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Abstract: Crop type classification with satellite imageries is widely applied in support of crop

production management and food security strategy. The abundant supply of these satellite data is

accelerating and blooming the application of crop classification as satellite data at 10 m to 30 m spatial

resolution have been made accessible easily, widely and free of charge, including optical sensors,

the wide field of viewer (WFV) onboard the GaoFen (GF, high resolution in English) series from

China, the MultiSpectral Instrument (MSI) onboard Sentinel 2 (S2) from Europe and the Operational

Land Imager (OLI) onboard Landsat 8 (L8) from USA, thanks to the implementation of the open data

policy. There are more options in using the satellite data as these three data sources are available.

This paper explored the different capability of these three data sources for the crop type mapping in

the same area and within the same growing season. The study was executed in a flat and irrigated

area in Northwest China. Nine types of crop were classified using these three kinds of time series of

data sources in 2017 and 2018, respectively. The same suites of the training samples and validation

samples were applied for each of the data sources. Random Forest (RF) was used as the classifier for

the crop type classification. The confusion error matrix with the OA, Kappa and F1-score was used

to evaluate the accuracy of the classifications. The result shows that GF-1 relatively has the lowest

accuracy as a consequence of the limited spectral bands, but the accuracy is at 93–94%, which is still

excellent and acceptable for crop type classification. S2 achieved the highest accuracy of 96–98%,

with 10 available bands for the crop type classification at either 10 m or 20 m. The accuracy of 97–98%

for L8 is in the middle but the difference is small in comparison with S2. Any of these satellite data

may be used for the crop type classification within the growing season, with a very good accuracy if

the training datasets were well tuned.

Keywords: crop mapping; classification; GF-1; Sentinel-2; Landsat 8

1. Introduction

Global food security has been attracting great concern around the world as the world
population is projected to continually grow and the water and thermal condition of farm-
land is dramatically influenced by this global change. Effectively and efficiently monitoring
agricultural production is critical to tackle food insecurity issues and support farming man-
agement. Rapid development of Earth observation satellites provides a great opportunity
to fulfill this requirement globally. In particular, free and uncharged access to satellite
images is accelerating methodology development for agricultural monitoring.

GF, the acronym of GaoFen in Chinese, which means high resolution in English, is
one of the key Earth observation programs in China. The China Space Administration has
announced at the GEO Ministerial Summit in December 2019 in Australia that the global
data of GF-1 data [1] at 16 m spatial resolution will be made freely available to the world
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as a contribution from China in building the GEOSS, Global Earth Observing System of
Systems. Sentinel [2] is a key component of the Copernicus program for Earth observation
in Europe. Sentinel data is already freely accessed via the Copernicus Open Access Hub or
other Hubs. Landsat [3] is a USA satellite mission and has a long history, dating back to
the 1970s, providing 30-m resolution satellite multispectral data for the world. Landsat 8
is providing high quality satellite data free and openly since its successfully launched in
2013. S2 and L8 [4,5] are freely available via a well-developed data sharing server; however,
GF is still new and an online data sharing platform is still in development. GF data are
accessible online to some extent via the current web portal, while GF series satellite data
are quite easily available in several operational satellite application centers in China in
which there are dedicated land lines to connect to the data distributor, CRESDA (China
Center for Resource Satellite Data and Application). The user may have more options for
the input satellite data in agricultural monitoring as the abundant abovementioned data
sources are freely available and at no charge.

As one of key elements of agricultural monitoring [6–8], crop area estimation with
the satellite images has been implemented for many years. Crop type classification of
using remote sensing time series is an important tool to deliver such information. A bunch
of applications and the tool of cloud based and open source in crop type classification
have been developed recently, of which the Sen2-Agri system is free and open source,
allowing any user generating near-real time products tailored to their needs at their own
premises or on cloud computing infrastructure [9]. Additionally, the Google Earth Engine
provides a free cloud computing capacity with the various hosted datasets [10,11]. A large
variety of crop classification methods at different scales and various levels of accuracy
can be found in the literature [12–14]. From the first use of satellites for agricultural
monitoring in the 1970s [15] to the latest study [16–21], crop classification strategies have
evolved tremendously.

