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Abstract 

In this study, we assessed three liquid chromatographic platforms: reversed 

phase (RP), aqueous normal phase (ANP) and hydrophilic interaction (HILIC) 

for the analysis of polar metabolite standard mixtures and for their coverage of 

urinary metabolites. The two zwitterionic HILIC columns showed high-quality 

chromatographic performance for metabolite standards, improved separation 

for isomers and the greatest coverage of polar metabolites in urine. In 

contrast, on the reversed phase column most metabolites eluted very rapidly 

with little or no separation. Using an Exactive Orbitrap mass spectrometer 

with a HILIC liquid chromatographic platform approximately 800 metabolites 

with repeatable peak areas (RSD ≤ 25%) could be putatively identified in 

human urine, by elemental composition assignment within a 3 ppm mass error. 

The ability of the methodology for the verification of non-molecular ions, which 

arise from adduct formation, and the possibility of distinguishing isomers could 

also be demonstrated.   Careful examination of the raw data and the use of 

masses for predicted metabolites produced an extension of the metabolite list 

for human urine. 

Introduction 

Metabolomic studies of human urine have been receiving increased interest1 

and can be used to find biomarkers that diagnose disease or provide early 

warning at the pre-clinical stage. NMR based metabolomics offers highly 

repeatable and non-discriminatory outcomes, and in conjunction with pattern 

recognition methods provides an effective approach for diagnostics but cannot 

always identify individual biomarkers due to limited resolution between 

spectra of individual molecules and poor sensitivity.2, 3 MS provides higher 

sensitivity, wider dynamic range and the possibility of distinguishing 

metabolites by their accurate m/z signals and fragmentation patterns. 

Chromatography can be easily coupled with MS to differentiate metabolites by 

their retention times (Rt) providing an additional dimension for identification. 

Thus LC-MS or GC-MS are more suitable for qualitative and quantitative 

measurement of individual metabolites 4-6  and have been widely used in 

metabolite profiling studies of human urine for biomarker discovery.7-12 
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Pasikanti et al13 reported a method for GC-MS profiling of human urine where 

150 putative metabolites were detected and 144 of them were assigned a 

name by using retention indices and mass spectral matching scores with the 

NIST library. However, GC-MS is limited to analysing non-polar and volatile 

compounds. In addition spectra resulting from electron impact ionization (EI) 

are fragment-rich which complicates deconvolution of  overlapping 

chromatographic peaks.14 LC-MS is attracting increasing interest 5 as it 

requires minimal sample preparation and offers diverse LC selectivities.  

Reversed-phase (RP) chromatography has been commonly used to analyse 

human urine15, 16 and it has been successfully used in human urine 

metabolomic studies for disease diagnostics and biomarker discovery.7, 8, 12 

Separation and retention of metabolites under these conditions are 

predominantly determined by hydrophobic interaction. However, human urine 

contains a large number of highly polar metabolites such as amino acids, 

organic acids, sulphate and glucuronide conjugates and sugars. The polar 

metabolites generally elute together close to the dead time (t0) from columns 

under reversed-phase LC conditions and thus retention time makes no 

contribution to identification. Additionally ion-suppression is more likely occur 

for co-eluting polar metabolites present at trace levels. Hydrophilic interaction 

chromatography (HILIC) is able to separate polar compounds and the use of 

an organic solvent-rich mobile phase improves the sensitivity of ESI-MS.17, 18 

Under HILIC conditions the retention/separation is mainly based on the 

hydrophilic partitioning of metabolites between an organic solvent-rich mobile 

phase and an aqueous layer formed on the stationary phase. HILIC phases 

can be classified into: neutral, charged and zwitterionic. Selectivity can be 

improved for ionisable compounds on charged or zwitterionic HILIC stationary 

phases when electrostatic and/or ion-exchange interactions are introduced 

into their chromatographic behaviour.19-20 Use of HILIC columns alone9 or 

together with RP columns10 has been reported in human urine metabolomics 

studies. Cubbon et al21 measured human urine under both RP-LC-MS and 

HILIC-MS conditions and their multivariate analysis results showed that the 

correct classification of gender, diurnal variation and age could be obtained by 

using either method. Aqueous normal phase (ANP) chromatography is 
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another effective LC method for separating polar compounds. A silica hydride-

