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ABSTRACT 

A large degree of uncertainty in global climate models (GCMs) can be attributed to the 

representation of clouds and how they interact with incoming solar and outgoing 

longwave (Earth emitted) radiation.  In this study, the simulated total cloud fraction (CF), 

cloud water path (CWP), top-of-atmosphere (TOA) radiation budgets and cloud radiative 

forcings (CRFs) from 28 CMIP5 AMIP models are evaluated and compared to multiple 

satellite observations from CERES, MODIS, ISCCP, CloudSat, and CALIPSO.  The 

multimodel ensemble mean CF (58.6 %) is, on global average, under estimated by nearly 

7 % compared to CERES-MODIS (CM) and ISCCP results, with an even larger negative 

bias (16.7 %) compared to the CloudSat/CALIPSO result.  The CWP bias is similar in 

comparison to the CF result; the multimodel ensemble mean is under estimated (16.4 

gm−2) when compared to CM.  The model simulated and CERES EBAF observed TOA 

reflected shortwave (SW) and outgoing longwave (LW) radiation fluxes, on average, 

differ by 1.6 and −0.9 Wm−2, respectively, and is contrary to physical theory.  The global 

averaged SW, LW, and net CRFs form CERES EBAF are −47.2, 26.2, and −21.0 Wm−2, 

respectively, indicating a net cooling effect due to clouds on the TOA radiation budget.  

Global biases in the SW and LW CRFs from the multimodel ensemble mean are −1.1 and 

−1.3 Wm−2, respectively, resulting in a greater net cooling effect of 2.4 Wm−2 in the 

model simulations.  A further investigation of cloud properties and CRFs reveals the 

GCM biases in atmospheric upwelling (15 °S – 15 °N, ocean-only) regimes are much less 

than their downwelling (15 ° − 45 °N/S, ocean-only) counterparts.  Sensitivity studies
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have shown that the magnitude of SW cloud radiative cooling increases significantly with 

increasing CF at similar rates ( −1.20 and −1.31  Wm−2 %−1) in both regimes.  The LW 

cloud radiative warming increases with increasing CF but is regime dependent, 

demonstrated by the different slopes over the upwelling and downwelling regimes (0.81 

and 0.22 Wm−2 %−1, respectively).  Through a comprehensive error analysis, we found 

that CF is a primary modulator of warming (or cooling) in the atmosphere.  The 

comparisons and statistical results from this study may provide helpful insight for 

improving GCM simulations of clouds and TOA radiation budgets in future versions of 

CMIP.  
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CHAPTER I 

INTRODUCTION 

 The Intergovernmental Panel on Climate Change (IPCC) continues to recognize 

that simulations of clouds and their feedbacks are one of the largest uncertainties in 

current climate model simulations (IPCC, AR5, http://www.ipcc.ch/report/ar5/wg1/).  

Due to their complex interactions with incoming solar (shortwave, SW) and emitted 

terrestrial (longwave, LW) radiation, clouds induce both warming and cooling effects on 

the Earth system (atmosphere and surface).  For simplicity, these effects are commonly 

estimated at the top of the atmosphere (TOA) and the surface, and depend greatly upon 

the fraction of sky covered by clouds, cloud height, and cloud microphysical properties 

(Wielicki et al. 1996).  Zhang et al. (2005) compared global climate model (GCM) 

simulated clouds with data from the National Aeronautics and Space Administration 

(NASA) Clouds and Earth’s Radiant Energy System (CERES) experiment (Wielicki et al. 

1996, 1998) and the International Satellite Cloud Climatology Project (ISCCP) and found 

that most GCMs under estimated mid-latitude total cloud fractions (CF) but over 

simulated their optical depth.  The under estimated CF and over estimated optical depth 

in the models will tend to offset each other in calculating TOA radiation budgets. 

 For the last three decades clouds have been acknowledged to be one of the largest 

modifiers of the global climate system (Cess et al. 1990; Senior and Mitchell 1993; 

Zhang et al. 2005; Bony et al. 2006; Jiang et al. 2012; IPCC 2001; Yao and Del Genio 

2002; Su et al. 2013; Stanfield et al. 2014).  The Coupled Model Intercomparison Project 
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Phase 5 (CMIP5) was implemented in response to these realities as an extension to earlier 

versions of CMIP (e.g. CMIP3) to make available contemporary global climate 

simulations from several participating modeling centers.  CMIP5 inherently takes on the 

challenge of understanding the issues concerning discrepancies among similarly forced 

models and their simulations of clouds (Taylor et al. 2012).  Recent studies have 

investigated the progress of simulated clouds and their corresponding radiative forcings 

between CMIP5 and its predecessor, CMIP3.  Although many improvements have been 

made in CMIP5 (Lauer and Hamilton 2012; Jiang et al. 2012; Wang and Su 2013; Li et 

al. 2013; Klein et al. 2013; Chen et al. 2013), clouds and their feedbacks continue to be 

problematic in climate models, as concluded in the IPCC AR5 Chapter 9 (2013).  

 Cloud vertical distribution and overlap are some of the major uncertainties in 

determining the heating/cooling profiles by radiative and precipitable/evaporative 

processes (e.g. Stephens and Webster 1984; Morcrette and Jakob 2000; Stephens et al. 

2002).  The spread of climate warming predictions by a multimodel ensemble is, 

arguably, a result of the oversimplification of cloud vertical distributions and overlap 

assumptions (Stephens et al. 2002).  Simulated cloud vertical distributions under the 

random overlap assumption produces a better agreement with observations than those 

under other assumptions (i.e. maximum, minimum, and maximum-random).  Yet still, the 

maximum-random overlap assumption has been used by most GCMs (e.g. Hogan and 

Illingworth 2000; Collins 2001).  

 Lauer and Hamilton (2012) have revealed the model simulated cloud radiative 

forcings (CRFs) tend to outperform CF results, suggesting that models are not accurately 

depicting fundamental cloud processes; rather, the models are being tuned to provide 
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simulations that converge to observations.  However, model developers cannot tune all 

parameters to match observations.  Jiang et al. (2012) developed a grading scale in an 

attempt to rate each model based upon spatial means, standard deviation, and correlation 

of combined clouds and water vapor fields.  Furthermore, they highlighted that there 

exists large model spread and a high degree of discrepancy from observations, 

particularly in the upper troposphere.  In many instances when evaluating a multimodel 

ensemble, absolute model error is rather small.  However, when evaluating models 

independently, the spread of model results is fairly large; most GCMs use different cloud 

parameterization and radiation schemes, offering more complexity to evaluation studies.  

 A recent study by Su et al. (2013) suggests that most of the errors in model-

simulated clouds are a result of cloud parameterization errors, rather than the large-scale 

dynamics.  Jiang et al. (2012) and Li et al. (2012) both reported that improvements were 

made in the representation of ice clouds form CMIP3 to CMIP5; advances in cloud 

parameterization, such as the use of a double-moment cloud microphysical scheme and 

two separate prognostic equations for ice and liquid clouds in some models, are 

associated with this result.  Through their analysis, a 50 % reduction of error was 

apparent in the multimodel mean bias and root mean squared error (RMSE).  Wang and 

Su (2013) investigated the relationships between CRFs and atmospheric vertical 

velocities in 12 uncoupled CMIP5 simulations and concluded that the over estimated net 

CRF (stronger cooling) was primarily a result of over estimated SW cloud radiative 

cooling and under estimated LW cloud radiative warming.  They further analyzed these 

models’ results based upon vertically driven dynamic regimes in an attempt to 

quantitatively estimate the biases in upwelling/convective and downwelling/subsidence 
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(at 500 hPa) regions of the tropical oceans.  In this study, through an integrative analysis 

of multimodel ensemble means and NASA satellite observations, simulated and observed 

clouds and CRFs, in atmospheric upwelling and downwelling regimes in the tropics and 

mid-latitudes (ocean-only), are investigated.  

 By applying a thorough error analysis technique, Zhu et al. (2007) quantified the 

errors from cloud amount and cloud condensate with the response of doubled CO2 and 2 

K sea surface temperature (SST) perturbations.  Due to its statistical significance, they 

instigated the multiple linear regression (MLR) method, which is an appropriate 

technique for identifying cloud feedbacks in climate sensitivity experiments.  By 

applying this approach, they also quantified the errors in radiation feedbacks due to cloud 

fraction and cloud condensate, and characterized their corresponding implications on 

climate simulations.  We employ a similar technique to quantify the errors in simulated 

CFs and cloud water path (CWP) on CRF simulations.  

 The general objective of this study is to determine the overall representation of 

clouds and their consequent radiative forcings in uncoupled CMIP5 models, while 

inherently providing the practical foresight and motivation for climate model 

advancement.  We separate our analysis into atmospheric upwelling and downwelling 

regimes based upon 500 hPa vertical velocities, considering that different cloud types, 

such as deep convective clouds associated with upwelling and stratiform clouds in 

downwelling regimes, have different cloud radiative effects (Su et al. 2008; Bony et al. 

2004).  Also, climate models have shown significantly different behaviors and a 

relatively large degree of multimodel spread in these two regimes (Su et al. 2013).  Cloud 

parameterization schemes oftentimes use in-cloud vertical velocities to distinguish 



! 5!

convective and stratiform-type cloud predictions.  By identifying systematic details 

(consistent with parameterizations) between clouds and TOA radiation in both the 

observations and the GCMs in these regimes, more suitable constraints may be applied to 

parameterizations.  Considering the sensitivity between clouds and their radiative 

forcings in different dynamic regimes will provide insight as to whether errors form 

clouds or their microphysical properties (i.e. CWP) are contributing more to the overall 

CRF bias.  Again, a quantitative assessment of these complex variables will support the 

improvement of climate models regarding the physical representation of clouds and their 

radiative feedbacks.  This study evaluates the outputs from 28 uncoupled CMIP5 models 

using a combination of satellite observations from CERES, MODIS, ISCCP, CloudSat, 

and CALIPSO, as well as contemporary reanalysis data.  Through an integrative analysis 

of 28 CMIP5 GCM outputs and multiple satellite observations, we quantitatively assess 

the strengths and weaknesses in current climate model simulations and provide the 

information useful for model improvements.  If the current climate is accurately 

predicted, there may be more confidence in future-climate simulations.   

 This document details the AMIP model simulations from CMIP5 along with the 

referenced satellite observations in the Methodology section while the Results section 

presents the simulated and observed CF, CWP, TOA radiation budgets, and CRF results 

in the recent climate.  We investigate the common biases and the sensitivity 

characteristics between CRFs and clouds (CF and CWP) in tropical and mid-latitude 

atmospheric upwelling and downwelling regions over oceans and determine the overall 

ability of the models to simulate clouds and TOA CRFs in these regimes.  CRF biases are 

ultimately quantified in each regime on a model-to-model basis and in the multimodel 



! 6!

ensemble via a comprehensive error analysis.  A summary of the results and suggestions 

for further analysis has been made at the end of this document. 
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CHAPTER II 

DATA AND METHODOLOGY 

Coupled Model Intercomparison Project Phase 5 (CMIP5) Model Simulations 

 CMIP5 is the result of a conglomeration of modeling centers whose ultimate goal 

is to mitigate the discrepancies and uncertainties in contemporary global climate models 

(Taylor et al. 2012).  The main objectives of CMIP5 include: 

1) “assessing the mechanisms responsible for model differences in poorly 
understood feedbacks associated with the carbon cycle and with clouds; 

2) examining climate “predictability” and exploring the predictive capabilities of 
forecast systems on decadal time scales; and, more generally, 

3) determining why similarly forced models produce a range of responses.” 
 
There are three different types of temporal experiments that range from long-term 

(century time scale), decadal, and short-term time scales.  For this study, we evaluate the 

(Atmospheric Model Intercomparison Project) AMIP-type simulations, which falls within 

the category of decadal time-scale predictions.  A more comprehensive summary about 

the CMIP5 project and the framework for other prediction experiments can be found in 

Taylor et al. (2012).   

 This study analyzes the outputs from 28 models submitted to the AMIP in 

CMIP5, which are available from the Earth System Grid Federation (ESGF) through the 

Program for Climate Model Diagnosis and Intercomparison (PCMDI).  These modeled 

results are available at http://pcmdi9.llnl.gov/esgf-web-fe/, and their associated center (or 

group) name, model name, horizontal and vertical grid spacing, and number of ensemble 
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members are summarized in Table 1.  These models were chosen based upon data 

availability at the onset of this study (August 2012).  Post-CMIP5 simulations have 

recently been released, by request, by some modeling groups; however, they are not 

being considered in this study (Stanfield et al. 2014 compares CMIP5 and post-CMIP5 

GISS-E2-R simulations).  The AMIP output is designed for historical climate simulations 

(1979 – 2008), while the NASA observations used in the evaluation process begins in 

March 2000.  Therefore, the period between March 2000 and February 2008 is chosen for 

this study.   

Table 1. The 28 CMIP5 AMIP climate models evaluated in this study.  Specific model 
names are listed along with the modeling center (or group) from which it was created.  
Horizontal grid spacings (longitude × latitude) are listed together with the number of 
vertical grid levels (L#) and the number of ensemble members available from each 
specific model. 

Modeling Center (or Group) Model Name Grid Spacing (lon × lat), 
Vertical Levels 

Ensemble 
Members 

Commonwealth Scientific and Industrial 
Research Organization (CSIRO) and 

Bureau of Meteorology (BOM), 
Australia 

ACCESS1.0 1.875° × 1.25°, L38 1 

Beijing Climate Center, China 
Meteorological Administration 

BCC-CSM1.1                  
BCC-CSM1.1 (m) 

1.25° × 1.25°, L26 
2.8125° × 2.815°, L26 

3                                     
3  

College of Global Change and Earth 
System Science, Beijing Normal 

University, China 
BNU-ESM 2.8125° × 2.8125°, L26 1 

Canada Centre for Climate Modeling 
and Analysis CanAM4 2.8125° × 2.8125°, L35 4 

National Center for Atmospheric 
Research (NCAR), USA CCSM4 1.25° × 0.9375°, L26 6 

Community Earth System Model 
Contributors (NSF-DOE-NCAR), USA CESM1 (CAM5) 1.25° × 0.9375°, L30 2 

Centro-Euro-Mediterraneo per I 
Cambiamenti Climatici, Italy CMCC-CM 0.75° × 0.75°, L31 3 

Centre National de Recherches 
Meteorologiques/Centre Europeen de 
Recherche et Formation Avancees en 

Calcul Scientifique, France 

CNRM-CM5 1.4° × 1.4°, L31 1 

Commonwealth Scientific and Industrial 
Research Organization in collaboration 

with Queensland Climate Change Centre 
of Excellence, Australia 

CSIRO-Mk3.6.0 1.875° × 1.875°, L18 10 
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Table 1 cont. 