A common method of crop classification is a pixel-based approach in which an indi-
vidual pixel is assigned to a specific class according to its spectral similarity to the class, as
a satellite image is a pixel-based n-dimension data array. However, with the increase of
spatial resolution, the pixel-based classification may bring more negative effects because the
pixel size is too small to match the target class. Therefore, the object-based method [22–24]
was adopted to improve the classification. A key step in the objected-based method is
that it takes the spectral-, textural-, neighborhood- and object-specific shape parameters
into account as segmentation; hence, it operates with a group of similar pixels instead of a
single pixel. In addition to the advantages, limitations are also obvious in this method [25].
The overall effect of the method strongly relies on the segmentation scales. Inappropriate
scale for the segmentation may create a negative impact on input features of classification.
Spatial resolution of satellite image is another unavoidable problem. The sensors with a
high revisit frequency and a large swath width usually offer a coarser spatial resolution.
Using such sensors to map heterogeneous agricultural areas is problematic when the field
areas are inferior to the sensor’s pixel size, causing mixed pixels. In order to overcome
the mixed pixel problem, the sub-pixel classification approach was developed for the
coarse resolution satellite images [26–30]. The classification approach takes into account
the possibility of a pixel of belonging to different classes with a method of pixel unmixing.
Working with time series images instead of single one allows extracting temporal features
that are a great asset for classifying different crop types [11,31,32].

Developing an algorithm for classification is also extremely important for crop type
classification. Traditionally, unsupervised and supervised classifications are the two al-
gorithms of classification. In unsupervised classification, clusters are created according
to their similar spectral characteristics of the input images without the training samples.
The class type is assigned later based on expert knowledge. The K-means and the ISO-
DATA (Iterative Self-Organizing Data Analysis Technique Algorithm) are the two most
frequently and widely used unsupervised algorithms. However, accuracy of unsuper-
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vised classification is hard to be improved to a very high level in comparison with the
supervised classification.

In supervised classification, training samples have to be provided in association with
the input images. The final class for each pixel will be decided by such commonly used
classifiers as Maximum Likelihood Classification (MLC), Support Vector Machine (SVM),
Random Forest (RF), Artificial Neural Network (ANN), Decision Trees (DT) and so on [32].
Many papers [9,33,34] have concluded that RF and other similar classifiers have the best
performance in practice. Therefore, RF has been a very popular classification method in
many applications, such as land cover and crop type identification. Fusion of optical data
with SAR time series images for the crop type classification has also made steady progress
in recent years [35–37], especially in reducing the cloudy effects of pixels.

It has been demonstrated the combination of S2 and L8 for classification can obvi-
ously improve the capability of change detection over the ground [14,38]. A systematic
review on recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land
cover mapping has been presented in Chaves [39], which highlighted the possibility of
using a medium-resolution (Landsat-like, 10–30 m) time series and multispectral optical
data to provide a harmonization between these sensors and data cube architectures for
analysis-ready data that are permeated by publicizations, open data policies and open
science principles.

As a newcomer, GF-1 provides alternative high spatial resolution satellite data for clas-
sification. A combination of GF, S2 and L8 for classification has not been reported [40–43].
The objective of this study is to evaluate the influence of independent satellite data sources
on the crop type classification. We conducted crop type classification with these three
data sources independently. Then, we reveal the best option for crop type classification by
evaluating the accuracy of the classifications. The question we intend to answer is how
well the GF may achieve for crop type classification in comparison with S2 and L8. Results
from the study will support the expectation of combining these three data sources for crop
type classification in the near future.

2. Study Area and Data

2.1. Study Area

The study area locates at the northern part of the Yellow River Irrigation Area of
Ningxia Hui Autonomous Region in Northwest China. With a total territory of 66.400 km2,
Ningxia is naturally composed of three geographical zones strongly governing economic
development in the region [44]: the mountainous and loess hilly district (MLHD) in the
south, the dry and desert district (DDD) in the center and the Yellow River irrigated district
(YERID) in the north. In the MLHD, 70% of the cultivated land consists of slope farmlands.
The DDD is a very arid area, mostly covered by grassland, which accounts for 77% of
Ningxia’s total. The YERID is the most important agricultural production region in Ningxia.
It has only one third of the total farmland in the region, but accounts for two thirds of
Ningxia’s total grain production and agricultural production value. Annual rainfall is
extremely low in Ningxia, but the Yellow River brings abundant water from Qinhai-Tibet
Plateau for an efficient irrigation to the agricultural fields in the region. In YERID, wheat,
rice and corn are by far the major crops. This study focused on the YERID because it is the
most important agricultural district in the region. The study area also represents a very
typical irrigated agricultural region in China. Availability of clear sky images is high, as
the rainfall is extremely low. Figure 1 shows the study area with six Sentinel-2 tiles. The
crop growing season in the region is from May to September; therefore, only the satellite
data observed in the growing season were collected.



