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Evaluation of current algorithms for
segmentation of scar tissue from late
Gadolinium enhancement cardiovascular
magnetic resonance of the left atrium: an
open-access grand challenge
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Ayesha Uddin1, Yosra Al-Beyatti1, Ebrahim Palkhi1, Prince Acheampong1, Samantha Obom1,
Anja Hennemuth8, YingLi Lu7, Wenjia Bai4, Wenzhe Shi4, Yi Gao6, Heinz-Otto Peitgen8, Perry Radau7,
Reza Razavi1, Allen Tannenbaum5, Daniel Rueckert4, Josh Cates2, Tobias Schaeffter1, Dana Peters3,9,
Rob MacLeod2 and Kawal Rhode1

Abstract

Background: Late Gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging can be used
to visualise regions of fibrosis and scarring in the left atrium (LA) myocardium. This can be important for treatment
stratification of patients with atrial fibrillation (AF) and for assessment of treatment after radio frequency catheter
ablation (RFCA). In this paper we present a standardised evaluation benchmarking framework for algorithms
segmenting fibrosis and scar from LGE CMR images. The algorithms reported are the response to an open challenge
that was put to the medical imaging community through an ISBI (IEEE International Symposium on Biomedical
Imaging) workshop.

Methods: The image database consisted of 60 multicenter, multivendor LGE CMR image datasets from patients with
AF, with 30 images taken before and 30 after RFCA for the treatment of AF. A reference standard for scar and fibrosis
was established by merging manual segmentations from three observers. Furthermore, scar was also quantified using
2, 3 and 4 standard deviations (SD) and full-width-at-half-maximum (FWHM) methods. Seven institutions responded
to the challenge: Imperial College (IC), Mevis Fraunhofer (MV), Sunnybrook Health Sciences (SY), Harvard/Boston
University (HB), Yale School of Medicine (YL), King’s College London (KCL) and Utah CARMA (UTA, UTB). There were 8
different algorithms evaluated in this study.

Results: Some algorithms were able to perform significantly better than SD and FWHMmethods in both pre- and
post-ablation imaging. Segmentation in pre-ablation images was challenging and good correlation with the
reference standard was found in post-ablation images. Overlap scores (out of 100) with the reference standard were
as follows: Pre: IC = 37, MV = 22, SY = 17, YL = 48, KCL = 30, UTA = 42, UTB = 45; Post: IC = 76, MV = 85, SY = 73,
HB = 76, YL = 84, KCL = 78, UTA = 78, UTB = 72.
(Continued on next page)

*Correspondence: rashed.karim@kcl.ac.uk
1Department of Imaging Sciences & Biomedical Engineering, King’s College
London, London, UK
Full list of author information is available at the end of the article

© 2013 Karim et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



Karim et al. Journal of Cardiovascular Magnetic Resonance 2013, 15:105 Page 2 of 17

http://jcmr-online.com/content/15/1/105

(Continued from previous page)

Conclusions: The study concludes that currently no algorithm is deemed clearly better than others. There is scope
for further algorithmic developments in LA fibrosis and scar quantification from LGE CMR images. Benchmarking of
future scar segmentation algorithms is thus important. The proposed benchmarking framework is made available as
open-source and new participants can evaluate their algorithms via a web-based interface.

Keywords: Late gadolinium enhancement, Cardiovascular magnetic resonance, Atrial fibrillation, Segmentation,
Algorithm benchmarking

Background
In the past decade, there has been a rapid develop-

ment of analysis tools in medical imaging. In contrast,

their translation to the clinical environment has remained

limited. A major contributing factor for this failure is

lack of proper validation strategies. Even though algo-

rithms are tested in-house extensively following devel-

opment, it is often not clear how they perform relative

to other state-of-the-art algorithms. The main reason

for this is they are not compared using the same set of

data. Differences in evaluated datasets (i.e. patient type,

image quality and resolution) makes a fair comparison

difficult.