based stationary phase bonded to a small amount (~2%) of carbon provides 

potential for the co-existence of hydrophilic and hydrophobic interactions, and 

the mobile phase can be either organic solvent-rich or water-rich in 

composition depending on the polarity of analytes of interest.22 Callahan et 

al23 reported that approximately 1,000 features in human urine could be 

detected by an ANP-LC-MS system and a similar number of features were 

obtained by a RP-LC-MS system. However, none of the studies above 

evaluated chromatographic performance of LC conditions in respect of 

repeatability and linearity for urinary metabolites. In addition, no 

comprehensive assignment of detected features to putative metabolites has 

ever been carried out. 

Time-of-Flight (ToF) mass spectrometers are the most widespread HRMS 

instruments used in metabolomics.5 From our literature research the average 

mass error produced by ToF around  5 ppm but can be better than this. The 

Orbitrap MS is able to provide excellent resolution (>100,000) and mass 

accuracy (routinely < 2 ppm).24-26 Recently a benchtop Orbitrap MS system 

(the Exactive) has been introduced into the market. Which has high scan 

speed and fast polarity switching and high is ideal for fast and comprehensive 

metabolite profiling of biofluids or tissue extracts when coupled with LC 

separation. The accuracy of the Orbitrap means that there is often only one 

sensible elemental composition for a feature, although this becomes less 

likely as the mass of an analyte increases to above ca 300 amu,. Amajor 

issues which arises in profiling when high resolution mass spectrometry is 

used are with regard to isomer separation and identification. In the current 

study we have used standard mixtures containing 176 metabolite standards to 

test the chromatographic performance of one reversed phase, one ANP and 

two zwitterionic HILIC columns. The columns were then tested for their ability 

to measure the features with repeatable peak areas in human urine. Finally by 

combining retention times with accurate elemental composition assignment 

the feasibility of qualitative and quantitative analysis of individual metabolites 

in human urine was evaluated. In addition an extensive evaluation of the raw 
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data led to putative identification of many metabolites which are not currently 

in the metabolite data bases. 



6 

 

 
Experimental 

Chemicals and materials 

HPLC grade acetonitrile (ACN) was purchased from Fisher Scientific, UK. 

HPLC grade water was produced by a Direct-Q 3 Ultrapure Water System 

from Millipore, UK. AnalaR grade formic acid (98%) was obtained from BDH-

Merck, UK. Ammonium carbonate and ammonium acetate were purchased 

from Sigma-Aldrich, UK. 

Standard sample preparation 

Authentic standard stocks and standard mix solutions were prepared as 

described previously 27 and diluted 5 times with a solvent of H2O/ACN (20/80) 

before LC-MS analysis.  

Urine sample collection and preparation 

Urine was collected from 6 healthy volunteers, who had no diet or lifestyle 

restrictions and processed as described in supporting information 1 (SI.1). 

LC-MS analysis 

Measurement of standard samples and pooled urine samples was carried out 

on a Dionex Ultimate 3000 HPLC system (Camberley, UK) combined with an 

Exactive (Orbitrap) mass spectrometer from Thermo Fisher Scientific (Bremen, 

Germany). The mass spectrometry settings are described in S .The 5 LC 

conditions tested in this study are listed in SI.1.  

Data processing 

Raw data were sliced to individual positive and negative data sets using the 

RecalOffline tool from the Xcalibur software package before importing them 

into MZMine 2.2 software.28 After the process of chromatogram building, 

chromatogram deconvolution, de-isotoping, alignment, gap filling and 

identification (adduct and complex search) each data set was converted to 

hundreds of extracted unique chromatographic features (peaks) based on the 

combination of m/z and retention time. The settings for each step are listed in 
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SI.1. After removing a few non-peak-shape features by visualization both data 

sets were exported from MZMine 2.2 to an Excel 2007 workbook for further 

statistical analysis. 