Remote Sens. 2021, 13, 911 4 of 17

 

Figure 1. The S2 composite image of the study area showing the landscape and its geographical location in China.

2.2. Satellite Data and Processing

GF-1 Satellite, as the first satellite of the Chinese High Resolution Earth Observation
System (GF), which includes series of high resolution optical and SAR satellites, was
successfully launched on 26 April 2013 [1]. Onboard, there are four sets of multiple spectral
cameras (wide field of viewer, WFV) with a mosaiced swatch of 800 km at 16-meter spatial
resolution and a four-day revisit frequency [45]. WFV has only four bands as listed in
Table 1. The L1B data of GF-1 WFV data covering the study area and over the growing
season of 2017 and 2018 were downloaded from the CRESDA. The L1B data of GF-1 WFV
have included the calibration coefficients and the RPC information which were used to
implement the image georeferencing with the RPC Orthorectification approach. Then,
the FLAASH approach was used to perform the atmospheric correction [46]. In order to
compare with S2 and L8, the spatial resolution of GF-1 WFV in this study was set as 15 m.

Table 1. The band specification and spatial resolution of GF-1, S2 and L8.

Band
Number

Central
Wavelength

(nm)

Bandwidth
(nm)

Resolution
(m)

Central
Wavelength

(nm)

Bandwidth
(nm)

Resolution
(m)

Central
Wavelength

(nm)

Bandwidth
(nm)

Resolution
(m)

GF-1 WFV S2A/B MSI L8 OLI
1 443 20 60 443 16 30
2 485 70 16 490 65 10 482 60 30
3 555 70 16 560 35 10 562 57 30
4 660 60 16 665 30 10 655 37 30
5 705 15 20
6 740 15 20
7 783 20 20
8 830 120 16 842 115 10
8a 865 20 20 865 28 30
9 945 20 60
10 1375 30 60 1372 21 30
11 1610 90 20 1609 85 30
12 2190 180 20 2200 187 30

The Sentinel satellites are part of European Space Agency’s Copernicus program.
Sentinel-2A was launched in June 2015 and complemented by Sentinel-2B in March 2017.
These two Sentinel missions were equipped with high resolution multispectral (MSI) sen-
sors. Sentinel-2 provides an unprecedented 10-m spatial resolution with a five-day global
revisit frequency, a 13 bands imager and a 290 km swath width. Table 1 also lists the spectral
and spatial specifications of Sentinel 2A/B. Through the Sen2-Agri system [47], Sentinel-2
L1C (top of atmosphere) images were automatically downloaded for the six tiles covering
the study area and over the growing season of 2017 and 2018 from the Copernicus Open
Access Hub. Using Sen2-Agri’s L2A processor, a Multi-sensor Atmospheric Correction
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and Cloud Screening (MACCS algorithm) [48,49] was performed on top of the atmosphere
images. The 60-m spectral bands were not used in this study due to the coarse resolution.

Landsat 8, launched on February 11, 2013, consists of two science instruments—the
Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). These two sensors
provide seasonal coverage of the global landmass at a spatial resolution of 30 meters
(visible, NIR, SWIR), 100 meters (thermal) and 15 meters (panchromatic). The Landsat 8
image files consist of 16-bit GeoTIFF images, packaged as Georeferenced Tagged Image
File Format. Table 1 lists the band information for Landsat 8 [5]. Each scene of Landsat
images may be referred to by the path and row. In this study, the scenes of 129/33, 129/34,
130/33 and 130/34 cover the study area. Thus, all the Landsat 8 data during the crop
growth season from May to September in 2017 and 2018 were downloaded from the USGS
EarthExplorer. The FLAASH approach was used to perform the atmospheric correction for
all Landsat 8 images [50]. The thermal bands, the panchromatic band and the Cirrus band
were not used in this study.