Benchmarking of algorithms is thus a very important

activity as we move from bench to bedside in the medical

image processing community. In the last few years, sev-

eral conferences in the medical image analysis field have

provided a platform to benchmark algorithms frommulti-

ple research groups. These challenges have been organised

to invite participants to test their algorithms on com-

mon data. The participants are given a number of training

datasets and then asked to complete analysis of a number

of unseen data within an allotted time. Following sub-

mission, the algorithms’ results are evaluated in a unified

manner.

In the past few years, a number of collaborating research

groups have set up a publicly available evaluation frame-

works for the medical image processing and analysis com-

munity. Most of them have been initiated through an

organised challenge and an index of past challenges can be

found in http://www.grand-challenge.org/. In the cardiac

imaging domain, some recent challenges include cardiac

motion tracking [1] and coronary artery stenosis detection

[2].

Motivation for left atrial fibrosis/scar segmentation

challenge

There is a great interest in understanding the mechanisms

of the causes of atrial fibrillation (AF) and of pulmonary

vein (PV) reconnection following ablation procedures

[3]. Late Gadolinium enhancement (LGE) cardiovascu-

lar magnetic resonance (CMR) imaging plays an impor-

tant role in the management of AF. Recent work has

demonstrated its use in assessment of atrial fibrosis before

ablation and of atrial injury after ablation [4-8].

Segmentation of fibrosis or scar in LGE CMR is chal-

lenging due to multiple causes including the thin LA wall,

contrast variation due to inversion time, signal-to-noise

ratio, motion blurring and artefacts [8]. The inversion

time choice can generate the appearance of more or less

scar, and change the appropriate scar threshold. Motion

blurring also reduces the appearance of scar. There are

also artefacts which appear in the image due to respiratory

compensation, selectively reducing the ability to visualise

scar in the right PVs. There is also the complex geome-

try of the LA, resulting in some transverse slices where a

very small section of the anatomy is visible, particularly

for left and right superior PVs. There are also many reg-

ularly enhancing structures, such as the aortic wall, the

valves and the oesophagus, which must be distinguished

from LA enhancement.

As CMR plays an increasingly important role in the

quantification of pre-ablation fibrosis and post-ablation

scar, development of reliable algorithms that remove

observer bias is key for clinically useful quantification.

To our knowledge, there is no standardised evaluation

framework or methodology to evaluate the performance

of existing or newly developed LGE CMR segmentation.

State-of-the-art for cardiac fibrosis/scar segmentation

Here we give an overview of the previously published

fibrosis or scar detection, quantification and segmenta-

tion algorithms and report on how they were evaluated.

Refer to Table 1 for a brief summary. A common method

for detecting fibrosis or scar is the application of a thresh-

old two or three standard deviations above the average

intensity value of a healthy myocardial region [9-11]. Oth-

ers such as the full-width-at-half-maximum (FWHM) can

be used [12] and some use thresholding to further classify

scar into core or peri-core regions [13].

Other approaches exist to compute the threshold

automatically [10] or apply clustering [14,16], or with

Graph-cuts [18]. Visualization of infarcted regions with

maximum intensity projections (MIP) is also possible [4]

which is useful for visualising the amount of scarring

on the LA surface. For detection of pre-ablation fibrosis,

http://www.grand-challenge.org/
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Table 1 Overview of previously published scar detection, quantification and segmentationmethods

