set of rankings is somewhat less
robust: the amplitude of the annual precipitation cycle
(Figure A3, lower panel) and the spatial standard deviation
and spatial correlation of seasonal precipitation (Figure A9,
lower panel).
[43] Note that all of the metrics above represent climato-

logical averages computed over a 40 or 50 year period and
thus should not, in principle, be very sensitive to temporal
(i.e., internal) variability. However, our confidence in the
model rankings decreases when we use metrics that summa-
rize properties of the time series other than the long-term
means. For example, the 20th century temperature trend
(Figure A10) shows the intramodel range (for those models
having five or more ensemble members) to be roughly 40%
of the intermodel range. Choosing, for the sake of argument,

Figure A3. PNW mean seasonal cycle amplitude in temperature and relative precipitation. For each
CMIP5 GCM, black-filled circles show the ensemble average, yellow-filled circles show the first ensemble
member, and the open circles show the remaining ensemble members. Observed (Obs) values are from
NCEP (red), ERA40 (magenta), CRU (dark green), PRISM (blue), UDelaware (Cyan), and average of
observations (black). Monthly precipitation is calculated as a percentage of the mean annual total, so the
amplitude is the difference of percentages.
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those time series metrics for which the intramodel range is
influential but still roughly less the 50% of the intermodel
range leaves us with a third subset that contains annual
temperature trend (Figure A10), standard deviation of annual
temperature (Figure A12, upper panel), coefficient of
variation of annual precipitation (Figure A13, upper panel),
and, debatably, winter temperature response to ENSO
(Figure A15, upper panel). The fourth, and final, subset in-
cludes those metrics where the intramodel variability is too
high to comfortably rank models: annual precipitation trend
(ranking not shown), standard deviation of octadal tempera-
ture (Figure A12, lower panel), coefficient of variation of
octadal precipitation (Figure A13, lower panel), Hurst expo-
nent for temperature and precipitation (ranking not shown),
and winter precipitation response to ENSO (Figure A15,
lower panel). This final subset of metrics might be best used

to examine the behavior of the CMIP5 GCMs as whole, and
not to rank one model against another, except to possibly
identify the few models that lie farthest from the observa-
tions, or to compare only the small number of models with
the most ensemble members.
[44] Based on the above four groupings of metrics, we

defined four categories of robustness, or confidence, in
rankings: “highest,” “higher,” “lower,” “lowest.” Table 3
lists within which category each metric falls.

3.3. Model Ranking by Overall Performance

[45] The models, ranked using the simple method, are listed
in Figure 2. Also shown are the relative errors for the
individual metrics. Each model scored well in at least one
metric, but there were about 11 models that scored low
(i.e., relative error> 0.6) in no more than two metrics.

Figure A4. Mean seasonal cycle amplitude of temperature from (a) CRU, (b) ERA40, and the (c) CMIP5
multimodel mean, and mean season cycle amplitude of relative precipitation from (d) CRU, (e) ERA40,
and the (f) CMIP5 multimodel mean.

10,894

RUPP ET AL.: CMIP5 20TH CENTURY CLIMATE OF THE PNW



Overall, the highest-ranked model was CNRM-CM5. The
CESM1/CCSM4 family of models also stood out as “best”
performers (with the exception of CESM1-WACCM). Other
high scoringmodels were CanESM2, CNRM-CM5-2, the four
models from the Hadley Center, and EC-EARTH.
[46] Prior to ranking the models based on the EOF-based

method, we first excluded those metrics identified in the previ-
ous section as not being robust (“Lowest” category in
Table 3). Furthermore, retaining only summer and winter for
those metrics calculated seasonally left 18 of the 34 metrics.
Using this subset of metrics, the leading five EOFs were
significantly distinct. They cumulatively explained 30%,
48%, 59%, 68%, and 74% of the variance, respectively.
[47] The models, ranked in order using the first five EOFs,

are shown in Figure 3. Using fewer EOFs (2 or 4, for example)
would not dramatically change the overall picture, either
(e.g., no models would move from the bottom one third to
the top one third), though there would be some reordering of
models. For example, the three models from the HadGEM2
family would place in the top 4 using only the first two EOFs.