After a visual check of all images, the images with higher than 25% cloudy coverage
were completely removed. The images taken on the same day were mosaiced and tailored
to the study area only. The finally used images are listed in Table 2.

Table 2. The used satellites data from GF-1, S2 and L8.

GF L8 S2

2017 2018 2017 2018 2017 2018

May 20170526
20180502
20180514
20180530

20170517

20180504
20180511
20180520
20180527

20170517

20180502
20180515
20180517
20180522
20180530

June
20170616
20170628

20180627 20170625

20180605
20180612
20180621
20180628

20170606
20170626

20180604
20180609
20180614

July

20170701
20170706
20170710
20170731

20180705
20180722

20170704
20180714
20180730

20170709
20170711
20170729
20170731

20180704
20180711
20180719
20180721

August
20170804
20170816

20180804
20180815

20170805
20180808
20180815
20180824

September
20170906
20170922
20170929

2.3. Field Data and Training Samples

The reference data needed for training and validation of the crop classification were
collected in the field. During the field campaign, the georeferenced pictures were taken
with a GPS camera along the roads in the study area following predefined itineraries. At
home, the land cover and crop type classes with the longitude and latitude coordinates
were retrieved by visually screening the pictures with the tool developed for the photo
data interpretation. The final output of this process is a formatted file gathering all GPS
points with corresponding classes, class codes, author, roadside (left or right), collecting
dates and times and the corresponding photo file names. A three-day field campaign with
a random sampling approach was carried out in middle June 2017, and collected about
1500 ground truth photos with spatial reference and associated crop or other land cover
classes. Three field campaigns with a random block sampling approach were carried out



Remote Sens. 2021, 13, 911 6 of 17

again in June, July and September in 2018. All those sample points are distributed over the
irrigated area, as shown on Figure 2.

The field samples include both the crop classes and non-crop classes. These samples
are point-based ground truth and not ideally and evenly distributed in the study area. As a
result of the land ownership policy in China, the field of each household is quite small and
often a parcel of a few meter width and a few hundred meters length. The field boundary
data in the study area are not available, nor are the boundaries in most arable land areas in
China. Therefore, it is not feasible to use the field-based training sample, as other papers
did [9,47]. However, it looks like a large field with a single crop as the fields often grow
the same crop in practice in China. More well-distributed training samples were obtained
by visually interpreting the satellite images. Thus, based on those ground sample points,
using Google Earth and the Landsat 8 images in the growing season, referring to a 10 km
grid frame, the systematic samples approach was implemented and the spatial size of 3
× 3 pixels or a little bit larger of polygons for crop types and non-crop types were drawn
on the images. Samples within each 10 km grid were further identified and dramatically
increased and the spatial distribution of samples was improved.

All samples were randomly separated into two parts with a ratio of 70% to 30%. The
70% samples were used for classification and 30% for validation. The distance between two
samples, in fact, the centers of every two polygons, was taken into account in the separation
process. If they are too close, all pixels in both polygons are classified as either training
or validation datasets. The threshold for the distance in this study was set as 900 m. This
avoids a strong spatial correlation. For instance, all samples taken in one field represent
only one field at the level of image pixel. If some pixels of the samples are used for the
classification and other for the validation, the accuracy will be very high in normal case,
but this accuracy does not represent the true value. Table 3 lists the number of samples and
the proportion for each crop type at the 30-m level.

  

Figure 2. The field samples in the study area for 2017 (left) and 2018 (right).
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Table 3. The number of training samples at 30 m and the proportion for each crop type.

Class Name Forage Grass Corn Grape Greenhouse Sward Medlar Rice Vegetable Wheat

Pixel Counts 2017 2094 2433 1302 1642 494 281 7681 991 509

Pixel Counts 2018 1258 4631 1366 1451 103 167 4134 1727 1793

Proportion 2017 12.0 14.0 7.5 9.4 2.8 1.6 44.1 5.7 2.9

Proportion 2018 7.6 27.8 8.2 8.7 0.6 1.0 24.9 10.4 10.8

3. Methodology

3.1. Classification Algorithm

Two methods are available for crop type and land cover classification: unsupervised
and supervised [51]. The K-means and ISO-data are two typical unsupervised classification
algorithms which are easy to apply but the accuracy is hard to reach the potential ceiling.
The supervised classification is widely used at present. Maximum Likelihood (ML), Support
Vector Machine (SVM) and Neural Net (NN) are three typically and widely used supervised
algorithms for crop type classification with satellite images. However, Random Forest (RF)
has become the more popular classifier in recent years because it is robust and easy to
apply and only a few parameters are required to be set and adjusted accordingly. It has
commonly proved that the accuracy of RF is often better than that of others such as ML
and SVM. Therefore, RF was selected as the classifier in this study.