Modeling Center (or Group) Model Name Grid Spacing (lon × lat), 
Vertical Levels 

Ensemble 
Members 

LASG, Institute of Atmospheric 
Physics, Chinese Academy of Sciences 

CESS, Tsinghua University 

FGOALS-g2       
FGOALS-s2 

2.8125° × 1.666°, L26      
2.8125 × 3.0°, L26 

1                                
3 

NOAA Geophysical Fluid Dynamics 
Laboratory, USA 

GFDL-CM3             
GFDL-HIRAM-C180 
GFDL-HIRAM-C360 

2.5° × 2.0°, L48               
0.625° × 0.5°, L32         

0.3125° × 0.25°, L32 

5                                
3                                
2 

NASA Goddard Institute for Space 
Studies GISS-E2-R 2.5° × 2.0°, L29 10 

Met Office Hadley Centre, United 
Kingdom HadGEM2-A 1.875° × 1.25°, L38 6 

Institute for Numerical Mathematics, 
Russia INM-CM4 2.0° × 1.5°, L21 1 

Institut Pierre-Simon Laplace, France 
IPSL-CM5A-LR        
IPSL-CM5A-MR       
IPSL-CM5B-LR 

3.75° × 1.875°, L39             
2.5° × 1.25°, L39               

3.75° × 1.875°, L39 

6                                
3                                
1 

Atmosphere and Ocean Research 
Institute (The University of Tokyo), 
National Institute for Environmental 

Studies, and Japan Agency for Marine-
Earth Science and Technology 

MIROC5 1.4° × 1.4°, L40 2 

Max Planck Institute for Meteorology, 
Germany 

MPI-ESM-LR             
MPI-ESM-MR 

1.875° × 1.875°, L47      
1.875° × 1.875°, L95 

3                                     
3  

Meteorological Research Institute, 
Japan 

MRI-AGCM3.2H       
MRI-AGCM3.2S        

MRI-CGCM3 

0.5625° × 0.5625°    
0.1875° × 0.1875°      

1.125° × 1.125°, L35 

3                                
1                                
3 

Norwegian Climate Centre NorESM1-M 2.5° × 1.875°, L26 3 

 

Atmospheric Model Intercomparison Project (AMIP)  

 The AMIP simulations are uncoupled models with climatologically prescribed sea 

surface temperature (SST) and sea ice observations.  For cloud simulations, the AMIP 

models are comparable with their coupled counterparts (named Historical Runs), which 

are linked to fully dynamic ocean models, although both versions have their own biases 

(Lauer and Hamilton, 2012).  Therefore it is suggested that the issues related to clouds 

and CRF uncertainties are not originating from discrepancies in the representation of SST 

fields, but rather the cloud simulations themselves, such as in convective and boundary 

layer cloud parameterizations.  A study by Li et al. (2012) has found that the uncoupled 

models (prescribed SSTs) can produce a more accurate depiction of the field if there are 
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no extreme (e.g. ENSO) events.  This study focuses on the AMIP runs and evaluates the 

simulated clouds and respective TOA radiation budgets.   

 Although the physical parameterization schemes are different for each model, 

facilitating an intercomparison encourages the application of well-performed 

parameterization schemes.  Li et al. (2012) provided cloud physics schemes for the 

models used in their study, of which 11 are evaluated in this study.  All modeled and 

observed results are averaged and interpolated to a standard 2.0° × 2.5° (latitude × 

longitude) grid for a side-by-side comparison and evaluation.  A large degree of 

multimodel spread is apparent in Polar Regions (on average ~ 42 % in CF simulations 

with a maximum of approximately 60 %), and should be interpreted with caution.  We 

must also acknowledge the intrinsic disadvantage in using monthly mean gridded data.  

Lin et al. (2010) stated that different cloud types (i.e. convective and stratiform) are likely 

mixed together at longer time scales and at relatively coarse, non cloud-resolving spatial 

grids.  This will create even larger uncertainty in model-observation comparisons.   

Model Ensemble Members 

 Each modeling group has the freedom to run their models with different initial 

conditions and perturbed physics schemes.  Every model run that contains a different 

model framework is to be distinguished from one another by a distinct realization, 

initialization, and physical scheme number (r<N>i<M>p<L>).  The realization number 

(N) “is used to distinguish among members of an ensemble typically generated by 

initializing a set of runs with different, but equally realistic, initial conditions” (Taylor et 

al. 2011).  Considering the GCMs used in this study, the realization is most commonly 

changed within a model-specific ensemble.  The initialization number (M) is determined 
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by the use of initial conditions, whether from different methods or different observational 

datasets.  Only one model (HadGEM2-A) uses different initial conditions in its ensemble 

of runs.  Lastly, the perturbed physics (L) may also be changed (referring to a unique set 

of forcing combinations) between ensembles for each model.  For example, the GISS-E2-

R uses three different perturbed physics in its set of ensemble members.  The first scheme 

uses pre-calculated aerosol and ozone fields where the aerosol indirect effect (AIE) is 

parameterized.  The second option calculates aerosols and atmospheric chemistry as a 

function of atmospheric state and transient emissions, where AIE is also parameterized.  

The third and final option is consistent with the second option in terms of calculating the 

aerosol and atmospheric chemistry; however, the aerosol impact on clouds (and hence the 

AIE) is actually calculated, not parameterized (Schmidt et al. 2014).   

 Figure 1a effectively demonstrates the difference in the zonal cloud fraction 

distribution, and weighted global means, between three ensemble members with a 

combination of different realizations and physical schemes in the MRI-AGCM3.2H 

GCM.  The ensemble member denoted as r2i1p2 (blue) has the largest global average CF 

with 62.3 %.  The first ensemble member (r1i1p1, black) generates the smallest global 

average CF with 54.6 %, resulting in a 7.7 % difference between two ensemble members 

from the same model.  The largest CF discrepancy is apparent in the southern tropics but 

then values converge at the latitudes ~60 °S.  CSIRO-Mk3.6.0 has 10 ensemble members 

with different realizations (Figure 1b).  The global average CF (67.3 %) is the same for 

every ensemble member, except for r1i1p1 and r4i1p1 where the global average is 0.1 % 

less.  Little, if any, spread in the zonal CF distribution is noticeable through all latitudes 

except at the poles (> 80 °N/S) where some separation is visible. 



! 12!

 

 
Figure 1. The zonal cloud fraction distribution from several ensemble members in two 
GCMs, MRI-AGCM3.2H (a) and CSIRO Mk3.6.0 (b), during the time period of this 
study.  The effects of different physical schemes, initializations, and realizations are 
portrayed.  Each colored line represents a different ensemble member and the values in 
parenthesis are the weighted global means.  
 
 Although some models may have several ensemble members (right-most column 

of Table 1), the first output member is used for the analysis of each specific model (i.e. 

r1i1p1).  There is no systematic approach for determining which model in the ensemble 

to choose; therefore, the first available simulation run is selected.  The difference 

between ensemble members was not thoroughly examined and could potentially provide 

a different result in this study.  Determining the differences between ensemble members 

would be an extremely cumbersome task but should be investigated.       

Evaluated Variables  

 As the title of the manuscript suggests, this study evaluates the observed and 

multiple GCM simulated clouds and TOA radiation budgets.  The model outputs are 

available on several different temporal scales (3-hourly, 6-hourly, daily, and monthly) 

depending on the model.  This study utilizes the monthly averaged model output to study 

the long-term, large-scale effects of clouds on the TOA radiation budget.  This section 

attempts to better explain what these parameters are, physically, and the method for 
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determining them in the observations and model simulations.  It is imperative that the 

definitions of each variable in both the observations and model simulations be consistent, 

so that a reasonable comparison can be made.  Some adjustments have been made and 

will be noted.  Table 2 lists all available variables from the AMIP GCM simulations 

chosen for this study.   

 Total cloud fraction (clt) is the overall distribution (horizontal only) of clouds.  

More specifically, total cloud fraction is the percentage of a grid box covered by cloudy 

pixels from a top-view (meaning that there could be overlapping clouds contributing to 

the overall cloud fraction).  Condensed water path (clwvi) is what we call CWP in this 

study.  The models describe CWP to be the mass of condensed (liquid + ice) water in the 

column divided by the area of the column (not just the area of the cloudy portion of the 

column).  This includes hydrometeors only if the precipitating hydrometeor affects the 

calculation of radiative transfer in the model.   CERES MODIS (CM) observed CWP has 

been normalized by the cloud fraction observations since the passive sensor cannot 

differentiate between liquid and ice clouds.  Therefore, the observed CWP is the sum of 

ice and liquid water path multiplied by the cloud fraction ([IWP + LWP] × CF).   

 The simulated TOA outgoing LW/SW radiation (rlut/rsut) and the clear-sky 

counterparts (rlutcs/rsutcs) are needed for the calculation of TOA CRFs.  Again, the 

radiation budget for each grid box is averaged to output a single value.  Ramanathan et al. 

(1989) defines TOA CRFs to be the difference between clear- and all-sky radiation fluxes 

(clear – all).  CERES EBAF provides monthly means of clear- and all-sky TOA radiation 

fluxes, where we can calculate SW and LW CRFs using the CRF definition.    
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Table 2. GCM simulated variables available from the suite of models chosen for this 
study.  The variable long name is listed along with its corresponding CMIP5 
abbreviation.  Variables denoted with a * are those evaluated in this study.  

Variable Long Name Abbreviation Variable Long Name Abbreviation 

Cloud Fraction Area cl TOA Outgoing Longwave 
Radiation rlut * 

Mass Fraction of Cloud Ice cli TOA Outgoing Longwave 
Radiation (Clear-Sky) rlutcs * 

Ice Water Path clivi Surface Downwelling Shortwave 
Radiation rsds 

Total Cloud Fraction clt * Surface Downwelling Shortwave 
Radiation (Clear-Sky) rsdscs 

Mass Fraction of Cloud Liquid 
Water clw TOA Incident Shortwave Radiation rdst 

Condensed Water Path clwvi * Surface Upwelling Shortwave 
Radiation rsus 

Evaporation evspsbl TOA Outgoing Shortwave 
Radiation rsut * 

Surface Upward Latent Heat 
Flux hfls TOA Outgoing Shortwave 

Radiation (Clear-Sky) rsutcs * 

Surface Upward Sensible Heat 
Flux hfss Net Downward Flux at Top of 

Model rtmt 

Relative Humidity hur Air Temperature ta 
Specific Humidity hus Near-Surface Air Temperature tas 

Near-Surface Specific Humidity huss Daily Maximum Near-Surface Air 
Temperature tasmax 

Precipitation pr Daily Minimum Near-Surface Air 
Temperature tasmin 

Convective Precipitation prc Surface Downward Eastward Wind 
Stress tauu 

Snowfall Flux prsn Surface Downward Northward 
Wind Stress  tauv 

Water Vapor Path prw Mole Fraction of O3 tro3 
Surface Air Pressure ps Surface Temperature ts 
Sea Level Pressure psl Eastward Wind ua 
Surface Downwelling 
Longwave Radiation rlds Northward wind va 

Surface Downwelling 
Longwave Radiation (Clear-
Sky) 

rldscs Omega (=dp/dt) wap * 

Surface Upwelling Longwave 
Radiation rlus Geopotential Height zg 

  

 The last parameter relevant to this study is the omega (wap) field at 500 hPa. 

Satellites do not directly measure vertical velocities; therefore, reanalyses are used to 

reference the model-simulated values.  More on the reanalysis is presented in the next 

section.  Although a comprehensive analysis is not performed on the simulated omega 
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field, it is still important to determine whether the models simulate vertical velocities 

with relative accuracy.   

NASA Satellite Observations 

 Satellites can provide a global view of cloud and radiation fields through either 

direct observations or retrieved from physical and empirical methods.  These global 

satellite products are an excellent tool for evaluating past and current climate model 

simulations (within the range of historical satellite observations).  However, the 

uncertainties and potential biases of these products must be understood before they are 

used as a reference for comparison.   Table 3 offers a quick glance into the observational 

data products used in this study and their associated uncertainties.  

Clouds and Earth’s Radiant Energy System (CERES) 

 As being one of the highest priority scientific satellite systems for observing the 

Earth, CERES can provide global measurements of TOA and surface, reflected (solar) 

shortwave and emitted terrestrial longwave radiation.  Satellites equipped with 

instruments capable of providing co-located (spatial and temporal) cloud and radiation 

measurements are of great interest to this type of evaluation study.  There are two 

satellites equipped with this type of setup, Terra and Aqua, and are near-polar orbiting (at 

an altitude of 705 km) and sun synchronous.  The CERES instrument has three spectral 

channels; a SW channel that ranges from 0.3 – 5.0 µm to measure reflected sunlight (SW 

flux), a window channel to measure the Earths emitted LW radiation is contained within 

8 – 12 µm, and the total spectral range spans from 0.3 to > 100 µm.  Filtered radiance 

measurements are converted from raw counts with a complex algorithm taking into 

account several corrections (spectral, geometric, sensor, etc.) (Cooper et al. 2013).   
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Moderate Resolution Imaging Spectroradiometer (MODIS) 

          This study applies eight years (March 2000 – February 2008) of monthly mean 

combined MODIS retrievals from two satellites, Terra and Aqua, for the evaluation of 

total column CF and CWP (liquid and ice water).  The data used for this study is from the 

Level-3 SYN1deg product, Edition 2.6 and is gridded to a 1.0 ° × 1.0 ° (latitude × 

longitude) grid.  MODIS has 36 spectral channels ranging from visible to thermal 

infrared (IR) wavelengths (0.4 – 14.4 µm).  The swath width is 2330 km across track with 

a 10 km along track at nadir width.  Spatial resolutions are available at 250, 500, and 

1000 m for certain spectral bands.  Cloud properties are generally derived from channels 

in the near- to thermal IR bands (~3.6 – 14.4 µm).   

 Due to the large uncertainties in nighttime CWP retrievals (> 50 gm−2), only 

daytime retrievals are used for the evaluation of CF and CWP (Stanfield et al. 2014).  The 

CERES-MODIS (CM) cloud properties have been extensively validated with other space-

borne satellites (Minnis et al. 1999, 2002, 2011) and ground-based measurements (Dong 

et al. 2008a; Xi et al. 2010, 2014).  For example, Dong et al. (2008a) documented the 

uncertainties in the CM retrieved cloud liquid water path (LWP) and found that the mean 

differed by 0.6 ± 49.9 gm−2 when compared to the Department of Energy (DOE) 

Atmospheric Measurement (ARM) program ground-based microwave radiometer 

retrieved LWPs at the Southern Great Plains (SGP) Central Facility site.  Minnis et al. 

(2011b) found that the CM LWP over the ocean was, on average, 0.2 ± 53.6 gm−2 less 

than the LWP from matched overcast Advanced Microwave Scanning Radiometer – 

Earth Observing System (AMSR-E) footprints.  CM ice water path (IWP) retrievals show 

an average negative bias of 3.3±16.2 gm−2 when compared to ground-based radar 
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measurements (Mace et al. 2005).  A more detailed survey of CM cloud microphysical 

property descriptions and uncertainties shall be found in Minnis et al. (2011b).   

Energy Balanced And Filled (EBAF) 

          The CERES Energy Balanced and Filled at the TOA (EBAF-TOA) Edition 2.7 

dataset (Loeb et al. 2012; Doelling et al. 2013) is used for radiation budget and CRF 

comparisons in this study.  The CERES-EBAF-TOA is an expansion of the CERES 

SYN1deg product designed for climate modelers that require a net imbalance constrained 

to the ocean heat storage term (Hansen et al. 2005).  Edition 2.7 was released during the 

summer of 2013 with improvements in TOA clear-sky SW and LW fluxes in the regions 

with snow and sea-ice cover.  CERES EBAF clear- and all-sky radiation budgets are 

differentiated by cloud imager (from MODIS) classifications, where 99% of the pixels in 

a 20 km footprint are to be classified as clear.   

International Satellite Cloud Climatology Project (ISCCP) 

 The International Satellite Cloud Climatology Project (ISCCP) provides another 

passive remote sensing CF product for comparison.  The ISCCP CF has an estimated 

uncertainty of ~10 % (Rossow et al. 1993; Han et al. 1994).  Although no comprehensive 

analysis is performed with the ISCCP CF as a reference in this study, the excellent 

agreement between CM and ISCCP CFs (global average difference ~0.1 %, R2 = 0.84) 

may provide more confidence for modelers to use the long-term ISCCP results to 

evaluate their cloud-climate simulations in the future. 

CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
(CALIPSO) 
 In addition to the CM and ISCCP cloud products, the integrated CloudSat, 

CALIPSO, CERES, and MODIS (CCCM) Rel1B merged lidar/radar product provides 
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instantaneous retrieved cloud properties and vertical profiles in the CloudSat/CALIPSO 

(CC) ground track (Kato et al. 2010).  For this study, only the CC cloud fractions from 

this product have been compared with other observations and GCMs because no 

statistical difference between the MODIS-in-CC swath and Single Scanner Footprint 

(SSF) products has been found (Xi et al. 2014).  The CC CF data are from the CCCM 

dataset where the uncertainty of CC combined cloud fraction profiles has been estimated 

to be 5 % (Mace et al. 2005; Su et al. 2013).  Although the CCCM data product 

represents a time period different than that of the other observations and model 

simulations, the record represents the recent annual cloud fraction climatology, which has 

been used to establish representative statistics for model-observation comparisons (e.g. 

Jiang et al. 2012; Li et al. 2012; Su et al. 2013).   

 CloudSat is equipped with a 94-GHz cloud profiling radar (CPR) that vertically 

derives the amount of backscatter from clouds with a limitation of detecting clouds below 

1 km and optically thin clouds (τ < 0.3).  Similarly, the Cloud-Aerosol Lidar with 

Orthogonal Polarization (CALIOP) cloud profiling lidar on board CALIPSO operates like 

a ground-based micropulse lidar (MPL) at either 532 or 1064 nm wavelengths with high 

sensitivity to detect optically thin clouds but its signals are attenuated within optically 

thick clouds.  Since CALIPSO (an active sensor; lidar) is more sensitive than CM 

(passive remote sensor) to optically thin clouds (optical depth, τ < 0.3) (Chiriaco et al. 

2007; Minnis et al. 2008), we use the CC derived CF as an upper bound.  The CC dataset 

offers vertically derived and total column CFs, however, only total column CF is used in 

this study.  
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Table 3. Level-3 Global monthly mean gridded data products. Reference: a. Minnis 
et al. (2011b); b. Rossow and Schiffer (1999); c. Mace et al. (2009); d. CERES 
EBAF_Ed2.7 Data Quality Summary 

Satellite Product  Original Grid Spacing Complete Temporal Extent Standard Error/ 
Uncertainty 

CERES-MODIS 1.0 ° × 1.0 °  03/2000 - 12/2011 !!
    CF ! ! 7 %a 

    CWP !! !! 15 %a 

ISCCP 2.5 ° × 2.5 °  07/1983 - 12/2009 !!
    CF !! !! < 5 %b 

CloudSat/CALIPSO 2.0 ° × 2.5 °  07/2006 - 06/2010 !!
    CF ! ! 5 %c 

CERES EBAF (TOA) 1.0 ° × 1.0 °  03/2000 - 02/2013 !!
    Reflected SW (all-sky)  

! !
4.0 Wm−2 d 

   Reflected SW (clear-sky)   2.6 Wm−2 d 
   Outgoing LW (all-sky) 

! !
2.0 Wm−2 d 

   Outgoing LW (clear-sky)     3.6 Wm−2 d 

 
NASA Reanalysis 

Modern Era Retrospective Analysis for Research and Applications (MERRA)  

 MERRA reanalysis focuses on analyzing the hydrological cycle on different 

weather and climate time scales (Rienecker et al. 2011).  In short, the reanalyzed dataset 

is a result of assimilating approximately 2 × 106 randomly distributed observations from 

radiosondes, satellites, and surface-based instrumentation into a model. The data are 

available during the satellite era, 1979 through the present day (with some time lag of a 

couple months).  The analysis is performed on a 0.66 ° × 0.5 ° (longitude × latitude) 

horizontal grid on 72 vertical levels (Lucchesi et al. 2012).  The data can be temporally 

averaged from hourly to monthly time scales, and can also be spatially averaged from 

coarser horizontal and vertical grid spacings (e.g. 1.25 ° × 1.25 ° and 42 vertical levels).  

Only the reanalyzed vertical velocities are used in this analysis, although many other 
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variables are available, such as temperature, pressure, and horizontal wind fields, among 

others.   
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CHAPTER III 

RESULTS 

 The current status of simulated cloud properties, CF and CWP, and their 

corresponding effects on TOA radiation budgets are evaluated and shown in this section.  

The purpose is to identify the biases and deterministic relationships between observations 

and the model simulations, and to provide aid to the advancement of model development.  

Multimodel ensemble means are used frequently in this analysis.  The reader should be 

aware that this multimodel ensemble mean is simply the average of all 28-modeled 

values at each (common interpolated) grid box to form a single solution for comparison.  

Additionally, global means are area-weighted averages using the cosine of latitude as 

weighting.  This section is split into two parts; the first emphasizes on global evaluations, 

biases and distribution characteristics, to determine the current state of climate 

simulations.  The second section focuses on the tropics and mid-latitudes; detailing 

specific relationships between observed characteristics and how they are simulated in the 

models, and ultimately quantifies the errors in the simulations.  

Global Evaluation Study 

Cloud Fraction and Cloud Water Path 

 Satellite derived and model simulated global CFs are shown in Figure 2a.  The 

modeled CFs are, on average, under estimated by 6.9 and 6.8 % when compared to CM 

and ISCCP results, respectively, with an even larger negative bias when compared to CC 

(−16.7 %).  Given the high sensitivity of CC to optically thin cirrus clouds, the CC CF 
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result can be used as the upper bound of satellite observations and model simulations.  

Similar to Stanfield et al. (2014), CC derived CF would be close to both CM and modeled 

CF values if its results were averaged only with cloud optical depths > 0.3 (not shown).  

Furthermore, the standard deviation (σ = 5.8 %) of models CFs does not fall within the 

range of observations.  Only four model (CSIRO-Mk3.6.0 and the three GFDL models; 

C180, C360, and CM3) simulated CFs are slightly larger than the CM and ISCCP results, 

while none are larger than the CC CF.   

Figure 2. The globally averaged cloud fraction (a) and cloud water path (b) from 28 
AMIP models (grey bars) and satellite observations; CERES MODIS (red), ISCCP 
(green), and CloudSat/CALIPSO (black).  The blue dashed line signifies the multimodel 
ensemble mean.  The standard deviations of the simulated results are also noted. 
 
 The CWP comparison (Figure 2b) is similar to the CF comparison in that the 

multimodel ensemble mean is under estimated (−16.4 gm−2) when compared to CM.  The 

standard deviation (σ = 36.7 gm−2) of the modeled results is rather large due to the broad 

range of modeled results from a minimum of 40.7 (INM-CM4) and to a maximum of 

184.8 gm−2 (GISS-E2-R).  Ten models (BCC-CSM1.1, BCC-CSM1.1 (m), BNU-ESM, 

CanAM4, CCSM4, GFDL: C180, C360, and CM3, GISS-E2-R, and NorESM1-M) have 

simulated CWPs larger than observations.   



! 23!

 To study their latitudinal variations, the zonally averaged CF and CWP 

simulations and observations are shown in Figure 3.  Most model simulated CFs and the 

multimodel ensemble mean agree fairly well with both CM and ISCCP CFs in the tropics 

(5 °S – 15 °N), but then begin to diverge pole ward with a large discrepancy in the 

southern mid-latitudes, consistent with Stanfield et al. (2014).  Again, the CC derived CF 

is an upper bound of model simulated CFs and only a few models exceed the CC result 

(at higher latitudes).  Large multimodel spread in the CF simulations is apparent in the 

polar latitudes, as illustrated by the large grey shaded areas in Figure 3a.   

Figure 3. The zonal cloud fraction (a) and cloud water path (b) distribution from CERES-
MODIS (red), ISCCP (green), CloudSat/CALIPSO (black), and the multimodel ensemble 
mean (blue).  The grey shaded area represents the 2σ of the model simulations and the 
black dotted lines are the maximum and minimum simulated values.  Values in 
parenthesis correspond to the weighted global mean.  
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 Figure 3b displays the zonal distribution of CWP in the model simulations and 

observations form CM.  The multimodel ensemble mean is slightly larger than the CM 

result in the tropics (between ~ 20 °N/S) then transition to values less than what is 

observed by CM.  A large degree of multimodel spread in the CWP results exists in the 

mid-latitudes as evidenced by the broad grey shaded area (2σ standard deviation).  CWP 

is the sum of liquid and ice water paths, as previously stated.  CM does not differentiate 

between ice and liquid clouds, therefore, these characteristics have not been explicitly 

evaluated in this study, however, Stanfield et al. (2014) elaborates on the distinction 

between ice and liquid water paths, and the discrepancies between CloudSat observations 

and those simulated in a single GCM (GISS-E2-R).  Their analysis suggests that IWP 

(LWP) is generally over (under) estimated in the tropics where the opposite holds true in  

the mid- and high-latitudes, at least in the one GCM.  It could be beneficial to evaluate 

our ensemble to determine whether any systematic errors exist.   

 Global distributions of the observed and multimodel simulated CFs and CWPs are 

exhibited in Figure 4.  Their regional biases are also pictured to easily identify 

geographic areas of repeated deficiencies in this suite of models.  An over estimation of 

CF is apparent in higher latitudes indicated by the positive (Figure 4c, red) values, 

especially over the Antarctic continent (bias ≥ 25 %) and a slightly positive bias around 

the northern pole (upwards of 12 %) where the Arctic ice sheet is present during most of 

the year.  CM retrievals are less reliable in these regions due to the snow/ice covered 

surfaces, temperature inversions, and no direct sunlight during the winter.  Therefore, the 

CM retrievals at latitudes greater than about 65° should be used with caution.   
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Figure 4. Global distributions of the observed cloud fraction (a) and cloud water path (d), 
the multimodel ensemble simulated CF (b) and CWP (e), and the multimodel ensemble 
simulated biases (model minus observations, Δ) in CF (c) and CWP (f).  Global averages 
are also noted in the bottom right corner of each map.   
 
 As demonstrated in Figure 4c, the modeled CF is under estimated in the  mid-

latitudes over both the ocean and land areas.  The slight over estimation of CF centered at 

the equator is contained mainly to the Pacific Ocean at the Intertropical Convergence 

Zone (ITCZ) and over some landmass, such as the Saharan Desert. Consistent with 

Figure 3b, the positive bias in CWP is constrained to the tropics (ocean and land); 

however, there are some regions outside of the tropics where CWP is over estimated (e.g. 
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Alaska, Southern Greenland, and Southern South America).  The areas with the largest 

over estimates (bias ≥ 60 gm−2) of CWP are the East Indies and Northern South America.  

Otherwise, CWP is greatly under estimated, especially in the Southern Ocean (bias ≤ 

−60.0 gm−2).  

Top-of-Atmosphere (TOA) Radiation Budgets 

Figure 5. Same as Figure 2 but for the global means in simulated and observed (CERES 
EBAF) TOA reflected shortwave (a) and outgoing longwave fluxes (b) under clear-sky 
conditions. 
 
 Clear-Sky. The clear-sky radiation budgets are needed for calculating TOA CRFs 

because they will serve as reference to the all-sky conditions when investigating how 

clouds affect the radiation budget (TOA or surface).  It is a well-known fact that clear-sky 

radiation budgets strongly depend on the surface type, such as land, ocean, snow etc., 

with some influence from the emissive and absorptive properties of the atmosphere. The 

observed global TOA clear-sky reflected SW and outgoing LW fluxes are 52.5 and 266.0 

Wm−2, respectively (Figure 5).  The multimodel ensemble mean results are 53.0 ± 4.0 and 

263.8 ±3.0 Wm−2, respectively.  Several models’ simulated clear-sky SW and LW results 
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fall outside of the 1-sigma standard deviation range, and should be investigated further 

(i.e. FGOALS-S2 for the SW flux and IPSL-CM5A-LR for the LW flux).   

Figure 6. Same as Figure 3 but for the simulated and observed zonal distribution of TOA 
reflected shortwave (a) and outgoing longwave (b) fluxes under clear-sky conditions.  
 
 Figure 6 presents the zonal distribution of the clear-sky TOA radiation fluxes.  

The TOA reflected SW flux does not deviate too much between 60 °N/S but increases 

significantly toward to the southern and northern poles.  This increase is primarily a 

result of the increased surface albedo due to the longer periods of snow and ice covered 

surfaces toward to the poles.   It is reasonable to have higher TOA reflected SW flux over 

the Antarctic region than the Arctic region because of its permanent snow/ice covered 

surfaces, while the Arctic has a seasonal variation of sea ice.   The oceans control surface 

albedos fairly well, explaining the little deviation between 60 °N/S.  There is a slight 
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increase in the SW flux in the northern hemisphere because of the larger percentage of 

landmass (and increase in surface albedo, especially during the wintertime).  The model 

simulations depict these conditions with accuracy; however, there is relatively large 

multimodel spread in the Polar Regions.  The observed and simulated clear-sky LW 

radiation results follow the same general pattern and are mainly controlled by the surface 

emitted temperature; a unimodal distribution where the maximum occurs in the tropics 

and the minimum values are at the poles, with the LW flux over the southern pole being 

50 Wm−2  less than that over the northern pole.     

 Figure 7 clearly illustrates the global distributions of the TOA fluxes under clear-

sky conditions.  The SW clear-sky radiation (left panels) is governed by the land-ocean 

contrast, with higher flux values over the land areas because of their higher surface 

albedos.  The overall distribution is simulated fairly well by the models over the oceans 

(bias ≤ 4.0 Wm−2). Over land, the models also do a fairly good job in most areas except 

for  a few regions.  The areas over the Saharan Desert, the Arabian Peninsula, the East 

Indies, and parts of Northern North America have a relatively large under estimation of 

clear-sky SW radiation at the TOA (bias ≤ −16 Wm−2).  Conversely, areas such as the 

Tibetan Plateau and the Pacific Coast of Alaska are greatly over estimated by 

approximately the same amount (bias ≥ 16 Wm−2).   

 A stratification of the clear-sky LW flux is visible in the observations (Figure 7d) 

from CERES EBAF and in the model simulations, with larger flux values in the tropics 

and decreases toward the poles.  Again, the clear-sky LW is mainly a result of surface 

emitted temperatures, so we can expect this result.  Oceanic regions are consistently 
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under estimated, with an exception in the Southern Ocean around Antarctica where the 

LW flux is over estimated.  There is a dipole in the bias over South America where the  

Figure 7. Same as Figure 4 but for the observed, simulated, and simulated bias maps of 
shortwave (left) and longwave (right) clear-sky results.   
 

northern half is over estimated and the southern half is under estimated, potentially due to 

different surface and land coverage (i.e. rainforest in the North and primarily agriculture 

and farming in the South).  An over estimation of the LW clear-sky flux is apparent in the 

East Indies where an under estimation occurs in the Tibetan Plateau area.  These regions 
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with large biases should be of interest to modelers to develop better parameterizations 

and decrease the discrepancies in later versions on CMIP.   

 All-Sky. Figures 8a and 8b show the modeled and CERES EBAF observed global 

mean TOA all-sky SW and LW fluxes, with averaged differences of 1.6 ± 3.0 and −0.9 ± 

2.9 Wm−2, respectively.  Although the differences between ensemble means and 

observations are small, a few model results are not physically consistent with their CF 

and CWP comparisons.  The TOA radiative fluxes, in particular the reflected SW flux, 

depend primarily on CF and CWP.  A good agreement in the reflected SW flux should be 

consistent with good agreements in both CF and CWP (e.g. CanAM4), or complementary 

between CF and CWP, such as lower (higher) CF and larger (smaller) CWP (e.g. BCC-

CSM1.1(m), BNU-ESM, GISS-E2-R, or  NorESM1-M), to achieve radiative balance.  

However, it does not make sense, physically, if the good agreement in reflected SW flux 

follows   the  same   bias  in  both   CF  and  CWP,   as  illustrated  in  the  simulations  of  

Figure 8. Same as Figure 2 but for the global means in simulated and observed TOA 
reflected shortwave (a) and outgoing longwave fluxes (b) under the all-sky conditions. 
 



! 31!

ACCESS1.0, GFDL-HIRAM-CM3, IPSL-CM5A-MR, and MPI-ESM-MR.  The 

simulated all-sky reflected SW flux has a negative correlation with OLR, which is self-

consistent.  