Figure A5. Mean seasonal cycle of diurnal temperature
range averaged over the PNW. Monthly means calculated
from gridded observation data sets (NCEP, CRU, and
PRISM) and from all ensemble members from 41 CMIP5
GCMs.

Figure A6. PNW mean diurnal temperature range in winter (DJF) and summer (JJA). For each of 41
CMIP5 models, black-filled circles show the ensemble average, yellow-filled circles show the first
ensemble member, and the open circles show the remaining ensemble members. Observed (Obs) values
are from NCEP (red), CRU (dark green), PRISM (blue), and average of observations (black).
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[48] Comparing the results from our initial simpler ranking
to the more complex EOF-based analysis reveals minor
differences. Nearly no models occupied precisely the same
position in each method, but the general order was similar.
For example, nearly all the same models placed within the
top 15 using either model. For a few models, the differences
were substantial (e.g., BNU-ESM moved up 16 positions
using the EOF method).
[49] As a visual aid toward differentiating models from ob-

servations, we examined their positions in EOF “space,” by
plotting the first four principal components (PCs) against each
other (PC1 versus PC2 and PC3 versus PC4) (Figure 4). For
example, PC1 distanced the MIROC-ESM and GISS-E2
families of the models from the observations, while PC2
revealed the relatively large errors in CMCC-CESM and
bcc-csm1-1. Another outcome of the EOF analysis is that it
highlighted the similarities of the models that come from the
same modeling center. Note, for example, the intramodel
groupings of the model roots HadGEM2, MIROC-ESM, and
MPI-ESM in the upper panel of Figure 4. While it may not
be surprising that variants of a base model from an individual
center scored similarly given they model many processes in
the same way (e.g., Masson and Knutti [2011]), individual
metrics often separated similar models (e.g., PNW mean
annual temperature differed by a 1°C between GISS-E2-R

and GISS-E2-H; see Figure A1, upper panel); this analysis
demonstrates that the variability introduced by model varia-
tions is much less than intermodel variability.
[50] An examination of the leading EOFs suggests possible

groupings of dominant metrics (i.e., those with the largest
loadings) (Table 4) that would aid in interpreting the axes in
Figure 4. In the first EOF (which determines the PC1-axis),
three pairs of metrics stood out as dominant. These were (1)
seasonal amplitude of precipitation and temperature, (2) an-
nual variability of precipitation and temperature, and (3) mean
winter and summer diurnal temperature ranges. Another
strong loading came from the mean annual precipitation.
Excluding the last metric, the first EOF can be viewed largely
as a measure of temporal variations across temporal scales
(daily, seasonal, and interannual).
[51] In the second EOF, five of the strongest loadings

pertain to the spatial patterns of climatological mean temper-
ature and precipitation over the northwestern Pacific/western
US. Though long-term temperature trend and variance of
annual temperature also appeared as strong metrics, the
second EOF can be viewed as largely characterizing spatial
variability. We did not see suggestions of ways to assign a
characteristic or property to the remaining leading EOFs.
[52] It is important to note that we have not quantified the

sensitivity of the rankings to the choice of observational data

Figure A7. Mean winter (DJF) temperature from (a) NCEP, (b) ERA40 and the (c) CMIP5 multimodel
mean, and mean summer (JJA) temperature from (d) NCEP, (e) ERA40, and the (f) CMIP5 multimodel
mean.
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set or to ensemble size. We expect that the effect of observa-
tional data set selection is minor given that intermodel spread
for most metrics was much greater than the spread among
observational data sets (though admittedly for some metrics,
particularly mean temperature, the spread among observed
quantities was sizable). Ensemble size, however, is an impor-
tant issue, and it may be wise to consider giving some degree
of preference to models with larger ensembles. One could also
conduct a sensitivity analysis, for example, by generating
multiple rankings based on a random sampling of the
ensemble members.
[53] Last, the spread in model performance, as measured in