Reference Model n Modality LV/LA Algorithm Evaluation

Kim et al. [9] Canine 26 CMR LV SD Infarct size, ex-vivo

Amado et al. [12] Animal 13 CMR LV SD, FWHM Bland altman, Infarct volume

Kolipaka et al. [10] Human 23 CMR LV SD Percentage scar, Bland-Altman

Positano et al. [14] Human 15 CMR LV Clustering Percentage scar

Yan et al. [13] Human 144 CMR LV SD Percentage scar

Schmidt et al. [11] Human 47 CMR LV SD Infarct size

Hennemuth et al. [15] Human 21 CMR LV EM fitting Percentage scar, Bland-Altman

Oakes et al. [5] Human 81 CMR LA SD Percentage scar

Detsky et al. [16] Human 15 CMR LV Clustering Infarct size

Tao et al. [17] Human 20 CMR LV Otsu thresholding Dice

Knowles et al. [4] Human 7 CMR LA MIP Percentage scar

Lu et al. [18] Human 10 CMR LV Graph-cuts Infarct size and Bland-Altman

Methods were analysed on the type of data they were evaluated with and the structure of interest: left ventricle (LV) or left atrium (LA). The number of datasets (n) is

listed. Most methods employed simple standard deviation (SD) thresholding from a base healthy tissue intensity value. Others such as full-width-at-half-maximum

(FWHM), maximum intensity projection (MIP) and expectation-maximisation (EM) fitting have also been proposed. The evaluation measures used were compared.

a global threshold for the image can be computed and

adjusting it on a slice-by-slice basis provides good detec-

tion [5].

All of the existing methods reviewed except for [5] and

[4] detect scar in the ventricle myocardium. Segmenting

scar in the atrium poses different challenges especially

from nearby enhancing structures such as aortic wall and

valves. The atrial myocardium is of smaller thickness com-

pared to ventricular myocardium and this adds to the

difficulty of the problem. It is also important to under-

stand that using a fixed model (SD and FWHM) is not

suitable for the atrium and in our opinion also for the ven-

tricle despite several studies utilising this. The reasons are

clear: a fixed model cannot handle all the different vari-

abilities encountered and these are both from the varied

internal (size, distribution and heterogeneity of scar) and

varied external (resolution, image noise, inversion time,

surface coil intensity variation) situations. And there is at

least one study supporting this fact - in [5] where it was

shown that the threshold had to be re-adjusted on various

slices to obtain a suitable segmentation.

Proposed evaluation framework

In this paper we present an evaluation framework, accessi-

ble via a web-based interface, for algorithms that segment

LA fibrosis or scar from both pre- and post-ablation

LGE CMR images. The presented results were submit-

ted as a response to the open challenge that was put to

the medical imaging community through the cDEMRIS

(Cardiac Delayed Enhancement Segmentation Challenge)

workshop organised as part of the ISBI 2012 (IEEE

International Symposium on Biomedical Imaging) annual

meeting. Each participant quantified the amount of

fibrosis or scar in high-resolution 3D LGE CMR of 30 pre-

and 30 post-ablation patients. There were in total 7 insti-

tutions who responded to the challenge, and segmentation

results from 8 different algorithms were submitted. The

datasets used in this evaluation are publicly available via

the challenge website: http://www.isd.kcl.ac.uk/cdemris/.

The proposed evaluation framework aims to provide a

platform for testing and comparing newly devised algo-

rithms through a web-based interface. With 3 out of the

8 algorithms evaluated in this work already published in

literature [5,15,18], the framework provides a valuable

test-bed.

Methods
Data acquisition database

LGE CMR images of the LA of varying quality, resolution

and parameters were selected from three imaging cen-

tres. These centres were Utah School of Medicine, Beth

Israel Deaconess Medical Center (BIDMC) and Imaging

Sciences at King’s College London (KCL-IM) (see Table 2).

Images were acquired either pre- or post-ablation. A total

of 60 images were collected. These were 30 images taken

at pre- and 30 images at post-ablation. Each centre pro-

vided 10 images each of pre- and post-ablation. The time

of acquisition of pre-scans varied slightly between 1 to 7

days depending on the imaging centre. For post scans this

was more variable with either 1 month or between 3 to

6 months (See Table 2). A wide spectrum of images were

selected to get a representative range from typical clini-

cal acquisitions in the datasets. Images of variable quality

were chosen, especially in relation to enhancement qual-

ity. The collected database also included segmentation of

the LA endocardium and cavity for each LGE CMR scan.