Data analysis 

The calculation and statistics were performed by Excel 2007 and Visual Basic 

for Application (VBA). The identification of putative metabolites for features 

was achieved by using a VBA macro searching their accurate masses with a 

threshold of ±3ppm from an in-house database containing 41,623 potential 

metabolites from KEGG, MetaCyc, HMDB and Lipidmaps public databases.27   

Results and discussion 

Chromatographic evaluation of standards 

Two mixtures of standards, as described in SI.2, containing a range of amino 

acids, organic acids, sugars and other metabolites were run in triplicate under 

5 LC conditions. The mixture represents many of the compounds present in 

urine but is lacking in conjugates such as sulphates and glucuronides which 

are not commercially available. The repeatability of the retention time and 

peak area for each metabolite between replicates was calculated, and an 

additional visual inspection of peak shapes was performed on the peak list 

generated by MZMine 2.2 in both positive and negative modes. Finally all 

metabolites were categorised into 3 groups based on their peak shapes and 

the repeatability of their retention times and peak areas. At the ‘good’ level, 

metabolites showed narrow and symmetric peak shapes and more importantly 

the shift of their retention times and peak areas between replicates was in the 

range of ±5% and ±10% respectively. Results for individual metabolites were 

still ‘acceptable’ if retention times and peak areas varied in the range of ±10% 

and ±25% respectively. The cause of these variations was often found to be 

due to variation in peak shapes including broadening, tailing, fronting and 

splitting. The remaining metabolites were classified as ‘unacceptable’ which 

could usually be attributed to broad or multiple-peaks. The C18 column was 

excluded from this comparison because more than 80% of metabolites eluted 

as sharp spikes in the solvent front (Rt < 3 minutes). Figure 1 shows the 
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distribution of metabolite standards at the three classification levels for each 

remaining LC condition.  

 



9 

 

Figure 1 Distribution of metabolite standards at good, acceptable and 

unacceptable levels under different LC conditions with their biochemical 

classifications. 

 



10 

 

At first glance it is clear that most of the amino acids, amino acid derivatives 

and nitrogen heterocyclic metabolites performed well under all four LC 

conditions, while generally the performance of amines and sugars was poorer. 

It also should be noted that phosphates and organic acids show much better 

performance under the conditions used for ZIC-pHILIC+AC. Figure 2 shows a 

clear example of difference in peak shapes for citrate and 6-phospho-D-

gluconate produced by the different conditions. Although tailing can be 

observed under ZIC-pHILIC+AC conditions, high repeatability of retention 

times and peak areas could be achieved for these two metabolites. Therefore 

they were assessed as being at the “good” level under this LC condition. As 

indicated in Figure 1 it seems that compared to the other three conditions ZIC-

pHILIC+AC gives the greatest number of metabolites at ‘good’ and 

‘acceptable’ levels in each classification, except for amines which are 

probably largely unionised under the mobile phase conditions used. The poor 

performance of amines and basic amino acids under the conditions of ZIC-

pHILIC+AC and CDH+AA is shown in Figure 2. L-histidine shows a tailing and 

broad peak shape and putrescine cannot be detected. In contrast, good 

symmetric and sharp peak shapes can be achieved for these analytes under 

the conditions ZIC-HILIC+FA and CDH+FA. The combination of ZIC-

pHILIC+AC and ZIC-HILIC+FA is able to offer good or acceptable 

chromatographic results for almost all tested metabolite standards (173 out of 

176).  