this study, will largely be dependent on how each model pa-
rameterizes subgrid physics in the atmosphere, ocean, and
land domains. To some extent, however, it may also be sim-
ply a function of the degree of discretization of the modeling
domain [e.g., Polade et al., 2013]. In fact, we found the EOF-
based model ranking to be significantly correlated to the
horizontal resolution of atmosphere (Pearson’s correlation
coefficient r= 0.52), that is the higher ranked models tended
to have finer grid spacing. Among the individual metrics, six
of those most correlated to spatial resolution were spatial
correlations (SpaceCor-) JJA-P, -SON-T, SON-P, JJA-T,
MAM-T, and DJF-P with r = 0.59, 0.54, 0.46, 0.45, 0.35,
and 0.35, respectively. The only other two metrics that

showed significant correlation (significance level = 0.95)
were SpaceSD.MAM-P (r= 0.36) and DTR.DJF (r = 0.33).
It is probably not coincidental that six metrics that were most
correlated to the spatial resolution were themselves correla-
tions of the simulated to observed mean spatial pattern.

4. Summary and Conclusions

[54] We evaluated 41 GCMs from CMIP5 with respect to
their performance at simulating 20th century climate for the
PNW. As a group, the models closely reproduced observations
for a wide variety of temperature-based metrics. Individually,
however, themodels generated a wide range of values for many
metrics, suggesting good reason for evaluating and ranking the
models. The models, as a group, performed less well as judged
by the precipitation-based metrics, though still reproduced ob-
servations for many dominant features of the system.
[55] Inadequate ensemble sizes for most models prevented

us from ranking models with high confidence for many
metrics. This was generally true more for precipitation than
for temperature, and more for metrics that summarized proper-
ties of time series than properties of spatial fields. We there-
fore, reemphasize the need already stated by others [e.g.,
Pierce et al., 2009] of generating enough realizations to reduce
the effects of internal climate variability on certain metrics.

Figure A8. Mean winter (DJF) precipitation from (a) NCEP, (b) ERA40, and the (c) CMIP5 multimodel
mean, and mean summer (JJA) precipitation from (d) NCEP, (e) ERA40, and the (f) CMIP5 multimodel
mean.
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[56] A wide range of values within an ensemble also
implies a large standard error on the estimate of the observed
climate statistic taken over the same length of record (given
the simulated and observed internal variabilities are similar).
In such a case, the uncertainty of the observed statistic is
high, and therefore its value as a performance target is low.
Increasing the ensemble size does not alleviate this problem,
as it is a longer record length of the observations that is
required. As record lengths are limited to the currently avail-
able observations, this supports our approach of assigning
at least a qualitative measure of confidence to individual
performance metrics.
[57] After excluding those metrics for which we had the

least confidence in the estimates, we used EOF analysis to

reduce the remaining metrics down to five performance mea-
sures (the leading EOFs). The loadings in the first two EOFs
suggested they could be roughly classified as pertaining to
“temporal variability” and “spatial variance/correlation,” re-
spectively. Given that the first EOF is dominated by temporal
variability highlights the importance of temporal variability
in providing the power to discriminate among models.
[58] Though we have provided an overall ranking of the

models, separate rankings could be calculated using a subset
of those metrics that are more relevant to different types of
impact assessments. For example, Brekke et al. [2008] used
different metric sets for water supply, hydropower, and flood
control. For some applications, models could be evaluated
using only those metrics that are not readily addressed using
bias-correction methods, though one should be aware that
these metrics tend to be those for which we have less confi-
dence. It would also be desirable to assess the CMIP5
GCMs on their ability to adequately reproduce phenomena
that affect daily weather in the PNW, such as the position
and intensity of storm tracks, and formation of atmospheric
rivers. For this initial evaluation, however, we chose to use
only monthly data sets of temperature and precipitation, which
directly excluded phenomena that occur on finer time scales.
[59] Last, when the objective is to assess the impact of

climate change over the next several decades or more, model
performance is not the sole consideration in developing esti-
mates of future change and its uncertainty. Model performance
should be balanced by the need to adequately sample the yet
only very roughly known distribution of climate trajectories.