http://www.isd.kcl.ac.uk/cdemris/
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Table 2 Image acquisition: image acquisition parameters for the challenge LGE data

U. Utah BIDMC KCL-IM

Scanner type Siemens Avanto 1.5T or Vario 3T Philips Acheiva 1.5T Philips Achieva 1.5 T

Basic params Free-breathing (FB) with FB and navigator-gating with FB with navigator-gating with
navigator-gating fat suppression fat suppression

TI†, TR, TE 300 ms, 5.4 ms, 2.3 ms 280 ms, 5.3 ms, 2.1 ms 280 ms, 5.3 ms, 2.1 ms

Acquired resolution 1.25 × 1.25 × 2.5mm 1.4 × 1.4 × 1.4mm 1.3 × 1.3 × 4.0mm

Pre-scan < 7 days < 7 days < 48 hours

Post-scan 3 − 6 months = 30 days 3 − 6 months

†- set to null myocardium.

Abbreviations: TI Inversion time, TR Repetition time, TE Echo time. Imaging centres: U. Utah University of Utah, BIDMC Beth Israel Deaconess Medical Center, KCL-IM

Imaging Sciences, King’s College London.

This was also provided as part of the challenge and it was

optional for the participant to utilise it. Representative

images are shown in Figure 1.

A brief summary of the algorithms evaluated for this

framework is given in Table 3. They are described in

greater detail in the section below with a very brief back-

ground on the technique implemented and details of the

implementation.

Algorithm 1: Imperial college - hysterisis thresholding (IC)

Background

Hysteresis thresholding was used in this work to segment

scar. It is a well-known approach in image processing and

computer vision [19]. It is an improvement over regular

thresholding where a major drawback is the absence of

coherence in the final segmentation. Hysteresis threshold-

ing overcomes this because faint sections of atrial scar can

also be segmented as long as they are adjacent to some

salient sections.

Implementation

Tomodel enhancement in scar pixels, pixel intensities I(x)

were first normalized according to:

Î(x) = I(x) − µB

σB
(1)

Figure 1 Challenge LGE CMR data sample. A sample of the CMR data included in the challenge. The pre-procedural (top-row) and
post-procedural (bottom-row) LGE images are shown. Abbreviations: AO - aorta, LA - left atrium, RPV - right pulmonary vein.
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Table 3 A brief summary of algorithms that were evaluated on the proposed framework

Algorithm Technique Evaluation Atrial wall Strengths Weaknesses

IC: Bai et al. Hysteresis 30 pre Euclidean Coherent Fixed sigmoid models derived
thresholding and post distance - 3 mm segmentations from empirical data

MV: Hennemuth et al. Region-growing with 30 pre Euclidean Post ablation Pre-ablation
EM-fitting and post distance - 3 mm imaging imaging

SY: Lu et al. MRF model 20 pre Dilation - Fuzzy membership - Post-processing for small
with graph-cuts and post 4 mm improved delineation cluster removal

HB: Gao et al. Active contour 15 post Active contour Accurate myocardial Fixed number of gaussian
and EM-fitting (snake) segmentation mixtures in model (i.e. two)

YL: Peters et al. Simple 15 pre Manual Accurate segmentation Time
thresholding and post on both pre- and post. consuming

KCL: Karim et al. MRF model 30 pre Post-ablation Pre-ablation Post-processing
with graph-cuts and post imaging imaging steps necessary

UTA: Cates et al. Histogram analysis and 30 pre Manual Accurate segmentation Time
simple thresholding and post on pre and post. consuming

UTB: Perry et al. k-means clustering 30 pre Manual Pre-ablation fibrosis Equivalent variance across all clusters -
and post LA scar variance more variable

Institution abbreviations: IC Imperial College,MV Mevis Fraunhofer, SY Sunnybrook Toronto, HB Harvard/Boston University, YL Yale School of Medicine,

KCL King’s College London, UTA/B Utah School of Medicine.

where µB, σB are mean and standard deviation of LA

blood pool cavity respectively. Based on the normalized

intensity value, the enhancement was modelled with a

sigmoid function. The model outputs a probability pi(x)

based on the normalised intensity:

pi(x) = 1

1 + e−(Î−ci)/hi
(2)

where ci and hi are parameters of the sigmoid function.