RF is a supervised machine learning algorithm and a kind of ensemble of the decision
tree. The decision will be made based on the bagging method. At each time, a random
subset of input training samples will be used and the error of out of bag will be used to
evaluate the accuracy. The final result will be decided by merging all trees together and
get a more accurate and stable prediction. The detailed RF algorithm may refer to the
literature [52–55]. There are only two key parameters to be considered: one is the number
of features and the other is the number of trees. In general, the number of features may
be set as the square root or the logarithm of the number of input bands of the image. The
number of trees should be tested in advance. In practice, 100 or 200 for the number of
the tree is fine. The larger both parameters are, the more time it will take to compute,
but the accuracy will certainly not be the highest. After many tests, the square root of all
input features and 100 was set for the number of features and the number of trees in this
study, respectively.

3.2. Increasing Features

In order to achieve the highest accuracy, the classification should take all spatial,
temporal and spectral information of the input images into account. For the optical image,
clouds always contaminate the images. Some images have been removed due to high
cloud coverage. In reality, only a few scenes of time series images may be used for the
classification. Therefore, all available satellite image should be used during the crop
growing season to capture the crop phenology changes as much as possible. The different
crop phenology information is the key to discriminate the different crop types in the
same growing season. The spatial information is decided by the spatial resolution of the
image. The data source has an influence on the spatial information. More features also
may increase the accuracy of the classified image [5,25]. In this study, every two spectral
bands may be used to calculate an NDVI-like index (Equation (1)), and thus, all possible
NDVI-like indices were calculated and added to the spectral bands as the input features
for the classification:

F =
bi+1 − bi

bi+1 + bi
(1)

where F is a new feature and bi and bi+1 are spectral bands.
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3.3. Validation Methods

An error confusion matrix is usually used as the quantitative evaluation method to
calculate the image classification accuracy. The approach of the error confusion matrix
was also applied for the validation in this study. Table 4 lists the typic error confusion
matrix. The overall accuracy, OA, Kappa and F1-scores may be further calculated based
on the error confusion matrix. In Table 4, i represents the ground truth and j the classified
result. Nij is the number of pixels that were in class i according to the ground truth but
were classified to class j in the resulting image. J is the digital code of each crop type class.

Table 4. The typical error confusion matrix.

Classified
j = 1 j = 2 . . . j = J

Ground
Truth

i = 1 N11 N12 N1J
i = 2 N21 N22 N2J
. . .

i = J NJ1 NJ2 NJJ

The overall accuracy (OA) can be computed as the proportion of fully correct classes
in the validation samples:

OA =

∑
J

i = 1
Nii

∑
J

i = j = 1
Nij

(2)

The Kappa coefficient is another index to evaluate the accuracy of the classified image:

Kappa =

M ∑
J

i = j = 1
Nij − ∑

J
i = j = 1

Ni Nj

M2
− ∑

J
i = j = 1

Ni Nj

(3)

where M is total number of validation samples. The Kappa coefficient is good to evaluate
the unbalanced validation samples, but it is difficult to understand the meaning or what
Kappa represents. Kappa gives a sense to evaluate how much mistake was avoided in the
classification process. Kappa is always less than or equal to 1. A value of 1 implies perfect
agreement and values less than 1 imply less than perfect agreement. Normally, 0.8 and
higher shows very good agreements.