Appendix A: CMIP5 Models’ Skill
by Performance Metric

A1. Climatologic Mean

[60] The simulated mean annual temperature of the PNW
differed by 5.5°C from the coolest to the warmest model
(Figure A1, upper panel). The observation data sets also dif-
fered notably amongst themselves; NCEP was 2.4°C, 1.9°C,
1.5°C, and 1.2°C cooler than ERA40, CRU, PRISM, and
UDelaware, respectively. Taken as an average, the five
observation data sets were 0.8°C warmer than the median of
the simulated mean annual temperatures. Moreover, 23 of 41
models fell within range of the five observational values.
(Note: henceforth the observed values will be reported as the
average of the observation data sets used, unless specifically
stated otherwise).
[61] Mean annual precipitation was less well reproduced by

the models as all but one model generated more precipitation
than observed (Figure A1, lower panel). The range across
models was large: 75 cm yr�1 difference between the wettest
and driest model. Compared with the estimated 76 cm of an-
nual precipitation received in the PNW, the wettest model pro-
duced nearly 80% too much precipitation in the region. Only
six models fell within the range of the observed values.

A2. Seasonal Cycle

[62] All the models reproduced the phase and general
shape of the seasonal cycle of temperature (Figure A2, upper
panel), though the amplitude of the seasonal cycle varied
widely among models (Figure A3), ranging from 15.5°C to
27.8°C. The median of the modeled amplitude was 22.2°C,
which was within 1°C of the observed amplitude.

Figure A9. Normalized standard deviations (radius) and
correlation coefficients (angle) by season for the climatological
mean fields of temperature and precipitation from CMIP5. The
spatial domain is approximately that shown in Figures A7 and
A8. For each variable, the reference field for the normalization
and the correlation is ERA40 reanalysis. Filled circles show the
first ensemble members from each model and open circles
show remaining ensemble members. Note that a perfect
simulation would have both a normalized standard devia-
tion and a correlation coefficient equal to unity.
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[63] All models generated more precipitation in winter than
summer, which is characteristic of the PNW (Figure A2).
However, the models generated a wide range of amplitudes
of the seasonal precipitation cycle, with a handful of model
severely under-simulating the strength of the seasonal varia-
tion. Calculating mean monthly precipitation as a percentage

of the mean annual total, seasonal precipitation amplitude
ranged from as small as 4.8% to as large as 13.7%. In
comparison, the observed mean amplitude was 10.5%,
which is essentially identical to median of all the models.
(Note that with mean monthly precipitation calculated as a
percentage of annual, the percentages reported above are
the differences of percent precipitation between the wettest
and driest months).
[64] Though the statistics above were averaged over the

entire PNW, there are strong regional gradients in the ampli-
tudes of the seasonal cycle of both the temperature and precip-
itation. Visual inspection showed good agreement between the
observed (CRU and ERA40) and the multimodel mean spatial
pattern of the cycle temperature amplitude overall (Figure A4,
left panels). The models as a whole accurately reproduced the
strong west-to-east gradient, though the multimodel mean
generated a larger seasonal amplitude (by~5°C) in southeastern
Idaho than was evident in CRU. This discrepancy was not as
stark when compared to PRISM or UDelaware (not shown).
[65] The dominant gradient in the observed (CRU and

ERA40) precipitation amplitude in the region is from the
southern coast of Oregon toward the Rocky Mountains
(Figure A4, right panels). The multimodel mean reproduces
this feature, but not surprisingly, lacks some finer-scale
features. This may be due in part to the smoothing from aver-
aging across all the models of varying native resolution, but
also reflects an incomplete representation of key topographi-
cal features in the GCMs. For one, CRU (and PRISM and
UDelaware, though not shown) all gave a weaker seasonal
cycle in the Rocky Mountains, particularly in southeastern
Idaho, than did the multimodel mean.

A3. Diurnal Temperature Range

[66] Mainly due to much greater cloud cover in winter, the
winter diurnal temperature range (DTR) is much smaller than
summer DTR: 9°C and 17°C in January and July, respec-
tively, for both CRU and PRISM (Figure A5). The seasonal
cycle of multimodel mean DTR largely resembles the sea-
sonal cycle of DTR from CRU and PRISM, while NCEP
and a large group of models showed a bigger difference
between summer and winter DTR. However, simulated

Figure A10. PNW-averaged trends in annual temperature over the 20th century for all simulations and
observations. For each of 41 CMIP5 GCMs, black-filled circles show the ensemble average, yellow-filled
circles show the first ensemble member, and the open circles show the remaining ensemble members.
Observed (Obs) values are from CRU (dark green), PRISM (blue), UDelaware (cyan), and average of
observations (black).