As scar should only be located in atrial myocardium, the

likelihood of scar decreases with increasing distance from

LA endocardium, and this was modelled with:

pd(x) = 1

1 + e−(d(x)−cd)/hd
(3)

where cd and hd are parameters of the sigmoid function

and d(x) is the Euclidean distance from LA endocardium.

The joint probability of both the intensity and distance

likelihoods, i.e. p(x) = pd(x) · pi(x) was used to generate

a probabilistic map. Using hysteresis thresholding, pixels

above the higher threshold limit were classified as fore-

ground. Those above the lower threshold limit and con-

nected to foreground were also classified as foreground.

This was accomplished by exploring a foreground pixel’s

neighbourhood and thus this ensured coherence in the

segmented result.

Algorithm 2: Mevis - Region growing with mixture model

fitting (MV)

Background

Region growing is an important segmentation technique

for finding groups of connected pixels with intensity

homogeneity. It was implemented in this work with

thresholds selected both for region-growing and seed

selection using Gaussian mixture models.

Implementation

For scar segmentation, good seed locations are those

within regions that are highly likely to be scar. In this sub-

mission, to obtain good seed voxels, a Gaussian mixture

model with three mixtures was used to model three sep-

arate intensity levels: LGE, atrial wall and blood (B) and

neighbouring structures (N):

h(x) =
∑

i∈{LGE,B,N}
αi

1√
2πσi

e
1
2

[

x−µi
σi

]

(4)

where h(x) is the mixture model with three weighted (αi)

mixtures in LGE,B and N each with a mean µi and stan-

dard deviation σi. The mixture was fitted to the LGE CMR

intensity distribution of the LA. Seed selection was per-

formed by using a lower intensity threshold cut-off at Is:

Is > 0.15 · µB + 0.85 · µLGE (5)

where µB and µLGE were obtained from the fitted mix-

ture model h(x) in Eq. 4. Following seed selection, region

growing was initiated from each seed with an intensity

threshold IR as:

IR > min{µLGE , It} (6)

where It is the intensity at the intersection of blood

and LGE mixtures: B and LGE. It is expected that at

this intersection, LGE intensities starts contributing more

than blood intensities. Region growing was constrained

within a 6 mm band around the endocardial segmentation
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allowing 1 mm inside and 5 mm outside the endocardial

surface. This allowed for any errors in the endocardial

contour.

Algorithm 3: Sunnybrook - Graph-cuts with fuzzy c-means

clustering (SY)

Background

The proposed technique uses graph-cuts and a modified

version of this algorithm is published in [18]. In mathe-

matics, a graph is a network of nodes connected by links.

Each link can be assigned a weight. An image contains

pixels, each of which can be represented with a node.

Adjacent pixels or nodes can then be interconnected with

links. This allows an image to be modelled as a graph.

Numerous problems have been proposed and solved on

graphs, for example shortest path through two nodes or

partitioning the graph into two node sets.

For the task of binary image segmentation, pixels are

grouped or partitioned into two disjoint sets. Similarly,

graph-cuts is an approach of partitioning a graph into two

or more sub-graphs with some imposed constraints. Two

special nodes called source and sink nodes are assigned,

with each node in the graph linked to them. These nodes

represent labels of the segmentation (i.e. foreground and

background). Each link to the source and sink is weighed

based on the probability of the node for the label. A mini-

mum cut through the graph can then be computed, parti-

tioning it into two sets of nodes. Each set is connected to

source or sink. This essentially computes a segmentation

of each pixel into a label. The minimum cut and maxi-

mum flow are dual problems both investigated thoroughly

in mathematics [20,21] and computer vision [22,23].