In addition, the F1-Score is also used to evaluate the classified image. The F1-score
(Equation (6)) is derived from the precision and the recall for each class, which are computed
through Equations (4) and (5) respectively. It gives an indication of the classification
performance per class:

Precision =
Nii

∑
J

j = 1
Nij

(4)

Recall =
Njj

∑
J

i = 1
Nij

(5)

F1 − score = 2∗
Precision∗Recall

Precision + Recall
(6)

In this study, the validation of the classified images was carried out independently
with the same suite of the validation samples. The statistic was computed by counting the
number of pixels for each class.
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4. Results and Analysis

4.1. Accuracy Analysis for the Different Experiments of Input Data

GF-1 WFV has only four bands, namely blue, green, red and near infrared. S2 has four
bands at 10 m and six bands at 20 m. L8 has seven bands at 30 m. These bands are the basic
features that may be used for the classification. It is already known that the classification
accuracy may increase as more features are used as input data [5,25]. Thus, in this study,
three experiments were designed to perform the crop type classification. The first one
uses four GF-1 WFV available bands and four similar bands for S2 and L8. The second
one uses four similar bands, with all calculated feature indices accordingly. The third
one uses all available bands and all calculated feature indices accordingly for these three
satellite data sources. Table 5 lists the spectral bands used and the number of increased
features accordingly for GF-1, S2 and L8 in three experiments. The training datasets and
the validation datasets are the same for all these experiments. The RF classifier algorithm
is also the same. Because 10 S2 bands have two spatial resolutions, the datasets for S2 were
prepared into two datasets, one with 10 m spatial resolution and another with 20 m spatial
resolution. For the 10-m S2 datasets, the pixels in the window of 2 × 2 took the value
of corresponding one pixel at 20 m. For the 20-m S2 datasets, the pixel at 20 m took the
averaged value of the corresponding 2 × 2 pixels at 10 m.

Table 5. The used spectral bands and the number of increased features for GF-1, S2 and L8.

Experiment Bands/Features GF-1 WFV S2A/B MSI L8 OLI

1

Used Bands 485, 555, 660, 830 490, 560,665,865 482,562, 655, 865

Increased
Features

0 0 0

2

Used Bands 485, 555, 660, 830 490, 560,665,865 482,562, 655, 865

Increased
Features

6 6 6

3

Used Bands 485, 555, 660, 830

490,
560,665,705,740,

783, 842,
865,1610,2190

443, 482,562, 655,
865, 1609, 2200

Increased
Features

6 45 21

Figure 3 shows the accuracies of experiment 1. It is clear that the classification accuracy
from the GF-1 WFV is lower than those from S2 and L8 in both years with regards to OA,
Kappa and F1-score. The accuracy from the S2 data has the relatively highest score in 2017,
while it is slightly lower than L8 in 2018 because of a lack of data after July in 2018. There
was no difference found between the 10-m S2 and the 20-m S2 for both years.

In experiment 2, six feature indices were calculated in reference to Equation (1) and
added as the input features. Figure 4 shows the accuracies of these three satellite data
sources in experiment 2. It is clear that the classification accuracy from the GF-1 WFV data
has the relatively lowest score for both years with regards of the OA, Kappa and F1-score.
The accuracies of 10-m S2 and 20-m S20 are close in 2017, while it is slight larger in 2018.
The accuracies between L8 and S2 are also close, though the one from S2 is a little bit better
than L8 in 2017. Due to a lack of S2 data after July in 2018, it did not show the higher value
of S2 in 2018 than L8, but both are very close. From the experiments 1 and 2, it is obvious
that the accuracies arose for each input datasets as the input features increased.
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Figure 3. The accuracies of experiment 1.
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Figure 4. The accuracies of experiment 2.

S2 and L8 have more bands available for the classification, and thus, all available
bands were further used in the crop type classification. Figure 5 shows the accuracies of
these three satellite data sources with the potential capability. Similar results were found in
this experiment. The classification accuracy from the GF-1 WFV data always relatively has
the lowest score. It is obvious that the accuracy from S2 is highest due to having the most
bands available for the classification. The accuracy from 10-m S2 is a little bit better than
the 20-m S2 but there is no big difference. The accuracies for S2 and L8 were increased a
bit from four bands to all bands. Table 6 lists the commission and omission errors for the
experiment 3.

Table 6. Commission and Omission errors for all crop types.