Figure A11. (Upper panel) Variance of temperature anom-
alies and (lower panel) coefficient of variation of precipita-
tion against temporal resolution for the PNW-averaged time
series. Red lines show results from all ensemble members
from 41 CMIP5 GCMs.
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DTR tended to be about 2.5–3.5°C too low throughout the
year compared to CRU and PRISM, or 1–5°C compared to
NCEP. With very few exceptions, the individual GCMs
generated a diurnal temperature range that was too small,
irrespective of season (Figure A6). Intermodel variability
also changed throughout the year, with greater differences
among models occurring in summer. While 18 GCMs had a
summer DTR that was within about 2°C of the observed
summer DTR, model skill for this attribute dropped precipi-
tously for the remaining models (Figure A6, lower panel).
Though we have not done so here, it may be worth investigat-
ing if this apparent bimodal distribution of the models can be
explained by some shared properties of the models with less,
or more, error.
[67] One should be aware that observations of Tmin and

Tmax are relatively instantaneous, whereas simulated Tmin
and Tmax have been averaged over some time step that varies
by GCM and therefore are effectively biased toward lower
DTR. We have not attempted to account for this bias here.
[68] Another point worth noting is western most grid

cells of the PNW domain contained some influence of
ocean cells in the models and in NCEP, unlike CRU

and PRISM. We might expect this to suppress DTR
somewhat in both the models and NCEP, as compared to
CRU and PRISM. As a test, we reduced the size of the
PNW domain by 1° on the westward side and recalculated
the PNW-average DTR. While this slightly increased
DTR across all data sets, it only negligibly affected the
relative values of DTR; thus, the ranking of models based
on DTR alone (Figure A6) did not change. Also, the
discrepancy between NCEP and CRU/PRISM remained
unchanged, implying that the differences among observa-
tional data sets seen in Figure A5 are not related to the
influence of ocean cells.

A4. Large-Scale Spatial Patterns

[69] The multimodel mean temperature field over the
North Pacific/western North America accurately reproduced
the ERA40 climatological fields (Figure A7), with correla-
tion coefficients (r) of 0.995 and 0.951 in winter and
summer, respectively (for NCEP, r = 0.996 and 0.972,
respectively). Much of this high correlation resulted from
simply matching the general latitudinal temperature
gradient, but more interesting features of the climatological

Figure A12. Standard deviation of temperature anomalies at resolutions of 1 year and 8 years. Values
were averaged over the PNW domain. For each of 41 CMIP5 models, black-filled circles show the
ensemble average, yellow-filled circles show the first ensemble member, and the open circles show the
remaining ensemble members. Observed (Obs) values are from CRU (dark green), PRISM (blue),
UDelaware (cyan), and average of observations (black).
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fields were also reproduced. Of particular interest to the
PNW is the temperature pattern over the eastern North
Pacific. Most notably in the summer, the southward-moving
California Current brings cooler sea surface temperatures
(SSTs) near the west coast of the United States, while the
Alaskan Current moves warmer water up the coast of
Canada and southeast Alaska. The effect of these currents
on the near ocean surface air temperature patterns is clearly
evident in the observations and simulations, though the
location of the divergence of these two currents, which
occurs roughly at the latitude of the US-Canada boundary,
as shown most clearly in summer temperature pattern, is
located further south in the multimodel mean. Moreover,
the “tongue” of cooler air along the California coast does
not extend as far south in the multimodel mean as in ERA40
and NCEP. Other notable features that are reproduced by
the GCMs as whole are the cooler air temperatures over
the Rocky Mountain Range and the tongue of warm air
extending northward up the Gulf of California. Individually,
all models were very highly correlated to observations in
winter (0.981 ≤ r ≤ 0.995) and highly correlated in summer
(0.89 ≤ r ≤ 0.99) but for one outlier (r = 0.78). The

variances of the modeled fields were also similar to the
observed variance, though more so winter, when all standard
deviations were within ±13% of the observed standard
deviations. In summer, all GCMs were within +32% of
observations (Figure A9, upper panel).
[70] The multimodel mean precipitation field over