Implementation

The method of graph-cuts is applied in this work to

segment scar in LGE CMR images. Starting from the

provided LA endocardial segmentation, the atrial wall

myocardium was approximated by dilating the endocar-

dial boundary by 4 mm. A graph of interconnected neigh-

bouring pixels was constructed for all pixels within the

computed atrial wall myocardium. Links were also cre-

ated to the source and sink nodes representing scar and

healthy tissues. Each pixel ended up having two types of

links: 1) links to source and sink, 2) links to its adjacent

pixels. A weight or energy was assigned to each link. The

two weights are summarised in this energy formulation

E(L):

E(L) = λ
∑

x

Rx (Lx) + (1 − λ)
∑

(x,y)∈N
Bxy

(

Lx, Ly
)

(7)

where L = {Lx|x ∈ X} denotes a segmentation of all pixels

X. N is the set of adjacent pixel pairs. Rx is the weight for

links to source/sink nodes and Bxy is the weight for links

between adjacent pixels. The λ term weighs the influence

of these terms in the energy function. In this work, Rx was

obtained by computing a c-means fuzzy clustering [24]

on the computed atrial myocardium region. Following

clustering, each pixel attained a fuzzy membership which

directly contributed to Rx(Lx). Bxy was obtained using

a function that penalised intensity dissimilarity between

adjacent pixels:

Bxy(Lx, Ly) = e−β|Ix−Iy|2

d(x, y)
(8)

where d(x, y) is Euclidean distance between pixels x and y

and β is a penalty co-efficient fixed at 5 in this work. This

value was chosen to increase the relative importance of

high gradient between pixels of different classes, refer to

[18] for further details.

Algorithm 4: Harvard/Boston University - Active contours

andmixture model fitting (HB)

Background

Two techniques are implemented in this work, namely

active contour and the Expectation-Maximization (EM)

algorithm. A brief background is given here on each tech-

nique. Further details can be found in [25].

Active contours [26] was used in this technique to

obtain the epicardial boundary. It counteracts the issue

of region leaking in region growing. This is possible

by imposing constraints on the growing region. An ini-

tial contour was modelled with a spline (i.e. a free-form

curve) allowing it to grow flexibly with additional con-

straints placed by the image. An energy function captured

these constraints and the final shape of the contour was

obtained through energy minimisation.

The expectation-maximization (EM) algorithm [27] is

a technique for estimating model parameters given the

observed data. The observed data in this submission are

the distributions of atrial wall image intensities and the

model is a statistical Gaussian mixture model. The EM

algorithm computes the best estimate of model parame-

ters for which the observed data are most likely. It alter-

nates between the E-step which computes the expectation

of the likelihood of observed data using a present estimate

of model parameters and the M-step that re-computes

model parameters by maximising the likelihood found in

the E-step.

Implementation

The left atrial wall can be challenging to segment in LGE

CMR especially due to two reasons: 1) thickness, and 2)

lack of enhancement making wall difficult to detect. In

this work, prior to segmenting scar, atrial wall is obtained

by segmenting the epicardium. As the LA endocardium is

made available as part of the challenge data, a simple sub-

traction of epicardium to endocardium obtains the wall.



Karim et al. Journal of Cardiovascular Magnetic Resonance 2013, 15:105 Page 7 of 17

http://jcmr-online.com/content/15/1/105

Active contours are used to accomplish the epicardium

segmentation task. In 3D, active contours can be extended

into surfaces. Let us denote such a deformable surface S

and an energy function E(S) constraining its deformation:

E(S) =
∫

S

(

(1 − λ)f (x) + λ(d(x) − 3)2
)

dx (9)

where d(x) is the Euclidean distance function and 3 mm is

the expected size of the atrial wall; f (x) represents a simple

function of the image intensity gradient:

f (x) = 1

1 + Gσ ∗ ∇I(x)
(10)

where the intensity gradients ∇I(x) are smoothed using

a Gaussian filter Gσ . This evolves the deformable surface

governed by E(S) and restricts it with a combination of

distance from endocardium (i.e. maximum 3 mm) and

intensity gradient. The evolution must stop at the epicar-

dial border where an intensity change is expected.