 The zonal all-sky radiation flux comparisons in Figure 9 are much better than 

their CF and CWP counterparts (Figure 3).  Both the reflected SW and outgoing LW 

radiation flux multimodel means converge to the CERES EBAF observations through 

most latitudes; there is an exception for the SW flux simulations near the tropics (~ 25 °S 

– 25 °N) and the southern latitudes near 60 °S, where CWP is similarly biased.  The zonal  

Figure 9. Same as Figure 3 but for the simulated and observed zonal distribution of 
shortwave (a) and longwave (b) all-sky results. 
 
variation of both modeled and observed all-sky reflected SW fluxes generally follow the 

zonal variations of CF and CWP with relatively large disparity over the southern mid-
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latitude ocean.  Simulated reflected SW and OLR fluxes and their corresponding 

ensemble means fluctuate around the observations.  As expected, the OLR comparison 

agrees much better than the SW comparison because the SW flux is strongly CF and 

CWP dependent.  The peak of reflected SW flux and the corresponding dip in OLR, as 

well as relatively large variations in the model simulations near 5 - 10 °N, are expected 

due to the frequent occurrence of deep convective clouds in that region. 

Figure 10. Same as Figure 4 but for the observed (a) and simulated (b) TOA reflected 
shortwave (left) and outgoing longwave (right) under the all-sky conditions, as well as 
their differences (model – observations) (c,f). 
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 The observed and simulated global distribution of TOA all-sky SW and LW 

radiation fluxes in Figure 10 shed light on to the persistent regional biases apparent in the 

model simulations.  More distinct atmospheric features are evident in these results, when 

compared to the clear-sky results, such as the ITCZ and large-scale circulations (e.g. 

Hadley Cell).  Consistent with the CWP results, the model simulations over estimate the 

all-sky SW radiation by more than 16 Wm−2 in the East Indies, as well as in the Indian 

Ocean (Figure 10c).  There are only a few regions with under estimates, such as the South 

American Pacific Coast where MBL clouds persist, and Southeastern China.  The 

Southern Ocean is also slightly under estimated, which is a common feature in the model 

simulations.  The all-sky LW radiation flux (Figure 10d) is greatest in the tropics and in 

locations of persistent high-pressure systems (i.e. Northern Africa/Arabian Peninsula and 

the Eastern Pacific).  In terms of the LW flux biases (Figure 10f), the largest differences 

occur in the tropics, such as relatively large under estimates in the Central Pacific and the 

Eastern Indian Ocean, while large positive biases occur in the western Indian Ocean and 

Northern South America.  

 Cloud Radiative Forcings (CRFs). The SW (LW) CRF at the TOA is defined in 

Ramanathan et al. (1989) as the SW (LW) flux difference between the all-sky and clear-

sky conditions where a negative (positive) SW (LW) CRF denotes a cooling (warming) 

effect at the TOA.  As shown in Figure 11, the global average SW, LW, and net (SW + 

LW) CRFs from CERES EBAF are −47.2, 26.2, and −21.0 Wm−2, respectively, 

indicating a net cooling effect of clouds on the TOA radiation budget.  The multimodel 

ensemble global means (biases) are −48.3 ± 4.3 (−1.1), 24.9 ± 3.5 (−1.3), and −23.4 ± 4.4 

(−2.4) Wm−2 for the SW, LW, and net CRFs, respectively, resulting in a larger net 
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cooling effect in the simulations.  These comparisons are consistent with the result in 

Wang and Su (2013).  However, the CRF biases in some models can amount to 10 Wm−2.  

Such biases are apparent in the simulated SW CRFs in BCC-CSM1.1 (−10.5 Wm−2 more 

cooling) and the simulated net CRF in FGOALS-S2 (−10.5 Wm−2 more cooling).  The 

lack of net cooling in CSIRO-Mk3.6.0 is also quite impressive, however, it can be easily 

explained.  The SW CRF cooling is under estimated and the LW CRF warming is over 

estimated.  A further investigation into these models is imperative to understand these 

results.   

 
Figure 11. Same as Figure 2 but for the global means in simulated and observed 
shortwave (a), longwave (b), and net (c) cloud radiative forcing results. 
 
 The zonal variations of SW and LW CRFs in Figures 12a and 12b seemingly 

mimic their corresponding clear- and all-sky SW and LW flux variations (Figures 6a – b   

and Figures 9a – b, respectively), presumably due to the TOA CRF calculations (SW↑clr – 

SW↑all and LW↑clr – LW↑all).  The strong SW cooling and LW warming effects between 5 

°N and 10 °N are primarily contributed by deep convective clouds where the cloud 

albedo is nearly 0.7 and cloud-top height and temperature are ~10 km and ~220 K, 
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respectively (Dong et al. 2008b).  Over the southern mid-latitude ocean, MBL clouds are 

dominant (Stanfield et al. 2014), which can attribute to strong SW cooling and moderate 

LW warming effects.  With the magnitude of SW cooling dominating over the LW 

warming, the zonal variation of the net CRF more closely resembles that of the SW CRF 

with an overall cooling effect,  but to a lesser degree of magnitude of the SW CRF.   The 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 12. Same as Figure 3 but for the simulated and observed zonal distribution of 
shortwave (a), longwave (b), and net (c) CRF results.  
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strong SW cooling and LW warming effects over these two regions has motivated a 

further investigation into whether clouds and CRFs associate well with atmospheric 

vertical motions.  Note that deep convective clouds are associated with upward motion, 

while MBL clouds are normally related to strong sinking motion.   

 The global horizontal distribution of TOA CRFs can be found in Figure 13.  The 

largest SW (LW) cooling (warming) can be identified to be in the Western Pacific near 

the East Indies and Northern South America (Figure 13a and 13d).  The net CRF cooling 

is maximized in the Eastern and Northern Pacific and in the Southern Ocean (Figure 

13g).  Although the modeled SW, LW and Net CRFs resemble observed ones, there still 

exists some bias. When the biases in SW and LW CRF are combined, the net CRF bias is 

available  and  shown  in  Figure  13i.   The  net  CRF  bias  is  interpreted  in terms of the  

Figure 13. Same as Figure 4 but for the observed, simulated, and simulated bias maps of 
shortwave (left), longwave (middle), and net (right) CRF results.   
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magnitude of cooling or warming; positive values indicate a weaker cooling effect while 

negative values represent stronger cooling effect in the model simulations.  Again, we 

identify the areas of persistent model deficiencies in simulating the appropriate impact of 

clouds on the TOA radiation budget.  For example, the net CRF cooling is 16 Wm−2 

larger than the observations in the East Indies, Central Africa, and in parts of Northern 

South America.  On the other hand, the net CRF cooling is much weaker in the Southern 

Ocean, Southeastern China, and the Western Coast of South America and Southern 

California where MBL clouds frequently occur.  

 Table 4 provides a summary of the globally averaged observed and simulated 

results and their respective biases.  Several regions have been identified to show 

persistent model deficiencies and should be paid close attention by modelers and special 

interest groups.  Therefore, it is necessary to delve into interrelating these biases and to 

develop a systematic approach for correlating and quantifying the biases in CRF. In the 

next section we will investigate the impacts of CF and CWP on the radiation budgets and 

CRFs in tropical and mid-latitude oceanic regions. 

Table 4. Summary of globally averaged (cosine-latitude weighted) mean observed and 
multimodel ensemble simulated results. Values in parenthesis are the 1-sigma standard 
deviation and the biases are in comparison to CERES MODIS/EBAF results. 
Observations         Simulations   

  
CERES 
MODIS ISCCP 

CloudSat/C
ALIPSO 

CERES 
EBAF 

28 Model Mean 
(1-σ) Bias 

Total Cloud 
Fraction 65.5 65.4 75.3 − 58.6 (5.8) −6.9 

Cloud Water 
Path 117.0 − − − 100.6 (36.7) −16.4 

TOA Reflected 
Shortwave − − − 99.7 101.3 (3.0) 1.6 

TOA Outgoing 
Longwave − − − 239.8 238.9 (2.9) −0.9 

TOA Reflected 
Shortwave 
(Clear-Sky) 

− − − 52.5 53.0 (4.0) 0.5 
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Table 4 cont. 
Observations         Simulations   

  
CERES 
MODIS ISCCP 

CloudSat/C
ALIPSO 

CERES 
EBAF 

28 Model Mean 
(1-σ) Bias 

TOA Outgoing 
Longwave 

(Clear-Sky) 
− − − 266.0 263.8 (3.0) −2.2 

TOA Shortwave 
CRF − − − −47.2 −48.3 (4.3) −1.1 

TOA Longwave 
CRF − − − 26.2 24.9 (3.5) −1.3 

TOA Net CRF − − − −21.0 −23.4 (4.4) −2.4 

 
Tropical and Mid-latitude (±45 °) Evaluation Study  

 Large-scale dynamic forcings play a major role in the development of clouds and 

their residence in the atmosphere.  The persistent synoptic patterns in the tropical and 

mid-latitude regions are oftentimes responsible for cloud occurrence and their 

microphysical properties.  Cloud-type will ultimately depend upon which dynamic 

regime is present at the time of cloud formation at through its lifetime (Berry and Mace 

2013; Su et al. 2013).  Low-pressure systems, and the corresponding upward velocities, 

are commonly responsible for convective-type clouds (i.e. convective core and anvil), 

while high-pressure systems are generally stable, associated with sinking motions and 

stratiform-type clouds (i.e. MBL clouds).  Cloud-radiative properties will depend on 

cloud-type and eventually the radiation budgets at the surface and TOA. 

 Common areas of upwelling and downwelling are identified in the atmosphere 

(over the oceans) to better differentiate between convective- and stratiform-type clouds 

(in a climatology sense).  We can then determine which cloud-type is better simulated 

and the corresponding effects on the TOA radiation budget.  MERRA reanalysis of the 

omega field at 500 hPa will be used to classify and separate the two different regimes.  

Using the reanalysis may introduce error in the establishment of the regimes because the 
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simulated field may not be similar in placement or magnitude; however, reanalyses are 

the best reference available for this study at this time.  

Vertical Velocities (Omega) at 500 hPa        

Figure 14. Global 
distributions of the 
MERRA reanalyzed (a) 
and multimodel ensemble 
simulated (b) vertical 
velocities at 500 hPa over 
the oceans.  Negative 
values (blue) are 
characteristic of 
upwelling motions while 
positive values (red) 
indicate downwelling 
motions in the 
atmosphere.   
 

 

 

 

 

 

 

 

Vertical velocities within the atmosphere are difficult to measure directly, thus we must 

use reanalyzed data as a reference for estimating its value.  Modern-Era Retrospective 

Analysis for Research and Applications (MERRA) reanalyzed vertical velocities (omega 

at 500 hPa, ω500) are used to identify predominant large-scale areas of convection and 

subsidence (i.e. the Hadley Cell and Walker Circulation) so that an investigation may be 
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made in the relationship between cloud properties and CRFs.  Errors in the MERRA 

reanalyzed vertical velocities may be large, such as described in the Kennedy et al. 

(2011) study over the ARM SGP region, which may affect our selected vertical velocity 

regimes.  The MERRA reanalyzed and multimodel ensemble vertical velocities at 500 

hPa over the oceans only are depicted in Figures 14a and 14b, respectively.   

 The large-scale circulations (i.e. Hadley Cell, Ferrell Cell, and Walker 

Circulations) are seemingly placed in the appropriate locations; however, the magnitude 

and spatial  extent of these  persistent  vertical regimes is questionable.   For example, the  

 

 

 

 

 

 

 

 

 

 

Figure 15. From Wang and Su (2013) “The comparison between the 12 models and the 
CERES EBAF in the composites of (a) SW CRF, (b) LW CRF, (c) net CRF, and (d) the 
ratio of SW CRF to LW CRF in different tropical circulation regimes defined from ω500. 
The monthly data over January 2001 to December 2008 are used. The ω500 from the 
ERA-Interim reanalysis is used for the CERES EBAF, and ω500 from each of the CMIP5 
AMIP simulations is used for the CRFs in that model. Units are Wm−2.” 
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ascending branch of the Walker Circulation (north of Australia) and a portion of the 

descending branch of the Hadley Cell (west of South America) are stronger in the 

reanalysis than in the simulations.  We adopt a suitable threshold for defining 

predominant upwelling and downwelling regimes in the atmosphere from the reanalysis. 

Wang and Su (2013) showed that tropical SW and LW CRFs are independent of ω500 

(from ERA-Interim, reanalysis) when ω500 is greater than ~ 25 hPa day−1, while a linear 

dependence is apparent when ω500 is less than −25 hPa day−1 (Figure 15a and 15b).    

Regional Simulated Biases in the Designated Vertical Velocity Regimes  

 The regions with strong upwelling (ω500 < −25 hPa day−1, blue) and 

downwelling (ω500 > 25 hPa day−1, red) over the tropical and mid-latitude (45 °N to 45 

°S) oceans are determined by MERRA reanalysis and are shown in Figure 16a.  

Upwelling regions (blue areas with black contours) are typically representative of deep 

convective clouds and their accompanied anvil or cirrus clouds, while downwelling 

regions (red areas with black contours) in the atmosphere are normally associated with 

high-pressure systems where marine boundary layer (MBL) clouds persist.  The 

multimodel ensemble mean biases (model – observations) of CF, CWP, and TOA SW, 

LW and net CRFs are illustrated in Figure 16 (left column), along with their regime-

based bias averages (right column).  The good agreement in CF over the upwelling 

regime (+0.7 % bias) is expected because parameterized convective clouds are strongly 

associated with upward vertical velocity.  The downwelling CF is under estimated by the 

multimodel mean by nearly 18 %, suggesting that a more robust parameterization for 

clouds in these atmospheric conditions is warranted.  Kennedy et al. (2010) compared the 

NASA GISS single column model (SCM) simulated CF with ARM SGP radar-lidar 
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observations during the period 1999 – 2001.  They found that the SCM simulated most of 

the high clouds over upwelling cases because of their strong upward velocities and 

positive relative humidity (RH) bias; however, the SCM missed some low clouds in 

downwelling regimes due to a negative RH bias associated with subsidence.  The slightly 

positive CWP bias in the upwelling regions (13.9 gm−2) indicates that the models, in 

general, over simulated CWP even though they correctly simulated CF compared to 

observations.  The multimodel ensemble CWP bias in the downwelling regime (−25.1 

gm−2) is even larger than its upwelling counterpart, consistent with the CF result.  