GF 2017 GF 2018 L8 2017 L8 2018 S2 2017 S2 2018

Commission Omission Commission Omission Commission Omission Commission Omission Commission Omission Commission Omission

Forage
Grass 6.5 12.0 1.0 7.7 2.6 5.0 1.2 6.4 0.7 4.3 1.1 10.3

Corn 9.8 3.8 9.7 4.8 10.7 11.3 4.4 3.0 3.0 3.5 4.6 1.5
Grape 14.9 9.2 4.2 12.0 3.2 5.5 5.0 7.2 1.2 1.8 1.4 6.2

Greenhouse 2.1 1.2 2.3 0.7 2.9 1.6 2.1 0.9 2.0 0.1 1.9 0.3
Sward 36.1 39.2 0.0 24.2 2.1 6.0 25.0 52.6 3.1 10.9 38.1 8.1
Medlar 1.8 53.9 3.4 30.1 6.1 3.6 0.0 14.9 2.1 3.8 2.8 8.8

Rice 0.8 0.9 1.0 1.1 2.9 2.5 0.0 0.2 0.8 0.3 0.5 0.3
Vegetable 6.5 3.7 5.4 16.4 9.7 5.3 10.8 10.1 1.1 1.3 2.3 6.8

Wheat 32.3 23.0 17.0 8.8 7.2 11.1 5.1 2.3 9.5 3.3 7.4 5.3

Note: Table 6 lists the commission and omission errors for the experiment 3. Sward and Medlar are two problematic crop types due to
being less represented in the region.

4.2. The Full Capability of Data Sources for the Crop Type Classification

As mentioned above, the highest accuracy will be achieved when all spectral bands
and associated indices are involved in the classification as the input features. Figure 6
shows the best crop type maps from 15-m GF-1, 10-m S2 and 30-m L8, respectively. Table
7 shows the accuracy of OA, Kappa and F1-Score for the whole images and F1-Score for
each crop type. The classified crop type maps with these three data sources are all visually
acceptable, as the quantitative accuracies for the whole images are also high.

Nine types of crop were successfully classified in 2017 and 2018. The major crop types,
such as rice, was classified with very high accuracy (F1-score of 98.3–100%). Forage Grass,
corn, grape, greenhouse, and vegetable were always classified quite accurately (85% plus
F1-score). With wheat only, Sward and Medlar obtained low accuracy in 2017 with GF
data. Sward obtained low accuracy in 2018 with S2 data. Wheat was a major cereal in this
region, but is now decreasing due to the cultivation cost. Sward and Medlar are cultivated
in the farmland but not the major crop type. The training samples for these three types was
difficult to collect and the final number of samples was low. The low accuracy is most likely
related to the appearance of cloudy images and low availability of the training samples.
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Figure 5. The accuracies of experiment 3.

Table 7. Accuracies for all crop types.

GF-2017 L8-2017 S2-2017 GF-2018 L8-2018 S2-2018

OA 94.4 96.4 98.4 93.9 97.2 96.7
Kappa 93.0 95.0 98.0 93.0 97.0 96.0

F1-score 84.6 95.2 97.0 91.2 95.1 94.0
Forage
Grass

90.7 95.1 97.5 95.5 97.5 94.1

Corn 93.1 92.2 96.7 92.7 97.5 96.9
Grape 87.9 96.6 98.5 91.7 94.6 96.1

Greenhouse 98.3 98.2 98.9 98.5 99.5 98.9
Sward 62.3 95.0 92.8 86.2 86.6 74.0
Medlar 62.7 96.0 97.0 81.1 93.0 94.1

Rice 99.1 98.3 99.4 98.9 100.0 99.6
Vegetable 94.9 94.6 98.8 88.8 90.7 95.4

Wheat 72.1 90.3 93.5 86.9 96.2 95.4
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Figure 6. The full capability of crop type map of three satellite data sources.

5. Discussions

Training datasets, input data and classification algorithm are three key aspects for the
satellite image classification. In comparison with the other two, the training dataset is the
core and decides the quality of output result fundamentally, as the classification model is
set up with the training datasets completely. The spatial distribution and the statistical
distribution of the training datasets for each crop type should be taken into account.
Collecting the field samples is the first step to prepare for the training datasets. The field
sampling is of importance and may help the expert to understand the features on the image
first and then teach the computer to identify and learn features correctly but it is not enough
if only field samples are being used as the training data for the classification. In reality, it is
not able to perform the field data collection completely following the route planned at home
due to the unexpected road work and other disconnection problems. Therefore, adding
and optimizing of the training datasets spatially and evenly with the support of images
should be carried out. Adding training samples may improve it dramatically in case that a
lack of training samples in some area obviously creates the incorrect classification result.