the North Pacific/western North America reproduced the
main large-scale climatological features of the ERA40
field in winter (r=0.94), though was less faithful in summer
(r = 0.83) (Figure A8) (for NCEP, r = 0.93 and 0.82,
respectively). In winter, the most prominent features of
the observed precipitation field were (1) the band of heavy
precipitation across the central North Pacific midlatitudes
that weakened as it progressed eastward, and (2) high pre-
cipitation along the coast of North America from northern
California to southeast Alaska (Figure A8, left panels).
The multimodel mean reproduced these two features both in
their location and extent. However, over much of western
North America and over the ocean west of Mexico, the
multimodel mean gave too much precipitation. In summer,
the dominant feature is the dry zone that covers western
United States and extends into the eastern Pacific

Figure A13. Coefficient of variation of precipitation at resolutions of 1 year and 8 years. Values were
averaged over the PNW domain. For each of 41 CMIP5 models, black-filled circles show the ensemble
average, yellow-filled circles show the first ensemble member, and the open circles show the remaining
ensemble members. Observed (Obs) values are from CRU (dark green), PRISM (blue), UDelaware (cyan),
and average of observations (black).
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(Figure A8, right panels). This dry zone was present in
the multimodel mean field, but was wetter than the both
ERA40 and NCEP. Individually, the spatial patterns of
all models correlated well with the spatial pattern of
ERA40 precipitation in winter (0.76 ≤ r ≤ 0.96) while the
correlations weakened in spring and fall, and were
weakest in summer (0.48 ≤ r ≤ 0.85). Normalized stan-
dard deviations ranged from 0.58 to 1.24 across all sim-
ulations and all seasons, with a large majority of models
simulating too little spatial variability in spring and too
much variability in summer (Figure A9, lower panel).

A5. 20th Century Trend

[71] The average annual temperature in the PNW increased
during the 20th century by an estimated 0.70°C based on CRU,
while the trend calculated from PRISM and UDelaware was
0.35°C and 0.44°C per century. Of 41 CMIP5 models, 37 also
produced a positive trend in temperature over the 20th century
(Figure A10), with a multimodel mean warming of 0.61°C.
Simulations did not produce large differences among seasons
in warming, ranging from 0.53°C in fall to 0.74°C in summer.
Moreover, there was no consistency in seasonal differences
between simulations and observations, i.e., the seasons
with greater observed warming were not those with greater
simulated warming.

[72] The linear trend in observed regional mean annual
precipitation, while calculated to be about +10% over the
20th century (calculated as percent change from the mean,
1901–1999), was not statistically significant. In fact, the
sign of the trend is sensitive to the period of record, and
is negative if one begins in, for example, 1940 [e.g., (J. T.
Abatzoglou et al., Understanding seasonal climate variability
and change in the Pacific Northwest of the United States,
submitted to Journal Climate, 2013)]. Models produced
ensemble-average trends ranging from �8% to +7% per
century, while only three individual ensemble members
from three GCMs exceeded the observed 10% per century
(results not shown). The multimodel mean trend in annual
precipitation was only +0.5% per century, and seasonal
differences were minor, ranging from �1.4% to +1.9%
per century in JJA and SON, respectively. In summary,
the lack of a strong, modeled trend in precipitation is
consistent with the lack of a statistically significant trend
in observed precipitation.

A6. Temporal Variability

[73] Overall, the CMIP5 models tended to produce too
much interannual-to-decadal variability in PNW-averaged
times series of temperature relative to the observations
(Figure A11, upper panel). At the annual scale, simulated
standard deviations ranged by a factor of 2, from 0.46°C to
0.90°C (Figure A12). At the octadal (i.e., 8 year) scale,
simulated values ranged from 0.15°C to 0.6°C, or a factor
of 4. Still, many models did not fall very far from the
observations. For example, 21 of 41 models (~50%) had
standard deviations that were within ±18% of the observed
standard deviation at the annual scale, while ~50% of the
models were within ±25% at the octadal scale. A general
similarity in the scaling of the variance among models and
observations meant that a model that was, for example, too
variable at the annual scale was also likely too variable at
the decadal scale.
[74] In the case of precipitation, nearly all models gener-

ated less temporal variability than seen in observations, and
this was consistent across scales (Figure A11, lower panel).
Though both the simulations and observations showed
apparent power law scaling of the CV, the simulated vari-
ances in general decreased too rapidly with increasing scale.
Despite this tendency to under-represent the variability,
~50% of models had CVs that were within ±8% and ±10%
of the observed CV at the annual scale and octadal (8 year)
scale, respectively (Figure A13). The cause(s) of the differ-
ences among models in simulating both the variability in
precipitation and temperature may be related, as suggested
by the significant correlation between the CV of precipitation
and the standard deviation of temperature and at both the
annual (r = 0.79) and octadal scale (r = 0.49).