The retention of polar compounds on ZIC-HILIC and ZIC-pHILIC is caused by 

a combination of hydrophilic partitioning and electrostatic interaction of 

polar/ionised solutes between the mobile phase and the water-rich/zwitterionic 

stationary phase. Poor peak shapes are likely to be produced by a 

competition between hydrophilic partitioning and electrostatic interaction for 

partially ionized metabolites. That is why acidic metabolites show poor peak 

shapes under the conditions of ZIC-HILIC+FA (mobile phase A pH=2.8) and 

the same argument can be used for basic metabolites under the conditions of 

ZIC-pHILIC+AC (mobile phase A pH=9.2). Sugars perform inconsistently and  
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Figure 2 EICs of citrate, 6-phospho-D-gluconate, L-histidine and putrescine 

under different LC conditions. 
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overall the best performance is with ZIC-pHILIC+AC. All reducing sugars can 

exist as four isomers in equilibrium, the α- and β-forms of the pyranose and 

furanose types. This can potentially produce four peaks for each sugar or 

potentially broad peaks. This can be seen for the disaccharide standards 

(table 2) where the non-reducing sugar sucrose produces a single peak 

whereas its reducing sugar isomer maltose produces multiple peaks. At high 

pH, as used with ZIC-pHILIC+AC, the rate of interconversion between the 

different sugar forms is more rapid and thus narrower peaks are more likely.  

Isomer separation evaluation of standards 

In the study 19 pairs of isomers were used to test the separation ability of 

each set of LC conditions and their retention times and brief comments on 

peak shapes are shown in SI.3. It is clear that none of the pairs of isomers 

could be separated on the C18 column because of insufficient retention on the 

column except for 4-coumarate and phenylpyruvate which were poorly 

separated. Therefore the C18 column was excluded from the comparison 

once again. Visual inspection of exctracted ion chromatograms (EICs) for 

each pair of isomers in MZMine 2.2 gave a quick assessment of the 

separation ability of each set of conditions. Apart from sugars all pairs of 

isomers were separated well under the conditions of ZIC-pHILIC+AC. 

Methylmalonate and succinate show close retention times but the resolution is 

still more than 1.5. The condition of ZIC-HILIC+FA shows poor separation 

ability for acidic isomers. Similar results could be observed on the CHD 

column using the same mobile phase. However, on the same column some 

overlapped peaks of the isomers e.g methylmalonate and succinate could be 

separated if the pH of the mobile phase was increased to 7. Based on the 

current results the order of separation ability of LC conditions for the tested 

isomers, except for sugars, is ZIC-pHILIC+AC > CDH+AA > HILIC+FA > 

CDH+FA.  

It has been reported that separation on the CDH column is mainly caused by 

hydrophilic interaction, and that hydrophobic interaction may also play a role 

because of the introduction of small amount of bonded carbon on the surface 

of stationary phase.22 However, 4-coumarate and phenylpyruvate, which are 
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relatively hydrophobic metabolites, were not separated at low pH, but when 

the pH was increased to 7, where both of them are more ionized/polar, a 

separation was achieved. This suggests that the hydrophilic interaction is the 

major factor in the separation for this pair of isomers on the CDH column. 

Some experimental factors are capable of improving the separation of 

isomers. Figure 3 illustrates some good examples. In order to compare peak 

width and shape all the time widows in Figure 3 are fixed as 10 minutes wide. 

For acidic isomers Figure 3A shows that methylmalonate and succinate are 

completely overlapped at low pH but were separated at high pH on both ANP 

and HILIC columns. The reason for this on the HILIC columns could be 

increased electrostatic interaction at high pH for these two acidic metabolites. 

Better separation of these two isomers could be achieved on the ANP column 

at high pH which might be due to the stronger hydrophilic interaction of the 

isomers in their more ionized states. 

It can be seen in Figure 3B that the separation of amino acid isomers L-

leucine and L-isoleucine was improved when the pH was raised. This might 

be due to increased hydrophobic interaction since the CDH column does have 

some hydrophobicity and the ZIC-pHILIC column is based on an organic 

polymer base so it is likely that it also has some hydrophobic properties. 

Figure 3C shows that good peak shapes are essential for good separation. 

Two nucleotide isomers show similar broad and tailing peak shapes at low pH 

on both HILIC and ANP columns. Good peak shapes were obtained at high 

pH but only with the conditions of ZIC-pHILIC+AC and delivered a good 

separation of the isomers.  