 Biases in the CRFs (Figure 16d – 16f) are representative of their relative 

magnitude of warming or cooling.  For example, a negative bias in the SW/net CRF 

corresponds to an over estimate of cooling due to clouds.  Conversely, a positive bias in 

the LW CRF relates to an over estimate in warming due to clouds.  The CF and CWP 

biases are relatively large (−17.7 % and −25.1 gm−2, respectively) in the downwelling 

regime, whereas the CRF biases are relatively small, less than ~ 5 Wm−2.  A more 

detailed summary of model-specific biases in the upwelling and downwelling regimes 

may be found in Appendix A and Appendix B, respectively.  The cloud and radiation 

biases over these two regimes are consistent with our previous results.  However, due to 

the large variations in CF and CWP in these two regimes, we will investigate the 

sensitivities of SW, LW, and net CRFs to CF and CWP to further understand why such 

relationships are concurrent.   
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Figure 16. Relatively strong upwelling (ω500 < −25 hPa day−1, blue) and downwelling 
(ω500 > 25 hPa day−1, red) regimes over the tropical and mid-latitude (±45 ° latitude) 
oceans are identified from MERRA reanalysis of the omega field at 500 hPa (a).  Biases 
(multimodel ensemble minus CERES observations) in CF, CWP, and SW/LW/net CRFs 
(b – f) are also shown.  Black contours (±25 hPa day−1) help to visualize the relatively 
strong vertical velocity regimes in (a).  Biases in both the upwelling and downwelling 
regions are averaged and presented to the right of each map.  
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 Taylor Diagram Analysis. Taylor Diagrams have been generated using the 1-

sigma spatial standard deviations and correlations to compare the 28 AMIP model 

simulations with the CERES MODIS/EBAF data products.  The CF and CWP results in 

the upwelling and downwelling regimes are found in Figure 17, where the CRF results 

are located  in  Figure 18.  Taylor  diagrams  are  an  excellent  tool  for  displaying  many  

Figure 17. Taylor Diagrams displaying the 28 AMIP model simulations of CF (a – b) and 
CWP (c – d) in the upwelling (left) and downwelling (right) regimes over tropical and 
mid-latitude (±45 ° latitude) oceans.  Correlations and standard deviations are normalized 
by CERES MODIS observations.   
 
simulated fields together to effectively demonstrate how well they compare to some 

reference value (in this case, the observations) and to track changes through the 

consideration of correlations, spatial standard deviations (normalized by the observed 

value), and root mean squared errors (Taylor 2001).  If the model simulations agree well 

with observations then the simulated result would fall within the correlation rage of 0.9 – 
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1.0 and near the reference point (normalized standard deviation, REF, σ = 1.0).  The 

simulated CFs in the upwelling regime fall below a 0.6 correlation (although small, the 

MIROC5 model has a negative correlation to observations) and their normalized standard 

deviations are larger than the reference value (1.0 – 2.0, Figure 17a).  Similarly for CWP 

in the upwelling regime, simulated correlations are close to or slightly better than CF 

comparisons, however, the standard deviations range from 0.5 to 2.0, with significantly 

larger values in the GISS-E2-R, FGOALS-S2, and GFDL-CM3 CWP simulations (Figure 

17c).  Over the downwelling regime, simulated CF and CWP correlations are slightly 

higher and normalized standard deviations scatter about the reference line better than 

their upwelling counterparts.   

 The results from Figure 17 translate fairly well to the overall score of simulated 

CRFs (Figure 18).  In general, the correlations in CRFs are higher and standard 

deviations are lower than those in CF and CWP.  Again, the correlations and standard 

deviations over the downwelling regime are better than those over the upwelling regime.  

For example, most of the CRF correlations fall between 0.6 and 0.9, where some even 

exceed 0.9, and standard deviations are near the reference point in the downwelling 

regime.  However, two models, CNRM-CM5 and MIROC5, show a small negative 

correlation to observations in the downwelling regime for TOA SW CRF simulations 

(Figure 18b).   

 Note that the results in Figures 17 and 18 are different from those in Figure 16.  

The good agreement in their calculated mean values, but low correlation to observations 

in the upwelling regime can be explained.  MBL clouds are persistent in the downwelling 
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Figure 18. Same as Figure 17 but for TOA CRFs: SW (a – b), LW (c – d), and net (e – f).  
Values are normalized by CERES EBAF observations.   
 
regime, while for the upwelling regime; there are a variety of cloud types, such as 

cumulus, anvil, cirrus, and mixed-phase clouds.  In order to adequately resolve clouds in 

GCMs, different cloud-type parameterizations are implemented based upon ambient 

atmospheric conditions.  When a diverse cloud field exists, cloud parameterizations will 

show difficulty in generating accurate simulations, especially if that cloud field is 

inhomogeneous. On the other hand, if a uniform cloud type is present (as in the 
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downwelling regime), cloud parameterizations should replicate the atmospheric 

conditions more effectively and accurately.    

Sensitivity Study 

 To quantitatively estimate the impacts of CF and CWP on TOA radiation budgets, 

the observed and multimodel ensemble mean SW, LW, and net CRFs versus CF and 

CWP over the atmospheric upwelling (blue) and downwelling (red) are presented in 

Figures 19 and 20, respectively.  These results are selected from the strong upwelling and 

downwelling regimes (black contours) over tropical and mid-latitude oceanic regions 

(Figure 16).  A best-fit linear regression is employed and used to determine the sensitivity 

between two variables (e.g. CF and SW CRF) in terms of slope.  To add more certainty to 

this analysis, the 99.5 % confidence of the slope has been determined.  The margin of 

error in the slope is identified to be 

!! = !!! ∙ !!! , 

where CV is the critical value and SE is the standard error.  The sample distribution is 

assumed to be normal and large enough to be expressed by a z-score.  When the z-score 

has a cumulative probability of 0.995, the corresponding critical value, CV, is 2.58.  The 

standard err is calculate as 

!! = !
1

! − 2 !!
(! − !)!!!!, 

where ε is the linear regression residual (! = ! −!" − !).  In all cases but one, the 

margin of error is less than the slope itself, supporting our current method for 

determining the sensitivity between two variables, and adds value to the analysis.  In the 

case of the multimodel mean simulated net CRF sensitivity to CF, the margin of error 
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(0.11 Wm−2 %−1) is greater than the characteristic slope (0.06 Wm−2 %−1).   This 

relationship should be used with caution.   

 As illustrated in Figure 19a, the observed sensitivities of the SW CRF to CF are 

similar in both vertical velocity regimes; the magnitude of SW CRF cooling increases 

significantly with increasing CF with a sensitivity of −1.2 Wm−2 %−1 (in units of watts 

per square meter per percent cloudiness).  The similar sensitivities (−1.2 and −1.31 Wm−2  

%−1) over these two regimes are understandable from the definition of SW CRF (SW↑clr – 

SW↑all) because albedos of both deep convective and MBL clouds are much higher than 

the background ocean albedo (~6 %).   

 Conversely, the LW CRF warming increases with increasing CF but is 

characterized by different sensitivities over the two regimes (Figure 19b).  The observed 

sensitivities are 0.81 and 0.22 Wm−2 %−1 over the upwelling and downwelling regimes, 

respectively.  The different LW CRF sensitivities between these two regions primarily 

result from the cloud-top temperature characteristics of deep convective (upwelling) and 

MBL (downwelling) clouds.   The cloud-top temperature of deep convective clouds is 

rather cold  (~ 220 K, Dong et al. 2008b), while MBL cloud-top temperature  (~ 280 K, 

Dong et al. 2014; Xi et al. 2014) is close to the underlying sea surface temperature.   

Based upon the definition of LW CRF (OLRclr – OLRall), it is straightforward to explain 

the higher sensitivity of the LW CRF to CF in the upwelling regime.  The net impact of 

CF on the TOA radiation budget is the sum of SW and LW effects, ΔCRFnet/ΔCF = 

(ΔCRFSW/ΔCF) + (ΔCRFLW/ΔCF).  The weak sensitivity of the net CRF to CF in the 

upwelling regions is due to the complementing effects of the SW and LW CRFs.   
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Figure 19. Sensitivities of TOA SW (a,d), LW (b,e), and net (c,f) CRFs to CF in the 
upwelling (blue) and downwelling (red) regimes.  The data are sampled from over the 
tropical and mid-latitude (±45 °latitude) oceans only.  The left column represents the 
observed sensitivities from CERES MODIS/EBAF while the right column is for the 
multimodel ensemble.  Regression lines are shown for both regimes with the uncertainty 
of the slope (within 99.5 % confidence) in parenthesis.  
 
 The sensitivities of the multimodel mean simulated SW, LW, and net CRFs to CF 

(right column, Figure 19) seemingly mimic their observed counterparts, but with some 
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discrepancies.  For example, the sensitivities of SW CRF to CF over the upwelling and 

downwelling regimes (−1.14 and −1.05 Wm−2 %−1, respectively) are nearly the same as 

the observed ones.  The simulated downwelling LW CRF sensitivity to CF is also similar 

to the observed one; however in the upwelling regime, the simulated sensitivity is 0.39 

Wm−2 %−1 stronger due to the inclusion of excess water (liquid, ice, or both) within the 

cloud column.  The nearly neutral slope of the simulated net CRF to CF in the upwelling 

regime confirms that the model simulations effectively show a cancelation of the SW 

cooling and LW warming.  The conclusions in Figure 19 (i.e. the magnitude of SW/LW 

CRF (cooling/warming) increases with increasing CF) affirm those within Dong et al. 

(2006) who used the DOE ARM SGP ground-based observations as a reference.  The 

distinction between upwelling and downwelling regimes suggests that large-scale 

dynamics greatly influence cloud-radiation interactions and their predictability.  In a later 

section we will investigate the effect of the biases in these sensitivities on the actual 

simulation of CRFs.   

 The sensitivities of observed SW CRFs to CWP in the upwelling and 

downwelling regimes, shown in Figure 20a, are almost identical with a slope of −0.29 

and −0.27 Wm−2/gm−2, respectively.  The magnitude of SW cooling increases with 

increasing CWP (and CF), and varies in sensitivity between these two variables.  

Changes in the SW albedo are strongly dependent on both CF and CWP.  The multimodel 

ensemble simulated sensitivities of SW CRF to CWP are nearly the same over the two 

regions, and are similar to the observed values.  Again, the comparisons in SW CRF 

sensitivities in Figure 20a and Figure 20d are approximately the same as those in Figure 

19a and Figure 19d.  The simulated LW sensitivities (Figures 20b and 20e) are not  
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Figure 20. Same as Figure 19 but for the observed and simulated sensitivities of CRFs to 
CWP. 
 
strongly regime dependent, such as in the CF results, but do show significant differences 

from the observations.  The slope of the multimodel ensemble LW CRF to CWP in the 

upwelling regime (Figure 20e) is almost twice than what is observed (0.21 versus 0.11 

Wm−2/gm−2).  Biases in the simulated sensitivity between the CRFs and CF/CWP by 
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model in the upwelling and downwelling regimes are summarized in Appendix C and 

Appendix D, respectively.   

Error Analysis – where are these errors coming from? 

 This section provides a quantification of various error types due to biases in the 

CRF sensitivities to CF and CWP and from the simulated CF and CWP biases 

themselves.  Such diagnoses are useful for identifying the dominant sources of model 

errors and areas most in need for model improvement.   

 The TOA CRF at each grid point is treated as a function of CF and CWP with the 

corresponding cloud radiative kernels,  

!"#!,! = ! !"#$!
!"# !

!"! + ! !"#$!
!"#$ !

!"#!!, 

where Y = SW, LW, or net and the subscript, m, represents the model simulated value.  

For this study, clouds are characterized by their residence in the upwelling and 

downwelling regimes (Figure 16), although it is recognized that the cloud radiative 

kernels may vary significantly for clouds of different heights, phases, and particle sizes 

within each regime.  We use the regression slopes of CRFs versus CF or CWP for each 

regime, i.e., the sensitivity of CRF to CF or CWP shown in Figures 19 and 20, in place of 

cloud radiative kernels, as a first order approximation. 

 Hence, the total regime-averaged simulated CRF error relative to the observed 

CRF can be decomposed into the error associated with the discrepancy in CRF sensitivity 

to CF or CWP (!!"#,!" and !!"#,!"#), the error resulting from the averaged CF or CWP 

bias for each regime (!!" and !!"#), and the co-variations (!!"#,!" and !!"#,!"#),  

!!"!#$ = ! !!!",!" + !!"#,!"# + !!" + !!"# + !!"#,!" + !!"#,!"#!. 

The three corresponding errors are computed as follows: 
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!!"#,! = ! !"#$!
!" !

− ! !"#$!
!" !

!!!,  

!! = !
!"#$!
!" !

!! − !! !,!"# 

!!"#,! = !
!"#$!
!" !

− ! !"#$!
!" !

!! − !! !,! 

where X = CF or CWP and the subscript, o, represents the observed value.   

 Table 5 shows the three sources of error for the SW, LW, and net CRF biases in 

the upwelling and downwelling regimes separately.  The multimodel ensemble means 

and standard deviations are listed.  In the upwelling regime, the simulated LW CRF 

sensitivity to CF contributes predominately to the LW CRF total error in terms of the 

mean and model spread (22.4 ± 20.2 Wm−2), as shown in Figure 19.  Other sources of 

error such as the SW sensitivity to CF or CWP, LW sensitivity to CWP, the biases in CF 

and CWP, and the co-variations contribute similarly (~ 5 Wm−2 or less) to the total CRF 

error in the upwelling regime.   

Table 5. Summary of the different error sources in the simulated SW/LW/net CRFs with 
contributions from CRF sensitivities to CF or CWP, CF or CWP biases, and co-variations 
in the upwelling and downwelling regimes, separately.  

  SW CRF (Wm−2) LW CRF (Wm−2) Net CRF (Wm−2) 
Cloud Fraction 

!
!!

Sensitivity Error 
!

!!
Up 5.7 ± 22.2 22.4 ± 20.2 −7.9 ± 16.5 

Down −17.2 ± 11.7 −1.6 ± 6.3 −15.6 ± 13.6 
CF Bias 

! !
!!

Up 0.9 ± 9.8 0.6 ± 6.6 0.3 ± 32.0 
Down −23.2 ± 9.6 −3.9 ± 1.6 −19.2 ± 7.9 

Co-variance 
! !

!!
Up −0.1 ± 2.6 0.1 ± 3.8 −0.2 ± 2.0 

Down 4.9 ± 4.5 0.2 ± 2.4 4.7 ± 6.0 
Total 

  
  

Up 6.5 ± 23.6 23.0 ± 22.2 −7.9 ± 16.3 
Down −35.5 ± 12.1 −5.4 ± 3.8 −30.1 ± 12.2 

Cloud Water Path 
 

  
Sensitivity Error 

!
!!

Up 3.0 ± 20.5 5.4 ± 13.1 −0.1 ± 12.2 
Down 14.9 ± 19.4 3.1 ± 5.8 11.8 ± 16.3 

CWP Bias 
! !

!!
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 Table 5 cont. 
  SW CRF (Wm−2) LW CRF (Wm−2) Net CRF (Wm−2) 

Up 4.1 ± 23.0 1.5 ± 8.7 2.5 ± 14.3 
Down −6.9 ± 3.9 −2.7 ± 1.5 −4.2 ± 2.4 

Co-variance 
! !

!!
Up −5.6 ± 14.9 −0.4 ± 7.7 −6.4 ± 10.9 

Down −6.7 ± 11.7 −1.6 ± 3.7 −5.1 ± 9.1 
Total 

! !
!!

Up 1.5 ±17.1 6.5 ± 14.5 −4.0 ± 7.4 
Down 1.4 ± 7.8 −1.2 ± 2.0 2.6 ± 7.9 

 

 In the downwelling regime, the most dominate source of the error in CRF is 

associated with the under estimation of CF amount, as evidenced in Figures 2 – 4.  The 

regime-averaged SW CRF error from the CF bias amounts to −23.3 ± 9.6 Wm−2.  In 

addition, the errors associated with the multimodel ensemble SW CRF sensitivities to CF 

and CWP account for errors of −17.2 ± 11.7 and 14.9 ± 19.4 Wm−2, respectively. The 

bias in CWP also contributes sizably, about −6.9 ± 3.9 Wm−2, to the SW CRF error on 

the regime average.  The compensating effects of the SW CRF sensitivity to CF and 

CWP result in rather small errors in the total SW and net CRF in the downwelling 

regime, indicating a common model deficiency.  Only through detailed error analyses 

such as the decomposition conducted here, will we be able to better understand the 

processes accountable for model problems.   

 Total CF errors, including the errors associated with the CRF sensitivity to CF, 

CF biases, and the co-variations in both vertical velocity regimes are listed for each 

model in Table 6.  For biases in SW CRF within the descending branch of the large-scale 

circulation, the errors associated with CF are negative for every model, indicating a 

universal model disparity.  This is mainly due to the under estimation of both CF and 

sensitivity of SW CRF to CF.  MRI-AGCM3-2S produces the largest SW CRF error by 

CF, −60.6 Wm−2, and CSIRO-Mk3.6.0 has the smallest, −11.1 Wm−2.  Conversely in the 
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ascending branch, the SW CRF errors by CF are positive for a majority of the 28 models, 

with 10 having negative errors.  CSIRO-Mk3.6.0 produces the largest error in SW CRF 

in the upwelling regime, −39.2 Wm−2, while CCCM-CM has the smallest error of −2.6 

Wm−2.   