A7. Long-Term Persistence

[75] The Hurst exponent of the observed temperature
anomalies ranged from 0.64 to 0.69, depending on the data
set (CRU, PRISM, or UDelaware). Though the causes of
observed Hurst exponent are not explored here, these
values could, for example, indicate long-term memory or
nonstationarity in the mean [Klemes, 1974]. In either case,
the Hurst exponent> 0.5 implies that the processes that
determine temperature over the PNW occur over a wide

Figure A14. Upper panel: histogram of the Hurst exponent
for PNW average temperature in all CMIP5 simulations. The
vertical dashed lines indicate the Hurst exponent estimated
from observations. Lower panel: the rescaled range against
the time scale calculated from the observations (heavy lines)
and simulations (thin red lines).
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range of scales [Tessier et al., 1996]. The mean Hurst exponent
averaged over either all ensemble members, or all models, was
0.69. Individual simulations showed Hurst exponents all
greater than 0.5 (0.59 ≤H≤ 0.78) with 90% of values falling
between 0.62 and 0.75 (Figure A14, upper panel).
[76] The estimated Hurst exponent of the observed precip-

itation anomalies ranged from 0.67 and 0.68, similar to that
for temperature. The mean simulated Hurst exponent was
0.61, with 90% of values falling between 0.55 and 0.67
(Figure A15, upper panel). All but three ensemble members
gave Hurst exponents that were less than the observed value.
Even so, the Hurst exponents estimated from the simulated
precipitation were all greater than 0.5.
[77] We repeated the above analyses after removing the

long-term linear trend from both the temperature and precip-
itation records. This was in an attempt to remove the possible
anthropogenic influence on the Hurst phenomenon, if one
assumes that the linear trend, if present, was predominantly
driven by GHG concentrations. The results were minor
differences of�0.01 to�0.03 (<5%) in H for both observed
temperature and precipitation, respectively. The simulations
showed similar decreases in H (i.e., <5%).
[78] Our results for precipitation appear to contradict those of

Kumar et al. [2013] who estimated Hurst exponents, averaged
over 19 CMIP5 models, that were not significantly different

from 0.5 over any land mass, including the PNW (see their
Figure A10). This is important because their results, unlike
ours, suggest that the CMIP5 multimodel ensemble fails to
capture the observed persistence in precipitation observations
anywhere in the globe. However, the two studies used differ-
ent techniques for estimating the Hurst exponent, which may
explain some of the discrepancy. For this reason, we elaborate
on our calculation of the Hurst exponent in Appendix B.

A8. ENSO Teleconnections

[79] The PNW has long been known to exhibit a correlation
with ENSO with respect to both temperature and precipitation,
particularly in winter to early spring (e.g., Ropelewski and
Halpert [1986]; Mote et al. [2003]). Consistent with CRU
observations, a positive PNW temperature response to ENSO
was apparent in the GCMs: all but three models had a positive
response of winter (JFM) temperature to ENSO (Figure A16,
upper panel). Moreover, the multimodel mean response was
a 0.41°C increase in PNW winter temperature for every 1°C
increase in the Niño3.4 index, which is close to the observed
response of 0.57°C °C�1. The agreement in the spatial pattern
of the ENSO response is remarkable, particularly west of the
continental divide (Figure A17, upper panels), where the tran-
sition between a positive to negative response occurs through
southern California and Nevada and central Utah in both the
observed (see also Yu et al. [2012]) andmultimodel mean fields.
[80] A precipitation response to ENSO was also apparent in