However, a set of good training datasets is also related to the field size and crop
cultivation practice. In this study area, the size of each field owned by a farmer is small
and normally a few meters by a few tens of meters; however, in practice, the same crop is
planted in consecutive fields, which makes it easy to identify crop types on the Landsat 8
image. This advantage helps the application of 10–30-m resolution satellite data in this area.
In other parts of China, the small size field hampers the wide application of these satellite
data for the crop type classification. The same situation may be found in Africa due to
small agricultural fields and a heterogeneous landscape. The 5-m optical and 1-m SAR data
were fused for the crop classification, with an accuracy of up to 75% in west Africa [56].
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One study [57] on crop classification in Madagascar and Burkina Faso also showed low
performances with an accuracy of around 50% due to the presence of fields smaller than
the pixel size and a mix of trees and crops in the fields. Hence, the classification system on
crop group rather than crop type may improve the classification accuracy with these free
satellite images. Otherwise, it had better use a higher resolution commercial satellite image.

Data volume should also be taken in account. In this study, the data volume for GF-1
and Landsat 8 was still easily handled, but the data volume for S2 was extremely large.
Although the training datasets is the same for these three data sources from the point view
of polygons, the training datasets used for S2 in pixel units is nine times that for Landsat
8. Thus, it has to set a threshold to select some pixels in each polygon and keep the total
volume of training pixels at an acceptable level. Otherwise, it takes a very long time to
build up the model. The data volume of the input data with the additional features also
increases. In this study, GF-1 was increased six additional features and 10 bands were
finally used as the input features for each single date image. Landsat 8 was increased 21
additional features and finally used 28 bands as the input features. S2 was increased 45
additional features and finally used 55 bands as the input features. Regarding the data
volume for a single date image, the volume for 10-m S2 data is about 18 times that of
the L8 data, while the volume for GF-1 data is about 1.4 times of L8 data. Therefore, the
final input data volume for S2 is too large to process properly with the limited capacity of
some computer as the data volume for S2 used in this study was approximately 1 Terabyte.
Therefore, the reduction of input features may be carried out, applying the methods of the
principal component decomposition and selecting the main component of input datasets,
if the computer is not able to handle these datasets.

Undoubtedly, the GF-1 WFV still has a geometric problem after it is orthorectified
with image chip matching. This is the reason why the classification accuracy from GF-1
is still 3–4% lower than that from S2 or L8, which are in very good geometric condition
under the same spectral circumstances. Clouds are another big issue for crop type mapping.
Sometimes it is difficult to get sufficient images even with less cloudy coverage. It will
do nothing if there are no satellite data available. Optimistically, it increases the data
availability if these three kinds of satellite data are combined and fused in the near future
in a way like Harmonized Landsat Sentinel-2 [38].

6. Conclusions

A case study of the evaluation of individual capability for crop type mapping from
difference satellite data sources, such as GF-1, S2 and L8, was carried out in the yellow
river irritation area in Ningxia Hui autonomous region of Northwest China. It revealed
that the crop type mapping with any of these three kinds of satellite data may achieve the
acceptable accuracy since the lowest OA may reach 94%. The relatively lowest accuracy
from the GF-1 WFV data is the consequence of the limited spectral bands. It proved again
that the accuracy will increase as the input features increase. There is no obvious difference
between the 10-m S2 data and 20-m S2 data for the crop type mapping, but, indeed, S2 may
achieve the highest accuracy with 10 available bands for the crop type mapping at either 10
m or 20 m. The accuracy for L8 is in the middle, but the difference is small in comparison
with S2. In order to achieve the highest accuracy, all special bands and associate indices
should be jointly used as the input features for the classification. The training datasets may
be tuned and improved by expert knowledge with the field samples. The evenly spatial
and statistical distribution of the training sample is of importance for training datasets.
Classifications based on individual image may produce the results with various accuracies
due to the limited signals for differentiating the crop types on each image. The time series of
satellite images used altogether as the input will bring the highest accuracy as all available
information during the whole growing season are used in the classification.
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