 The errors associated with CF in LW CRF are predominately negative (i.e., under  

Table 6. Summary of total errors in SW/LW/net CRFs by model contributed by simulated 
CF biases in both upwelling and downwelling regimes.   
  SW CRF (Wm−2)   LW CRF (Wm−2)   Net CRF (Wm−2) 

Model  Up Down   Up Down   Up Down 

ACCESS1.0 −19.8 −33.2 
 

7.2 −6.1 
 

−27.0 −27.0 
BCC-CSM1.1 9.1 −30.0 

 
41.8 −7.0 

 
−21.5 −23.0 

BCC-CSM1.1 (m) 28.5 −29.5 
 

54.1 −0.2 
 

−25.6 −19.4 
BNU-ESM 25.4 −40.7 

 
33.9 −4.6 

 
−8.5 −36.1 

CanAM4 16.4 −39.3 
 

28.9 −5.8 
 

−12.4 −33.5 
CCSM4 26.3 −50.6 

 
38.9 −12.3 

 
−12.5 −38.3 

CESM1 (CAM5) 26.9 −25.6 
 

42.3 −4.6 
 

−15.3 −21.0 
CMCC-CM −2.6 −38.3 

 
39.8 −4.4 

 
−11.8 −33.9 

CNRM-CM5 23.0 −48.0 
 

6.7 −1.7 
 

16.3 −46.2 
CSIRO-Mk3.6.0 −39.2 −11.1 

 
22.8 −0.3 

 
7.8 −10.8 

FGOALS-G2 18.7 −41.3 
 

9.0 −10.7 
 

9.6 −30.5 
FGOALS-S2 9.1 −44.3 

 
−16.9 −11.5 

 
26 −32.7 

GFDL-HIRAM-C180 21.8 −18.5 
 

29.8 0.0 
 

−8.1 −18.6 
GFDL-HIRAM-C360 32.0 −18.6 

 
26.6 1.1 

 
5.4 −19.7 

GFDL-HIRAM-CM3 38.3 −20.1 
 

77.8 −6.3 
 

−14.7 −13.8 
GISS-E2-R 22.5 −38.0 

 
−6.2 −0.3 

 
28.6 −37.4 

HadGEM2-A −16.6 −34.7 
 

8.8 −7.7 
 

−25.3 −27.1 
INM-CM4 16.3 −48.1 

 
11.8 −7.1 

 
4.6 −41.1 

IPSL-CM5A-LR −35.2 −40.0 
 

12.5 −2.4 
 

−6.5 −37.6 
IPSL-CM5A-MR −38.0 −40.7 

 
7.6 −2.9 

 
−8.6 −37.9 

IPSL-CM5B-LR −19.8 −31.9 
 

18.6 −10.6 
 

−15.7 −21.4 
MIROC5 8.8 −24.3 

 
−9.7 −9.0 

 
18.5 −15.3 

MPI-ESM-LR −15.9 −27.1 
 

7.8 −4.5 
 

−23.6 −22.6 
MPI-ESM-MR −23.9 −26.2 

 
−0.3 −4.4 

 
−23.6 −21.7 

MRI-AGCM3-2H 13.0 −58.8 
 

24.7 −2.2 
 

−11.7 −56.7 
MRI-AGCM3-2S −5.9 −60.6 

 
18.7 −0.5 

 
−24.6 −59.9 

MRI-CGCM3 29.1 −29.6 
 

45.0 −8.3 
 

−16.0 −21.1 
NorESM1-M 33.2 −45.6   63.2 −7.6   −24.2 −38.0 

 
estimation of LW cloud warming) in the descending branch of the large-scale circulation 
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for all models in the 28-model ensemble, except GFDL-HIRAM-C360.  The largest error 

is from CCSM4 (−12.3 Wm−2) while GFDL-HIRAM-C180 yields no error in the 

downwelling regime.  The upwelling regimes consist of mostly positive errors associated 

with CF, primarily from the over estimate of LW CRF sensitivity to CF in the models.  

GFDL-HIRAM-CM3 poses the largest error (77.8 Wm−2) in the over estimate of LW 

CRF, while MPI-ESM-MR has the least amount of error (−0.3 Wm−2).  On average, the 

total net CRF error from CF is larger in the downwelling regime than in the upwelling 

counterpart.  

 Table 7 is equivalent to Table 6, however it summarizes the errors associated with 

CWP for each model.  In general, the maximum and minimum errors due to CWP errors 

are less than those due to CF, and the inter-model spreads are within one order of 

magnitude.  A summary of the other errors, by model, can be found in the Appendix. 

Table 7. Summary of total errors in SW/LW/net CRFs by model contributed by simulated 
CWP biases in both upwelling and downwelling regimes.   
  SW CRF (Wm−2)   LW CRF (Wm−2)   Net CRF (Wm−2) 

Model  Up Down   Up Down   Up Down 

ACCESS1.0 −2.6 −7.5 
 

7.4 1.0 
 

−10.0 −8.5 
BCC-CSM1.1 17.7 0.9 

 
16.5 0.7 

 
1.2 0.4 

BCC-CSM1.1 (m) 9.1 8.9 
 

11.7 1.8 
 

−2.6 7.1 
BNU-ESM 22.7 −6.2 

 
19.3 −0.2 

 
3.5 −5.9 

CanAM4 0.3 −0.9 
 

−4.7 −0.9 
 

5.1 0.0 
CCSM4 21.9 −3.8 

 
21.8 −1.3 

 
0.2 −2.7 

CESM1 (CAM5) −3.0 13.0 
 

−0.1 −2.8 
 

−2.9 15.7 
CMCC-CM −22.5 1.5 

 
−10.3 −3.2 

 
−7.9 4.6 

CNRM-CM5 8.9 −4.3 
 

12.1 −2.0 
 

−3.1 −2.3 
CSIRO-Mk3.6.0 −10.0 13.0 

 
−1.4 0.6 

 
−8.6 12.4 

FGOALS-G2 12.0 −0.1 
 

7.8 −3.2 
 

4.3 3.1 
FGOALS-S2 −11.9 −1.3 

 
−10.8 −5.9 

 
−1.1 4.6 

GFDL-HIRAM-C180 −6.3 −5.3 
 

−1.8 −0.8 
 

−4.5 −4.6 
GFDL-HIRAM-C360 −5.8 −6.2 

 
1.9 −0.2 

 
−7.7 −6.1 

GFDL-HIRAM-CM3 17.7 −5.6 
 

42.3 −2.4 
 

−16.1 −3.3 
GISS-E2-R −11.2 −8.1 

 
10.8 −4.7 

 
−18.8 −3.4 

HadGEM2-A −1.6 −8.4 
 

8.0 0.9 
 

−9.6 −9.2 
INM-CM4 17.0 9.1 

 
17.3 3.7 

 
−0.3 5.6 
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Table 7 cont. 
  SW CRF (Wm−2)   LW CRF (Wm−2)   Net CRF (Wm−2) 

Model  Up Down   Up Down   Up Down 
IPSL-CM5A-LR −20.4 13.4 

 
−11.3 −0.1 

 
−9.2 13.5 

IPSL-CM5A-MR −22.2 10.9 
 

−11.8 −2.3 
 

−8.9 13.1 
IPSL-CM5B-LR −12.4 16.4 

 
−2.7 −1.5 

 
−9.7 17.9 

MIROC5 14.3 2.7 
 

11.8 −1.3 
 

2.4 4.0 
MPI-ESM-LR −25.6 11.0 

 
−8.8 −2.3 

 
−9.4 13.2 

MPI-ESM-MR −26.5 9.1 
 

−10.1 −2.7 
 

−11.8 11.8 
MRI-AGCM3-2H 21.1 −5.0 

 
7.9 −0.8 

 
13.0 −4.3 

MRI-AGCM3-2S 3.0 −4.0 
 

−6.1 −0.8 
 

9.0 −3.2 
MRI-CGCM3 24.8 −3.2 

 
33.1 −2.6 

 
−8.2 −0.6 

NorESM1-M 33.2 −1.1   32.7 0.4   0.6 −1.5 
  

 Residual Errors. The errors discussed above are those quantified from biases in 

CF and CWP (sensitivity, co-variation, etc.).  However, CRFs are dependent upon other 

processes and characteristics of the atmosphere that have not yet been considered.   

Although they have not been evaluated at this time, they will surely make for a better 

explanation for why biases in the CRF simulations occur.  Other variables, which are 

simulated by the GCMs and observed by satellite, and can lead to a better understanding 

of CRF errors; these include, but are not limited to, relative and specific humidity, water 

vapor path, precipitation, cloud-top pressure, and cloud-base height. 
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CHAPTER IV 

CONCLUSIONS 

 Globally simulated CF, CWP, TOA radiation budgets and CRFs from 28 CMIP5 

AMIP models are evaluated and compared with multiple satellite observations (CERES, 

MODIS, ISCCP, CloudSat, and CALIPSO) and contemporary reanalysis during the 

March 2000 to February 2008 time period (eight years).  The model biases are identified 

and quantified to facilitate model improvement in future climate simulations, particularly 

in the representation of clouds and how they affect TOA radiation budgets.  From the 

eight-year comparisons between model simulations, we have made the following 

conclusions:  

1) The modeled CFs are, on average (58.6 ± 5.8 %), under estimated by nearly 7 % 

when compared to CERES MODIS (CM) and ISCCP results with an even larger 

negative bias (16.7 %) compared to CloudSat/CALIPSO (CC).  Most of the 

modeled CFs and the multimodel ensemble mean agree well with both CM and 

ISCCP CF results in the tropics (5 °S to 15 °N), but then diverge poleward, with a 

large discrepancy in the Southern Ocean.  Large multimodel spread (as large as ~ 

60 %) is apparent in the polar regions; indicating not only a need for better cloud 

parameterizations, but also better satellite remote sensing of clouds in the Arctic 

and Antarctic where temperature inversions play a vital role in differentiating 

clouds from the underlying snow and ice fields.  The CWP comparison is similar 

to the results in CF, with a negative bias of 16.4 gm−2 compared to CM.  The 
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model simulated  TOA all-sky reflected SW and OLR fluxes, on average differ from 

CERES EBAF observations by 1.6 and −0.9 Wm−2, respectively.  The TOA clear-sky 

radiation results are similar in comparison; the SW (LW) multimodel ensemble mean 

is greater (less) than the CERES EBAF result by 0.5 (2.2) Wm−2.  

2) The globally averaged SW, LW, and net CRFs from CERES EBAF are −47.2, 26.2, 

and −21.0 Wm−2, respectively, indicating a net cooling effect of clouds on the TOA 

radiation budget.  The differences in SW and LW CRFs between observations and 

the multimodel ensemble means are −1.1 and −1.3 Wm−2, respectively, resulting in a 

larger net cooling effect of −2.4 Wm−2 in the model simulations.  The strong SW 

cooling and maximum LW warming effects from 5 °N to 10 °N are primarily 

attributed to deep convective clouds while the moderate LW warming in the 40 °S to 

60 °S latitude band is due to persistent MBL clouds. 

3) Several geographic regions have been identified to have relatively large biases in 

most of the simulated fields and have been evaluated in this study.  These regions are 

rather consistent from simulation to simulation and should be addressed by climate 

modelers and special interest groups.  We suggest that field studies be designed and 

implemented to better understand fundamental cloud-radiative processes in the 

regions with relatively large biases.  The regions with commonly large biased 

(whether positive or negative) are: the Southern Ocean, the East Indies, South 

America, the Indian Ocean, the Tibetan Plateau, and the Saharan Desert.   

4)  A further investigation of cloud properties and CRFs over the identified upwelling 

and downwelling regimes reveals that, typically, the model biases in the upwelling 

regime are much less than those over the downwelling regime.  Sensitivity studies 
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have shown that the observed magnitude of SW CRF cooling increases significantly 

with increasing CF with nearly the same sensitivity in both the upwelling and 

downwelling regimes (−1.20 and −1.31 Wm−2 %−1, respectively).  The model 

simulations provide similar characteristics but with some discrepancies.  The 28-

model ensemble under estimates the sensitivity between SW CRF and CF by 0.06 

Wm−2 %−1 and 0.26 Wm−2 %−1 in the relatively strong convective and subsidence 

regions, respectively.  Conversely, the observed LW CRF increases with increasing 

CF, but is regime dependent (a strong warming of 0.81 Wm−2 %−1 and a moderate 

warming of 0.22 Wm−2 %−1 in the upwelling and downwelling regimes, respectively).  

The difference in sensitivity is due to the distinct cloud-top temperature 

characteristics of deep convective (upwelling) and stratiform MBL (downwelling) 

clouds.  The multimodel ensemble does a fair job in simulating the observed LW 

sensitivity in the downwelling regime (−0.04 Wm−2 %−1 bias), however it provides an 

overly sensitive SW CRF (0.39 Wm−2 %−1 bias) in the tropics and mid-latitudes.  

5) Several dominant sources of CRF errors are identified.  The error sources that 

contribute largely to the regime-averaged CRF errors are: the modeled errors in the 

LW CRF sensitivity to CF in the upwelling regime, the errors in the simulated CF and 

CWP amounts, and the sensitivities of SW CRF to CF and CWP in the downwelling 

regions.   

 Although there are multiple studies related to the evaluation of CMIP5 GCM 

simulated cloud and radiation fields (TOA and surface) using satellite observations, this 

study provides a more comprehensive assessment of the CMIP5 AMIP simulations using 

multiple satellite observations.  More importantly, we have investigated the impact of CF 
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and CWP on the TOA radiation fluxes and CRFs, quantitatively estimated the 

sensitivities of SW, LW, and net CRFs to CF and CWP in relatively strong convective 

and subsidence regions over the oceans, and have performed a detailed error analysis.  

These results will provide a better means for representing the true physical interactions 

between clouds and TOA radiation budgets and should help modelers to better predict 

future climate scenarios.  It is our hope that these comparisons and the statistical results 

from this study will aid in the advancement of the GCM simulations of clouds and TOA 

radiation budgets in future versions of CMIP.  
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CHAPTER V 

FUTURE WORK 

 The results obtained from this study have motivated further investigations of 

cloud-radiative processes.  Especially, to document! the!vertical!distribution!of! cloud!

occurrence!and!cloud!properties!and!the!resulting!heating!and!cooling!profile!of!the!

atmosphere! by! clouds,! which! are! important! for! understanding! cloud! forcing! and!

climate! feedbacks.! We plan to investigate the CloudSat/CALIPSO cloud vertical 

profiles, through the identification of several cloud-types (up to 10; Xi et al. 2010) and 

determine their distinctive effects on the TOA and surface radiation budgets. In addition, 

we also plan to conduct simulation experiments using a radiative transfer model, such as 

the Fu Liou model, to determine cloud radiative heating rate profiles for different cloud 

vertical structures. The goal is to determine the heating rate profile, level of sensitivity 

and feedback each cloud type has on the climate system.  Running the radiative transfer 

model in the areas of high interest identified in this Master’s Thesis could ultimately 

mitigate the consistent errors in those regions.   

 The MERRA Reanalysis was used to identify the areas of strong atmospheric 

upwelling (convection) and downwelling (subsidence) in this study.  However, other 

global reanalyses are available at similar temporal and spatial resolutions.  It will be 

beneficial to determine which reanalysis dataset is best for identifying the large-scale 

circulations, their residence, and spatial patterns.  Moreover, we need to define which 

vertical velocity regime is more important for evaluating cloud-radiative processes.  The 
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ultimate goal is to provide a suggestion to climate modelers as to which cloud-type 

parameterization should be prioritized.   