Urinary metabolite profiling 

A pooled urine sample from six healthy volunteers was measured in triplicate 

under each LC condition and the data obtained was processed using MZMine 

2.2 with the same settings as above. In order to achieve a reasonable 

evaluation for the purpose of quantitative analysis for metabolomics all LC 

conditions were compared at three levels of filtering (with classification into 

detectable charge modes). Table 1 shows a summary of the results. Features 

were calculated separately in ESI positive (P) and negative (N)  
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Figure 3 Extracted ion chromatographs of three pairs of isomers under 

different LC conditions. 
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Table 1 Numbers of features detected at different levels of data filtering under 

five different chromatographic conditions. P/N =detected in both positive and 

negative ion mode. 

 

 Detected Repeatable Identified 

 Pos Neg P/N Total Pos Neg P/N Total Pos Neg P/N Total 

C18 769 1034 83 1886 313 501 77 891 192 306 66 564 

pHILIC 872 1427 132 2431 487 871 101 1459 248 451 90 789 

HILIC 943 1193 154 2290 680 732 137 1549 417 284 123 824 

CDH FA 1178 970 142 2290 520 525 120 1175 256 207 111 574 

CDH AA 467 1416 50 1933 269 822 42 1175 113 421 36 570 
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modes under each LC condition and some were considered as single features 

(P/N) if they were detected by both modes with mass difference of 2.0146 ± 

0.001 m/z within a Rt window of ±0.1 min.  It can be observed that the total 

numbers of features detected by C18+FA and CDH+AA are lower than the 

other three LC conditions and with high pH mobile phases (AC and AA) a 

greater number of features can be detected in ESI negative compared with 

positive mode. In order to select reliable chromatographic results the detected 

features for replicates showing RSD values > ± 25% for their peak areas were 

filtered out at the ‘Repeatable’ Level. Based on the number of repeatable 

features a clear classification of LC conditions can be seen now. More than 

half of the detected features were removed by this repeatability filter under 

C18+FA conditions, which leads to a clear gap between C18+FA and the 

other LC conditions. The dramatic cut-off for detected features under C18+FA 

conditions at the Repeatable Level could be due to an ion-

suppression/enhancement effect on polar metabolites eluting together at early 

retention times and MS signal variation due to the lower ESI efficiencies 

obtained with high mobile phase aqueous content. The difference in the level 

of cut-off between HILIC and ANP LC conditions could be caused by 

inaccurate integration for chromatographic peaks with poor shapes. The 

combination of the two HILIC conditions produces about 650 more features 

than was obtained under ANP LC conditions. The number of identified 

features is greatest for HILIC at the Identified level (where there is a database 

match to one or more metabolite SI.4) and interestingly the C18+FA 

conditions show a similar number of identified features to ANP-LC conditions 

at this level. The decrease in the identification of the number of features 

between these two levels could be due to the limitation of the metabolite 

matches available in the database and the removal of the signals of non-

molecular ions (in-source fragments, complex ions, isotope peaks and non-

proton adducts). Only a small decrease is observed in the number of P/N 

features from Repeatable to Identified level which suggests that the features 

are more likely to be generated by real metabolites if they can be reproducibly 

detected with both ESI modes.  
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Following the classification at the Repeatable level the five LC conditions 