Following segmentation of atrial wall, scar is classified

from healthy tissue by modelling the distribution of inten-

sities within atrial wall as a mixture of two Gaussians.

The Gaussians mixture represent scar and healthy tissue.

The mean and standard deviation of each Gaussian in the

mixture model is determined using the EM-algorithm.

Algorithm 5: Yale - Threshold selection with manual wall

delineation (YL)

Background

Simple thresholding is a fundamental technique in image

segmentation. Thresholding is used in this work to

segment scar from both pre-ablation and post-ablation

images. The main disadvantage of thresholding is that

only intensity information is considered and the relation-

ships between pixels is not taken into account. Thus, there

is no guarantee that the pixels identified by thresholding

are contiguous.

Implementation

There are two important considerations in this work: 1)

threshold selection for fibrosis and scar, and 2) manual

delineation of the regions of the atrial wall myocardium

which will be subject to this thresholding. The criteria for

selecting threshold are different for pre- and post-ablation

images. For pre-ablation images, the average intensity of

the enhancement around the mitral valve was used (see

Figure 2(a)). This is reasonable since valves are known to

be fibrotic and usually visible in LGE CMR images. For

post ablation images, the threshold was set to include an

entire region of prominent scar (as shown in Figure 2(a)).

A single threshold is used for the entire 3D volume. The

criteria for including atrial wall for further thresholding

are described in Figure 2(b), and include avoidance of the

mitral valve and aortic wall enhancement and artifactual

enhancement.

Algorithm 6: KCL - Graph-cuts with EM-algorithm (KCL)

Background

A background of the techniques used in this work

is described above in Sections ‘Algorithm 3: Sunny-

brook - Graph-cuts with fuzzy c-means clustering (SY)’

(Graph-cuts) and ‘Algorithm 4: Harvard/Boston Univer-

sity - Active contours and mixture model fitting (HB)’

(EM-algorithm). More details can be found in [28].

Implementation

Scar was segmented both in pre- and post-ablation images

using the graph-cut algorithm [22]. A statistical distribu-

tion model of scar tissue in both pre- and post-ablation

images was developed prior to segmentation. This distri-

butionmodel was derived from a training set of images. As

a training set was not provided as part of the challenge, the

leave-one-out approach was used for training with 29/30

images for training and 1/30 for testing. The training dis-

tribution model is a Gaussian distribution of the scar

intensities in the training image represented as a ratio of

scar to average blood-pool. Scar was segmented manually

by an experienced observer.

The intensity distribution model for non-scar or healthy

tissue was obtained from the target or unseen image. A

Gaussian mixture was used for this distribution model.

The number of mixtures in the model was kept variable

(1 to 5) depending on the configuration which best fits the

image. The standard EM-algorithm computed mean and

variance for each mixture. Only a region 3 mm inside and

outside the LA endocardium was used for the EM fit, dis-

carding the rest of the image. This also became the search

space for scar.

Pixels within the search space were modelled as a graph

network with paths to source and sink nodes (i.e. scar and

healthy tissue labels). The path to the scar tissue label was

assigned a probability value from the scar training distri-

bution model and the path to the healthy tissue label was

assigned a probability value from the non-scar distribu-

tion model. Paths between adjacent pixels were assigned

a probability value based on intensity homogeneity, with

a low probability value for dissimilar intensities. All of

the above is captured with an energy function which is

the standard graph-cut functional and is equivalent to

Eq. 7.