 These questions shall be answered in conjunction with the objectives proposed in 

the NASA Earth and Space Science Graduate Fellowship awarded to the authors of this 

Master’s Thesis.  These objectives include calculating the radiative heating rate profiles 

using the Fu-Liou radiative transfer model with input from several NASA satellite 

observations and then performing a model evaluation similar to the one in this study.  We 

want to quantify the errors in the GCMs so that they can be reduced in future versions of 

CMIP and for the IPCC AR6.  University of North Dakota graduate students and faculty, 

in collaboration with Jet Propulsion Laboratory scientists, will work together to 

accomplish these tasks in the next several years.  
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APPENDIX A 

Regional biases, by model, in the upwelling regime defined by MERRA reanalysis during 
the eight years evaluated in this study.  

Model Name Cloud 
Fraction 

Cloud 
Water Path 

Shortwave 
CRF 

Longwave 
CRF 

Net       
CRF 

ACCESS1.0 −12.4 −42.2 9.5 −4.6 4.9 
BCC-CSM1.1 5.0 46.5 −11.4 2.7 −8.7 

BCC-CSM1.1 (m) −4.2 61.3 −13.3 10.3 −2.9 
BNU-ESM −2.1 29.5 −10.5 1.0 −9.6 
CanAM4 4.6 15.2 0.8 5.3 6.1 
CCSM4 −8.2 61.4 −16.5 5.4 −11.1 

CESM1 (CAM5) 4.0 −73.4 −6.2 −5.2 −11.4 
CMCC-CM 4.6 −63.8 8.7 1.3 10.0 

CNRM-CM5 4.9 55.3 −10.5 −2.9 −13.4 
CSIRO-Mk3.6.0 10.4 −54.7 23.4 4.6 28.1 

FGOALS-G2 −8.6 −11.7 −7.5 −8.4 −16.0 
FGOALS-S2 −4.6 −1.8 −3.8 −19.3 −23.1 

GFDL-HIRAM-C180 5.9 34.3 1.7 −1.1 0.5 
GFDL-HIRAM-C360 4.0 47.2 4.7 −6.1 −1.3 
GFDL-HIRAM-CM3 19.2 215.7 −11.2 14.9 3.8 

GISS-E2-R 6.5 238.0 −11.6 −12.1 −23.7 
HadGEM2-A −11.9 −38.1 9.3 −4.2 5.1 

INM-CM4 6.9 −59.2 10.4 −15.7 −5.4 
IPSL-CM5A-LR −14.5 −46.2 14.3 −2.0 12.3 
IPSL-CM5A-MR −14.9 −46.5 14.9 −3.2 11.7 
IPSL-CM5B-LR 6.2 −3.8 −5.2 6.2 1.0 

MIROC5 −4.9 11.2 −12.4 −4.6 −17.1 
MPI-ESM-LR 5.5 −83.5 14.8 −7.3 7.4 
MPI-ESM-MR 3.9 −86.4 18.6 −11.5 7.1 

MRI-AGCM3-2H 6.1 11.7 −19.1 6.4 −12.7 
MRI-AGCM3-2S 4.4 7.9 −12.4 2.2 −10.2 

MRI-CGCM3 3.7 104.2 −16.8 8.4 −8.4 
NorESM1-M 0.6 60.4 −25.0 13.2 −11.8 

Multimodel Mean 0.7 13.9 −2.2 −0.9 −3.2 
Units: Cloud Fraction (%); Cloud Water Path (gm−2); Radiation (Wm−2) 
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APPENDIX B 

Regional biases, by model, in the downwelling regime defined by MERRA reanalysis 
during the eight years evaluated in this study.  

Model Name Cloud 
Fraction 

Cloud 
Water Path 

Shortwave 
CRF 

Longwave 
CRF 

Net       
CRF 

ACCESS1.0 −13.6 −27.7 −3.1 0.8 −2.3 
BCC-CSM1.1 −18.9 −2.9 0.9 0.2 1.1 

BCC-CSM1.1 (m) −20.2 −4.4 −1.4 −1.3 −2.7 
BNU-ESM −23.3 −12.3 12.0 −4.8 7.2 
CanAM4 −12.0 −8.2 4.0 −2.2 1.8 
CCSM4 −23.8 −25.7 12.9 −6.4 6.5 

CESM1 (CAM5) −16.2 −51.0 7.7 −8.3 −0.6 
CMCC-CM −23.1 −34.7 12.5 −1.2 11.3 

CNRM-CM5 −29.7 −30.7 22.6 −5.0 17.6 
CSIRO-Mk3.6.0 −10.6 −19.2 −2.7 −1.0 −3.7 

FGOALS-G2 −22.1 −40.6 7.2 −2.5 4.7 
FGOALS-S2 −23.3 −23.1 5.6 −7.6 −2.0 

GFDL-HIRAM-C180 −7.5 −20.2 1.2 −2.1 −0.9 
GFDL-HIRAM-C360 −8.3 −18.2 1.2 −2.7 −1.4 
GFDL-HIRAM-CM3 −6.5 −34.1 2.0 −2.2 −0.1 

GISS-E2-R −21.7 8.4 9.9 −4.7 5.1 
HadGEM2-A −14.1 −27.1 −0.9 0.5 −0.4 

INM-CM4 −8.9 −55.1 13.6 −2.5 11.1 
IPSL-CM5A-LR −15.3 −24.8 −2.1 4.2 2.1 
IPSL-CM5A-MR −14.2 −21.0 −4.1 4.5 0.5 
IPSL-CM5B-LR −7.8 −18.6 −4.9 1.3 −3.5 

MIROC5 −14.2 −20.2 −5.8 −0.8 −6.6 
MPI-ESM-LR −16.6 −28.9 3.4 −0.5 2.9 
MPI-ESM-MR −16.9 −31.9 5.4 −0.9 4.5 

MRI-AGCM3-2H −32.5 −44.3 20.1 −4.4 15.7 
MRI-AGCM3-2S −32.8 −38.6 18.6 −5.0 13.6 

MRI-CGCM3 −23.8 −30.6 7.5 −3.6 3.9 
NorESM1-M −17.1 −16.3 6.2 −2.6 3.5 

Multimodel Mean −17.7 −25.1 5.3 −2.2 3.2 
Units: Cloud Fraction (%); Cloud Water Path (gm−2); Radiation (Wm−2) 
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APPENDIX C 

Biases, by model, in the sensitivity of CF and CWP to CRFs in the upwelling regime 
defined by MERRA reanalysis during the eight years evaluated in this study.  

  Cloud Fraction   Cloud Water Path   

Model Name Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

ACCESS1.0 −0.09 0.31 −0.39 0.14 0.17 −0.03 
BCC-CSM1.1 0.04 0.51 −0.32 0.03 0.07 −0.05 

BCC-CSM1.1 (m) 0.52 0.89 −0.37 −0.05 0.03 −0.08 
BNU-ESM 0.42 0.53 −0.11 0.10 0.11 −0.01 
CanAM4 0.15 0.34 −0.19 −0.03 −0.05 0.02 
CCSM4 0.60 0.75 −0.15 0.02 0.09 −0.06 

CESM1 (CAM5) 0.30 0.54 −0.23 0.47 0.20 0.27 
CMCC-CM −0.11 0.49 −0.19 −0.08 −0.06 0.08 

CNRM-CM5 0.23 0.04 0.20 −0.04 0.04 −0.08 
CSIRO-Mk3.6.0 −0.65 0.18 0.05 0.11 0.08 0.02 

FGOALS-G2 0.48 0.26 0.22 0.15 0.09 0.06 
FGOALS-S2 0.23 −0.21 0.43 −0.10 −0.10 −0.01 

GFDL-HIRAM-C180 0.20 0.34 −0.14 −0.11 −0.04 −0.07 
GFDL-HIRAM-C360 0.37 0.32 0.05 −0.12 −0.02 −0.10 
GFDL-HIRAM-CM3 0.17 0.71 0.25 −0.14 0.06 −0.17 

GISS-E2-R 0.20 −0.15 0.35 −0.23 −0.04 −0.18 
HadGEM2-A −0.04 0.32 −0.36 0.13 0.16 −0.04 

INM-CM4 0.11 0.08 0.02 0.64 0.45 0.20 
IPSL-CM5A-LR −0.33 0.45 −0.02 −0.11 −0.09 −0.01 
IPSL-CM5A-MR −0.37 0.36 −0.05 −0.13 −0.10 −0.01 
IPSL-CM5B-LR −0.36 0.18 −0.24 −0.10 −0.02 −0.08 

MIROC5 0.23 −0.09 0.32 0.09 0.08 0.00 
MPI-ESM-LR −0.30 0.05 −0.35 −0.04 0.02 0.20 
MPI-ESM-MR −0.39 −0.05 −0.35 −0.05 −0.02 0.15 

MRI-AGCM3-2H 0.08 0.26 −0.19 0.14 0.05 0.09 
MRI-AGCM3-2S −0.15 0.21 −0.36 0.01 −0.06 0.06 

MRI-CGCM3 0.34 0.58 −0.24 −0.03 0.10 −0.13 
NorESM1-M 0.47 0.90 −0.35 0.09 0.15 −0.06 

Multimodel Mean 0.08 0.33 −0.12 0.03 0.05 0.00 
Units: CF (Wm−2 %−1); CWP (Wm−2/ gm−2) 
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APPENDIX D 

Biases, by model, in the sensitivity of CF and CWP to CRFs in the downwelling regime 
defined by MERRA reanalysis during the eight years evaluated in this study.  

  Cloud Fraction   Cloud Water Path   

Model Name Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

ACCESS1.0 −0.30 −0.06 −0.24 0.00 0.07 −0.07 
BCC-CSM1.1 −0.11 −0.06 −0.05 0.02 0.01 0.01 

BCC-CSM1.1 (m) −0.07 −0.13 0.06 0.13 0.03 0.10 
BNU-ESM −0.24 0.02 −0.26 −0.04 0.02 −0.06 
CanAM4 −0.44 −0.06 −0.38 0.02 0.00 0.02 
CCSM4 −0.47 −0.17 −0.30 0.06 0.03 0.03 

CESM1 (CAM5) −0.09 −0.02 −0.07 0.85 0.09 0.77 
CMCC-CM −0.19 0.02 −0.21 0.23 0.01 0.22 

CNRM-CM5 −0.26 0.14 −0.39 0.08 0.03 0.05 
CSIRO-Mk3.6.0 0.05 0.04 0.01 0.29 0.04 0.25 

FGOALS-G2 −0.29 −0.13 −0.15 0.26 0.03 0.23 
FGOALS-S2 −0.33 −0.15 −0.18 0.08 −0.06 0.14 

GFDL-HIRAM-C180 −0.15 0.03 −0.18 0.00 0.02 −0.02 
GFDL-HIRAM-C360 −0.14 0.05 −0.19 −0.02 0.03 −0.05 
GFDL-HIRAM-CM3 −0.20 −0.08 −0.11 0.08 0.03 0.05 

GISS-E2-R −0.22 0.10 −0.32 −0.11 −0.06 −0.05 
HadGEM2-A −0.32 −0.09 −0.23 −0.02 0.07 −0.09 

INM-CM4 −0.65 −0.09 −0.56 0.88 0.35 0.53 
IPSL-CM5A-LR −0.40 0.02 −0.42 0.35 0.04 0.30 
IPSL-CM5A-MR −0.43 0.01 −0.44 0.27 0.00 0.27 
IPSL-CM5B-LR −0.38 −0.15 −0.22 0.33 0.01 0.33 

MIROC5 −0.11 −0.11 0.00 0.13 0.01 0.12 
MPI-ESM-LR −0.11 −0.02 −0.09 0.35 0.02 0.34 
MPI-ESM-MR −0.08 −0.01 −0.07 0.35 0.01 0.34 

MRI-AGCM3-2H −0.49 0.16 −0.65 0.19 0.11 0.08 
MRI-AGCM3-2S −0.54 0.21 −0.75 0.15 0.08 0.07 

MRI-CGCM3 0.04 −0.07 0.11 0.10 0.01 0.09 
NorESM1-M −0.48 −0.08 −0.40 0.05 0.03 0.02 

Multimodel Mean −0.26 −0.03 −0.24 0.18 0.04 0.14 
Units: CF (Wm−2 %−1); CWP (Wm−2/ gm−2) 
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APPENDIX E 

From the error analysis: Sensitivity errors, by model, in the upwelling regime. 
  Cloud Fraction   Cloud Water Path   

Model Name Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

ACCESS1.0 −6.00 21.00 −27.00 15.50 19.40 −3.90 
BCC-CSM1.1 2.90 35.20 −21.90 2.90 8.00 −5.10 

BCC-CSM1.1 (m) 35.70 61.20 −25.50 −5.70 3.20 −8.90 
BNU-ESM 28.80 36.70 −7.90 11.20 12.70 −1.40 
CanAM4 10.20 23.60 −13.30 −3.60 −5.60 2.00 
CCSM4 41.10 51.70 −10.60 2.60 9.70 −7.10 

CESM1 (CAM5) 20.90 36.90 −16.00 53.00 23.00 30.00 
CMCC-CM −7.60 33.80 −12.80 −9.10 −7.30 8.60 

CNRM-CM5 16.00 2.60 13.40 −4.80 4.00 −8.80 
CSIRO-Mk3.6.0 −44.90 12.50 3.20 11.80 9.20 2.60 

FGOALS-G2 33.10 18.20 14.90 17.20 10.10 7.10 
FGOALS-S2 15.60 −14.20 29.80 −11.60 −10.80 −0.80 

GFDL-HIRAM-C180 13.50 23.10 −9.60 −12.50 −4.30 −8.20 
GFDL-HIRAM-C360 25.70 22.10 3.60 −13.80 −2.30 −11.50 
GFDL-HIRAM-CM3 11.90 48.70 −17.40 −15.50 6.30 −18.90 

GISS-E2-R 13.50 −10.40 23.90 −25.90 −5.00 −19.90 
HadGEM2-A −2.80 22.20 −24.90 14.40 18.50 −4.10 

INM-CM4 7.30 5.60 1.70 72.40 50.40 22.00 
IPSL-CM5A-LR −22.50 30.70 −1.00 −11.80 −10.50 −1.40 
IPSL-CM5A-MR −25.70 25.10 −3.40 −14.60 −11.20 −0.90 
IPSL-CM5B-LR −25.00 12.50 −16.70 −11.70 −2.40 −9.30 

MIROC5 15.70 −6.20 21.90 10.00 9.60 0.40 
MPI-ESM-LR −20.80 3.10 −23.90 −4.90 2.00 22.00 
MPI-ESM-MR −27.00 −3.20 −23.80 −5.60 −2.40 16.90 

MRI-AGCM3-2H 5.20 18.20 −13.00 16.00 6.00 9.90 
MRI-AGCM3-2S −10.40 14.30 −24.70 0.70 −6.50 7.10 

MRI-CGCM3 23.40 39.90 −16.60 −2.90 11.20 −14.10 
NorESM1-M 32.20 62.20 −24.20 10.20 16.90 −6.70 

Multimodel Mean 5.7 22.4 −7.9 3.0 5.4 −0.1 
Units: Wm−2
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APPENDIX F 

From the error analysis: Sensitivity errors, by model, in the downwelling regime. 
  Cloud Fraction   Cloud Water Path   

Model Name Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

ACCESS1.0 −19.40 −3.90 −15.40 0.10 6.00 −5.90 
BCC-CSM1.1 −7.30 −3.90 −3.40 1.80 1.00 0.90 

BCC-CSM1.1 (m) −4.40 −8.20 3.80 10.70 2.40 8.20 
BNU-ESM −15.80 1.00 −16.80 −3.30 1.30 −4.60 
CanAM4 −28.80 −3.80 −25.00 1.50 0.00 1.60 
CCSM4 −30.70 −11.10 −19.60 4.60 2.20 2.40 