were regrouped as RP, HILIC and ANP chromatography. The unique m/z 

features (±0.0005) were filtered out from each chromatographic method. For 

the three chromatography modes 1260 and 1823 unique m/z features were 

recognized in ESI positive and negative mode respectively (SI.5). A similar 

shareholding pattern is observed for both ESI modes. More than half of the 

pie is shared by HILIC-only (35%) and ANP-only (21%). 12% of the unique 

features are found with all three chromatography modes, which are believed 

to be the major components in human urine. HILIC is able to cover 70% of 

unique features in total, followed by ANP (53%) and RP-LC (25%). The table 

below summarises the percentages of features identified as metabolites in 

each share by accurate m/z and the ratios of metabolites with molecular 

weight <250 to metabolites with MW >250. From that data it would appear 

that a higher percentage of features can be identified as real metabolites if 

they are found with more than one chromatography mode. In the share of all 

three chromatography methods more than 80% of the identified features show 

a MW less than 250 amu which means small molecules are the major 

components of human urine. HILIC covers more small molecules and larger 

molecules, generally more lipophilic molecules, are found with RP-LC. These 

results match well with the characteristics of the tested chromatography and 

again prove that comprehensive coverage of metabolite profiling in human 

urine cannot be achieved by a single type of chromatography.21, 23 

The threshold for database matching was ±3ppm and more than 80% of hit 

features showed mass error within ±1ppm for all LC conditions and only few 

features with large m/z were simultaneously matched to two metabolites with 

different elemental compositions present in the database (IS.4). During the 

ESI process it is possible for a single compound to form various non-proton 

adducts with Na+, K+ and NH4
+, to generate complex ions with co-eluting 

molecules and to produce in-source fragments by degradation. These 

phenomena were more likely to be observed for highly abundant metabolites 

in human urine. In this study non-proton adducts and complex ions were 

identified using MZMine 2.2 by their accurate mass difference from the parent 

compounds if their retention times matched the molecular ions of the parent. 
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In-source fragments were evaluated by the increase in response of an MS 

signal at the same retention time as the parent with higher energy collisional 

induced dissociation (HCD) cell on. By these examinations some non-

molecular ion features were accurately identified and assigned to the related 

molecular ion. Table 2 illustrates some examples of non-molecular ions 

obtained under ZIC-pHILIC+AC conditions where the features were not 

generated by actual metabolites in spite of the fact that they could be 

assigned to some common metabolites by accurate mass. After excluding the 

possibility of non-molecular ion signals isomer identification should be 

performed in order to assign the features to individual metabolites. Recently 

Creek et al27 developed a retention time prediction model for HILIC 

chromatography based on the physicochemical nature of the analyte-column 

interactions. By using this method many structurally distinct isomers can be 

rapidly recognized without confirmation with standard metabolites. Table 3 

shows some examples of the distinction of isomeric metabolites by calculated 

retention times under ZIC-HILIC+FA conditions. Amine and amide isomers 

were well modelled by the method leading to a good prediction of their 

retention times, which are different enough to distinguish them. Carboxylic 

acid and ester isomers could also be distinguished by this method under the 

condition of ZIC-pHILIC+AC by simply adjusting the pH-dependent variables 

in the prediction model. The non-selective nature of HCD meant that it was 

not possible to assign clear fragmentation patterns to a particular feature. 

However, in many cases it was possible to predict and observe the masses of 

fragments of overlapping features such as the acylium ions derived from 

different acyl glycines. It would be  better to use a hybrid mass spectrometer 

for more selective and precise fragment pattern analysis, however, even in 

this case poor MS2 spectra might be obtained from low level metabolites . In a 

previous study using a LTQ-Orbitrap mass spectrometer a constantly 

presenting feature (185.1284 m/z ESI-positive) in human urine was identified 

as N-(3-acetamidopropyl) pyrrolidin-2-one which was not available in our in-

house database.29 Many of the stable features in urine were not in available 

data bases and the metabolite identification was extended by including 

obvious compounds which might be expected in urine such as a wide range of 

acylcarnitines and acylglycines and sulfate and glucuruonide conjugates. Key 
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examples of these conjugates were confirmed from HCD fragmentation. In 

addition close inspection of the raw data enabled assignment of many false 

metabolite identifications resulting from minor fragments or adducts not 

removed by the filtering process.  The ultimate confirmation of individual 

metabolites should be completed by comparison of retention times and 

fragment patterns with authentic standard compounds or further analysis of 

collected HPLC fractions by NMR.30  

 

Table 2 Some examples of incorrect assignments of metabolites due to 

adducts or fragments derived from other features. 