most models, with 35 of 41 showing reduced JFM precipitation
with warmer tropical Pacific temperatures (Figure A16, lower
panel). The multimodel mean response was �4.4% °C�1,
compared with the observed response of �5.9% °C�1. The
spatial patterns of the observed and mean simulated ENSO
precipitation response were also similar in the PNW, with
the transition of the sign of the response occurring near
the southern Oregon and Idaho borders in both cases
(Figure A17, lower panels). Absent from the simulated
response, however, was the tongue of observed positive (wetter)
response that extends northward through eastern Oregon and
Washington. This discrepancy may be due to the GCMs not
resolving prominent topographic features (i.e., the Cascades)
and therefore not simulating the changing rain-shadow effect
that occurs with a changing ENSO phase [Siler et al., 2013].

Appendix B: Calculation of the Hurst Exponent

[81] The Hurst exponent was estimated from the rescaled
range. Shortcomings of the rescaled range method have been
documented and various alternatives for estimating the Hurst
exponent have been developed [Caccia et al., 1997;
Simonsen et al., 1998; Kantelhardt et al., 2003; Chamoli
et al., 2007]. However, the rescaled range has a long history
of use and produces errors less than 10% for H> 0.5 for data
sets on the order of 103 points [Bassingthwaighte and
Raymond, 1994; Chamoli et al., 2007; Hamed, 2007],
therefore suited our needs.
[82] Following Hamed [2007], the Hurst exponent H is

related to the rescaled range by

E R=Sð Þ ¼ m=2ð ÞH (B1)

where E(R/S) is expected value of the rescaled range (R/S)
and m is the number of consecutive values from a time

Figure A15. Upper panel: histogram of the Hurst exponent
for all PNW-average precipitation CMIP5 simulations. The
vertical dashed lines indicate the Hurst exponent estimated
from observations. Lower panel: the rescaled range against
the time scale calculated from the observations (heavy lines)
and simulations (thin red lines).
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series (i.e., the “scale” in Figures A14 and A15). The
rescaled range is given by

R

S
¼

max
1≤k≤m

Dkð Þ� min
1≤k≤m

Dkð Þ

S
(B2)

where Dk is the cumulative sum of the deviations from the
mean of the sample up to the kth element of m:

Dk ¼ ∑
k

i¼1

yi � yð Þ (B3)

[83] The sample mean yand biased standard deviation S are
given, respectively, by

y ¼
1

m
∑
m

i¼1

yi (B4)

and

S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m
∑
m

i¼1

yi � yð Þ2

s

(B5)

[84] The rescaled range is calculated for M number of
samples of size m that make up the total time series, and the
expected value E(R/S) is taken. The procedure is repeated
over a range of m.
[85] It is worth noting that the estimate of Hurst exponent

may vary with the time scales (i.e., length m of the interval)
across which the rescaled range statistic is calculated. We
calculated the rescaled range for intervals ranging from 3
months to 99 years (see Figure A14, lower panel) and
estimated H as the slope of a linear fit of the log-rescaled
range against log(m). In the case of temperature, it is evident
from Figure A14 (lower panel) that the overall results would
vary somewhat, though not by much, if we used instead some
subset of the scales we used (e.g., 1 to 32 years). However, in
the case of precipitation, an arguably anomalous increase in
the observed rescaled range occurs between scales of 32
and 64 years (Figure A15, lower panel). If we limit the range
to scales of 32 years and under, the observedH becomes 0.64
and falls well within the 5% and 95% percentiles of the
simulated values (H= 0.60 and 0.68, respectively).
[86] Last, it is evident for both temperature and precipita-

tion that the relationship from both the observed and
simulated time series is not log-log linear, but that the curves

Figure A16. Response of PNW winter (JFM) temperature and precipitation to the Niño3.4 index
averaged over NDJFM. For each of 41 CMIP5 models, black-filled circles show the ensemble average,
yellow-filled circles show the first ensemble member, and the open circles show the remaining ensemble
members. Observed (Obs) values are from CRU (dark green), PRISM (blue), UDelaware (cyan), and
average of observations (black).
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show convexity (Figures A14 and A15, lower panels),
whereas the Hurst phenomenon implies a strictly log-log
linear behavior. Consequently, the absolute values of H
reported here are dependent on the particular range of scales
we have chosen.
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