CESM1 (CAM5) −5.80 −1.30 −4.50 70.40 7.10 63.30 
CMCC-CM −12.40 1.30 −13.70 18.90 0.90 17.90 

CNRM-CM5 −16.70 9.00 −25.70 6.50 2.10 4.40 
CSIRO-Mk3.6.0 3.30 2.50 0.80 23.80 3.50 20.30 

FGOALS-G2 −18.60 −8.70 −9.90 21.70 2.40 19.30 
FGOALS-S2 −21.30 −9.80 −11.50 6.90 −4.70 11.60 

GFDL-HIRAM-C180 −9.70 1.90 −11.70 0.20 1.80 −1.60 
GFDL-HIRAM-C360 −8.90 3.30 −12.20 −1.60 2.30 −4.00 
GFDL-HIRAM-CM3 −12.80 −5.30 −7.50 6.30 2.20 4.10 

GISS-E2-R −14.30 6.70 −20.90 −9.40 −5.10 −4.40 
HadGEM2-A −20.70 −5.80 −14.90 −1.50 5.60 −7.00 

INM-CM4 −42.20 −5.90 −36.30 72.70 28.60 44.10 
IPSL-CM5A-LR −26.10 1.30 −27.40 28.80 3.70 25.10 
IPSL-CM5A-MR −28.30 0.40 −28.70 22.30 0.00 22.30 
IPSL-CM5B-LR −24.70 −10.10 −14.70 27.70 0.60 27.10 

MIROC5 −7.30 −7.40 0.10 10.80 1.20 9.60 
MPI-ESM-LR −7.30 −1.10 −6.20 29.00 1.30 27.70 
MPI-ESM-MR −5.40 −0.80 −4.50 29.00 1.20 27.80 

MRI-AGCM3-2H −32.30 10.30 −42.60 15.40 8.70 6.70 
MRI-AGCM3-2S −35.30 13.60 −48.90 12.40 6.50 5.90 

MRI-CGCM3 2.50 −4.80 7.40 8.20 1.10 7.10 
NorESM1-M −31.50 −5.20 −26.30 4.30 2.80 1.50 

Multimodel Mean −17.2 −1.6 −15.6 14.9 3.1 11.8 
Units: Wm−2  
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APPENDIX G 

From the error analysis: CF and CWP errors, by model, in the upwelling regime. 
  Cloud Fraction   Cloud Water Path   

Model Name Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

ACCESS1.0 −14.90 −10.00 −4.90 −12.30 −4.70 −7.60 
BCC-CSM1.1 6.00 4.00 2.00 13.60 5.20 8.40 

BCC-CSM1.1 (m) −5.00 −3.40 −1.70 17.90 6.80 11.10 
BNU-ESM −2.50 −1.70 −0.80 8.60 3.30 5.30 
CanAM4 5.50 3.70 1.80 4.40 1.70 2.80 
CCSM4 −9.90 −6.60 −3.20 17.90 6.80 11.10 

CESM1 (CAM5) 4.80 3.20 1.60 −21.40 −8.10 −13.30 
CMCC-CM 5.50 3.70 1.80 −18.60 −7.10 −11.60 

CNRM-CM5 5.90 3.90 1.90 16.10 6.10 10.00 
CSIRO-Mk3.6.0 12.50 8.40 4.10 −16.00 −6.10 −9.90 

FGOALS-G2 −10.30 −6.90 −3.40 −3.40 −1.30 −2.10 
FGOALS-S2 −5.50 −3.70 −1.80 −0.50 −0.20 −0.30 

GFDL-HIRAM-C180 7.10 4.70 2.30 10.00 3.80 6.20 
GFDL-HIRAM-C360 4.80 3.20 1.60 13.80 5.20 8.60 
GFDL-HIRAM-CM3 23.10 15.50 7.60 63.00 23.90 39.10 

GISS-E2-R 7.70 5.20 2.50 69.50 26.40 43.10 
HadGEM2-A −14.30 −9.60 −4.70 −11.10 −4.20 −6.90 

INM-CM4 8.30 5.60 2.70 −17.30 −6.60 −10.70 
IPSL-CM5A-LR −17.40 −11.70 −5.70 −13.50 −5.10 −8.40 
IPSL-CM5A-MR −17.90 −12.00 −5.90 −13.60 −5.20 −8.40 
IPSL-CM5B-LR 7.50 5.00 2.50 −1.10 −0.40 −0.70 

MIROC5 −5.80 −3.90 −1.90 3.30 1.20 2.00 
MPI-ESM-LR 6.60 4.40 2.20 −24.40 −9.30 −15.10 
MPI-ESM-MR 4.60 3.10 1.50 −25.20 −9.60 −15.70 

MRI-AGCM3-2H 7.30 4.90 2.40 3.40 1.30 2.10 
MRI-AGCM3-2S 5.20 3.50 1.70 2.30 0.90 1.40 

MRI-CGCM3 4.40 3.00 1.50 30.40 11.50 18.90 
NorESM1-M 0.70 0.50 0.20 17.60 6.70 10.90 

Multimodel Mean 0.9 0.6 0.3 4.1 1.5 2.5 
Units: Wm−2  
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APPENDIX H 

From the error analysis: CF and CWP errors, by model, in the downwelling regime. 
  Cloud Fraction   Cloud Water Path   

Model Name Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

ACCESS1.0 −17.80 −3.00 −14.80 −7.60 −3.00 −4.60 
BCC-CSM1.1 −24.80 −4.20 −20.60 −0.80 −0.30 −0.50 

BCC-CSM1.1 (m) −26.50 −4.50 −22.00 −1.20 −0.50 −0.70 
BNU-ESM −30.50 −5.20 −25.30 −3.40 −1.30 −2.00 
CanAM4 −15.80 −2.70 −13.10 −2.20 −0.90 −1.40 
CCSM4 −31.10 −5.30 −25.80 −7.00 −2.80 −4.30 

CESM1 (CAM5) −21.20 −3.60 −17.60 −14.00 −5.50 −8.50 
CMCC-CM −30.30 −5.20 −25.10 −9.50 −3.70 −5.80 

CNRM-CM5 −38.90 −6.60 −32.20 −8.40 −3.30 −5.10 
CSIRO-Mk3.6.0 −13.90 −2.40 −11.50 −5.30 −2.10 −3.20 

FGOALS-G2 −29.00 −4.90 −24.00 −11.10 −4.40 −6.70 
FGOALS-S2 −30.60 −5.20 −25.30 −6.30 −2.50 −3.80 

GFDL-HIRAM-C180 −9.90 −1.70 −8.20 −5.50 −2.20 −3.40 
GFDL-HIRAM-C360 −10.80 −1.80 −9.00 −5.00 −2.00 −3.00 
GFDL-HIRAM-CM3 −8.60 −1.50 −7.10 −9.30 −3.70 −5.70 

GISS-E2-R −28.40 −4.80 −23.50 2.30 0.90 1.40 
HadGEM2-A −18.50 −3.20 −15.40 −7.40 −2.90 −4.50 

INM-CM4 −11.60 −2.00 −9.70 −15.10 −5.90 −9.10 
IPSL-CM5A-LR −20.00 −3.40 −16.60 −6.80 −2.70 −4.10 
IPSL-CM5A-MR −18.50 −3.20 −15.40 −5.70 −2.30 −3.50 
IPSL-CM5B-LR −10.20 −1.70 −8.50 −5.10 −2.00 −3.10 

MIROC5 −18.60 −3.20 −15.40 −5.50 −2.20 −3.30 
MPI-ESM-LR −21.70 −3.70 −18.00 −7.90 −3.10 −4.80 
MPI-ESM-MR −22.20 −3.80 −18.40 −8.70 −3.40 −5.30 

MRI-AGCM3-2H −42.60 −7.30 −35.40 −12.10 −4.80 −7.40 
MRI-AGCM3-2S −43.00 −7.30 −35.60 −10.60 −4.20 −6.40 

MRI-CGCM3 −31.20 −5.30 −25.80 −8.40 −3.30 −5.10 
NorESM1-M −22.40 −3.80 −18.60 −4.50 −1.80 −2.70 

Multimodel Mean −23.2 −3.9 −19.2 −6.9 −2.7 −4.2 
Units: Wm−2 
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APPENDIX I 

From the error analysis: co-variance errors, by model, in the upwelling regime. 
  Cloud Fraction   Cloud Water Path   

Model Name Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

ACCESS1.0 1.10 −3.80 4.90 −5.80 −7.30 1.50 
BCC-CSM1.1 0.20 2.60 −1.60 1.20 3.30 −2.10 

BCC-CSM1.1 (m) −2.20 −3.70 1.60 −3.10 1.70 −4.80 
BNU-ESM −0.90 −1.10 0.20 2.90 3.30 −0.40 
CanAM4 0.70 1.60 −0.90 −0.50 −0.80 0.30 
CCSM4 −4.90 −6.20 1.30 1.40 5.30 −3.80 

CESM1 (CAM5) 1.20 2.20 −0.90 −34.60 −15.00 −19.60 
CMCC-CM −0.50 2.30 −0.80 5.20 4.10 −4.90 

CNRM-CM5 1.10 0.20 1.00 −2.40 2.00 −4.30 
CSIRO-Mk3.6.0 −6.80 1.90 0.50 −5.80 −4.50 −1.30 

FGOALS-G2 −4.10 −2.30 −1.90 −1.80 −1.00 −0.70 
FGOALS-S2 −1.00 1.00 −2.00 0.20 0.20 0.00 

GFDL-HIRAM-C180 1.20 2.00 −0.80 −3.80 −1.30 −2.50 
GFDL-HIRAM-C360 1.50 1.30 0.20 −5.80 −1.00 −4.80 
GFDL-HIRAM-CM3 3.30 13.60 −4.90 −29.80 12.10 −36.30 

GISS-E2-R 1.30 −1.00 2.20 −54.80 −10.60 −42.00 
HadGEM2-A 0.50 −3.80 4.30 −4.90 −6.30 1.40 

INM-CM4 0.70 0.60 0.20 −38.10 −26.50 −11.60 
IPSL-CM5A-LR 4.70 −6.50 0.20 4.90 4.30 0.60 
IPSL-CM5A-MR 5.60 −5.50 0.70 6.00 4.60 0.40 
IPSL-CM5B-LR −2.30 1.10 −1.50 0.40 0.10 0.30 

MIROC5 −1.10 0.40 −1.50 1.00 1.00 0.00 
MPI-ESM-LR −1.70 0.30 −1.90 3.70 −1.50 −16.30 
MPI-ESM-MR −1.50 −0.20 −1.30 4.30 1.90 −13.00 

MRI-AGCM3-2H 0.50 1.60 −1.10 1.70 0.60 1.00 
MRI-AGCM3-2S −0.70 0.90 −1.60 0.00 −0.50 0.50 

MRI-CGCM3 1.30 2.10 −0.90 −2.70 10.40 −13.00 
NorESM1-M 0.30 0.50 −0.20 5.40 9.10 −3.60 

Multimodel Mean −0.1 0.1 −0.2 −5.6 −0.4 −6.4 
Units: Wm−2 
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APPENDIX J 

From the error analysis: co-variance errors, by model, in the downwelling regime. 
  Cloud Fraction   Cloud Water Path   

Model Name Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

Shortwave 
CRF 

Longwave 
CRF 

Net     
CRF 

ACCESS1.0 4.00 0.80 3.20 0.00 −2.00 2.00 
BCC-CSM1.1 2.10 1.10 1.00 −0.10 0.00 0.00 

BCC-CSM1.1 (m) 1.40 2.50 −1.20 −0.60 −0.10 −0.40 
BNU-ESM 5.60 −0.40 6.00 0.50 −0.20 0.70 
CanAM4 5.30 0.70 4.60 −0.20 0.00 −0.20 
CCSM4 11.20 4.10 7.10 −1.40 −0.70 −0.80 

CESM1 (CAM5) 1.40 0.30 1.10 −43.40 −4.40 −39.10 
CMCC-CM 4.40 −0.50 4.90 −7.90 −0.40 −7.50 

CNRM-CM5 7.60 −4.10 11.70 −2.40 −0.80 −1.60 
CSIRO-Mk3.6.0 −0.50 −0.40 −0.10 −5.50 −0.80 −4.70 

FGOALS-G2 6.30 2.90 3.40 −10.70 −1.20 −9.50 
FGOALS-S2 7.60 3.50 4.10 −1.90 1.30 −3.20 

GFDL-HIRAM-C180 1.10 −0.20 1.30 0.00 −0.40 0.40 
GFDL-HIRAM-C360 1.10 −0.40 1.50 0.40 −0.50 0.90 
GFDL-HIRAM-CM3 1.30 0.50 0.80 −2.60 −0.90 −1.70 

GISS-E2-R 4.70 −2.20 7.00 -1.00 −0.50 −0.40 
HadGEM2-A 4.50 1.30 3.20 0.50 −1.80 2.30 

INM-CM4 5.70 0.80 4.90 −48.50 −19.00 −29.40 
IPSL-CM5A-LR 6.10 −0.30 6.40 −8.60 −1.10 −7.50 
IPSL-CM5A-MR 6.10 −0.10 6.20 −5.70 0.00 −5.70 
IPSL-CM5B-LR 3.00 1.20 1.80 −6.20 −0.10 −6.10 

MIROC5 1.60 1.60 0.00 −2.60 −0.30 −2.30 
MPI-ESM-LR 1.90 0.30 1.60 −10.10 −0.50 −9.70 
MPI-ESM-MR 1.40 0.20 1.20 −11.20 −0.50 −10.70 

MRI-AGCM3-2H 16.10 −5.20 21.30 −8.30 −4.70 −3.60 
MRI-AGCM3-2S 17.70 −6.80 24.60 −5.80 −3.10 −2.70 

MRI-CGCM3 −0.90 1.80 −2.70 −3.00 −0.40 −2.60 
NorESM1-M 8.30 1.40 6.90 −0.90 −0.60 −0.30 

Multimodel Mean 4.9 0.2 4.7 −6.7 −1.6 −5.1 
Units: Wm−2 

 

 

 



! 75!

APPENDIX K 

A list of acronyms used in this manuscript 

AIE Aerosol Indirect Effect 
AMIP Atmospheric Model Intercomparison Project 
AMSR-E Advanced Microwave Scanning Radiometer – Earth Observing System 
AR5  Assessment Report 5 
ARM Atmospheric Radiation Measurement 
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarization 
CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
CC CloudSat/CALIPSO 
CCCM CloudSat/CALIPSO/CERES/MODIS 
CERES Clouds and Earths Radiant Energy System 
CF  Cloud Fraction 
CM CERES MODIS 
CMIP5  Coupled Model Intercomparison Project Phase 5 
CPR Cloud Profiling Radar 
CRF  Cloud Radiative Forcing 
CWP  Cloud Water Path 
DOE Department of Energy 
EBAF Energy Balanced and Filled 
ESGF  Earth System Grid Federation 
GCM  Global Climate Model (or General Circulation Model) 
IPCC  Intergovernmental Panel on Climate Change 
ISCCP  International Satellite Cloud Climatology Project 
IWP Ice Water Path 
ITCZ Intertropical Convergence Zone 
LW  Longwave 
LWP Liquid Water Path 
MBL Marine Boundary Layer 
MERRA Modern Era Retrospective Analysis for Research and Applications 
MLR Multiple Linear Regression 
MODIS Moderate Resolution Imaging Spectroradiometer 
MPL Micropulse Lidar 
NASA  National Aeronautics and Space Administration 
OLR Outgoing Longwave Radiation 
PCMDI Program for Climate Model Diagnosis and Intercomparison 
RH Relative Humidity 
RMSE  Root Mean Squared Error 
SCM Single Column Model 
SGP Southern Great Plains 
SSF Single Scanner Footprint 
SST  Sea Surface Temperature 
SW  Shortwave 
TOA  Top of the Atmosphere 
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