 

m/z Polarity 
Elemental 

composition 

Mass error 

in ppm 
Possible metabolite 

Source ion and 

relationship 

145.0621 N C5H10N2O3 1.36 L-Glutamine 
Fragmenta of  263.014 

m/z 

103.0390 P C4H6O3 0.03 2-Oxobutanoate 
Fragmenta of  162.112 

m/z 

284.0776 N C12H15NO7 0.19 N-Glucosylnicotinate 
Complexb of 194.046 

and 89.024 m/z 

389.0994 N C18H18N2O8 0.93 Dopaxanthin 
Complexb of 194.046 

and 194.046 m/z 

117.1022 P C5H12N2O -0.33 5-Aminopentanamide 
ACN+H adduct c of 

76.076 m/z 

112.0869 P C5H9N3 -0.18 
1H-Imidazole-4-

ethanamine 

 [M+NH3] adduct c of 

95.060 m/z 

 
a
 Fragment confirmed by increasing signal intensity with HCD fragmentation 

b
 Complex determined by accurate mass and retention time in MZMine 2.2 

c
 Non-proton adduct determined by accurate mass and retention time in MZMine 2.2 
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Table 3 Some examples of distinguishing isomers on the basis of their 

calculated retention times on HILIC+FA chromatography. 

 

m/z Polarity Rt(min) 
Elemental 

composition 
ppm Met Name 

Std 
Rt(Min) 

Cal 
Rt(Min) 

133.0607 P 19.15  C4H8N2O3 -0.60  L-Asparagine 19.20  20.89  

133.0607 P 8.97  C4H8N2O3 -0.37  3-Ureidopropionate - 9.48  

156.0768 P 26.86  C6H9N3O2 0.05  L-Histidine 26.97  23.43  

156.0767 P 14.23  C6H9N3O2 -0.10  
3-(Pyrazol-1-yl)-L-

alanine 
- 15.97  

171.0414 N 19.07  C6H8N2O4 1.75  (R)-AMAA* - 20.80  

171.0415 N 7.90  C6H8N2O4 2.12  
Hydantoin-5-
propionate 

- 9.26  

 
* (R)-AMAA = (R)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl) acetic acid 

 

 

 

 

 

 

 

 

Linear responses for metabolites in urine 
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The correlation of metabolite levels with LC-MS peak areas was examined by 

calculating the Pearson correlation coefficient (R2) for features obtained from 

diluted pooled urine samples (0, 2, 5, 10 and 25 times dilution, following the 

initial dilution step used to remove salts, with H2O/ACN=20/80). Under the 

conditions of ZIC-pHILIC+AC 92.6% (900 out of 972) and 87.2% (513 out of 

588) features showed R2 values greater than 0.9 at the Repeatable level for 

ESI negative and positive modes respectively (SI.6). A similar result was also 

obtained for ZIC-HILIC+FA. The poor linearity for a few of the features is due 

to their low abundance in urine causing them to fall below their limit of 

detection. It is believed that metabolomic quantification would be satisfied by 

such good linearity across this dynamic range. In addition, it is an essential 

condition to perform normalization for urine samples either based on the 

signal for creatinine or using the strategy of mass spectrometer total useful 

signal (MSTUS).31 

Conclusions 

By comparing RP, ANP and zwitterionic HILIC chromatography it was 

demonstrated that a combination of two HILIC methods gave the most 

extensive coverage of highly polar metabolites in urine. The mixed separation 

mechanism of zwitterionic HILIC offers an enhanced separation of isomers 

and the improvement of peak shapes of organic acids and sugars at high pH 

on the ZIC-pHILIC column is very useful for extending the coverage of polar 

metabolites in human urine. The Exactive Orbitrap mass spectrometer 

provides high confidence for the elemental composition assignment of 

individual metabolites and its dynamic range is also satisfactory for 

quantitative analysis in metabolomic studies. Combining orthogonal liquid 

chromatographic platforms it is a powerful tool for achieving a more 

comprehensive metabolite profiling of human urine. Simple metabolite 

prediction has permitted the annotation of a substantial number of new 

metabolites not in current data bases. 
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