Algorithm 7: Utah A - Threshold selection with manual wall

delineation (UTA)

Background

The method was primarily implemented for pre-ablation

fibrosis. However, in this challenge, its results on post-

ablation data was also submitted. Thresholding is used in
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Figure 2 Yale method’s threshold criterion. (a) Choice of threshold for pre-ablation (top) and post-ablation (bottom) images. Arrow points to
fibrosis used for choosing threshold. Pre-ablation, this was a prominent section of the aortic valve. Post-ablation, the entire area of a prominent scar
was selected. (b) The LA wall identification excludes regions where enhancement existed, but was attributed to artefacts or fibrosis of the mitral
valve (MV), Aortic wall (AAo, DAo), or right atrial (RA) wall (arrows).

this work and is described above in Section ‘Background’.

The method is also described in detail in [5].

Implementation

The atrial wall myocardium is delineated prior to scar seg-

mentation. An experienced observer delineated the wall

in every slice. Using the intensity histogram of pixels

within the delineated wall, a threshold for scar was calcu-

lated. It is expected that the histogram is bi-modal with

modes for enhancement and non-enhancement intensi-

ties. The threshold was then computed as+2−4 standard

deviations off the mean of the lower mode of the his-

togram. This threshold was adjusted for every slice based

on whether the algorithm was over- or under-estimating

scar.

Algorithm 8: Utah B - Unsupervised learning using k-means

clustering (UTB)

Background

The method uses k-means clustering which is a machine

learning approach used to identify the optimal number of

pixel groups or clusters [29]. It is an unsupervised learning

technique requiring no prior knowledge or training data.

In k-means clustering, the number of possible clusters is

specified. It is an iterative process, where at each iteration

the centre of each cluster is updated and membership of

each point to a cluster is updated based on a pre-defined

distance/error metric in the feature space.

Implementation

The technique was primarily implemented for post-

ablation scar. However, in this challenge, its results on

pre-ablation data was also submitted. There were two

important considerations for the implementation of k-

means: 1) the number of clusters in the k-means algorithm

and 2) the feature vector for comparing pixels. Prior to

segmentation, the optimal number of clusters and feature

vectors were determined through empirical evaluation.

The number of clusters was varied between 3 to 10

and image features such as normalised voxel intensity,

the Sobel filter and the 14 texture metrics proposed by

Haralick et al. [30] were tested. The optimal number of

clusters was found to be 4 with normalised voxel inten-

sity as the feature vector. Following k-means clustering,

the cluster with the highest mean intensity was assigned

as the scar cluster.

Algorithm evaluation

Reference standard 1: pseudo-ground truth

In order to obtain a reference standard for scar, volumetric

segmentations of scars were obtained from three separate

observers. These observers have substantial experience

looking at scars in LGE CMR images for both pre- and

post-ablation images. The observers were from different

centres. They were blinded to the image scannermanufac-

turers and also to the results of the challenge. Scars in the

images were segmented as follows: 1) each axial slice in

the LGE CMR image was analyzed separately. Segmenta-

tion of the LA endocardial body was loaded as an overlay;

2) pixels enhanced along the endocardial border were

labelled as scar; and 3) segmentations were also corrected

in coronal and sagittal slices, wherever necessary.

Although the observers were provided with the same

guidelines, their segmentations differed in some instances

especially in images with low contrast enhancement ratio.

It was thus important to merge the segmentations and

obtain a consensus. This was possible bymerging segmen-

tations using the STAPLE algorithm described in [31]. For

each voxel, a probability estimate for the true segmen-

tation was computed. The consensus segmentation can

then be obtained by thresholding this probability above

0.7 or 70%. This is referred in the rest of the text as the

pseudo-ground truth.
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Reference standard 2: n-SD and FWHM

The optimal method for quantifying scar from LGE

CMR images yet remains unclear. However, certain meth-

ods have been adopted for obtaining scar using a fixed

model. In these fixed models, signal intensity of normal

myocardium is measured and a certain number of SD

from this measured intensity is used as the threshold.

Although in [32] this threshold was set to 2-SD, recently

it was shown that FWHM was far more reproducible

and reliable than 2-SD [33]. Other cut-offs are also used:

3,4,5 or 6-SDs. The FWHM technique, which uses half

the maximal signal within a hyper-enhanced region in

scar, is currently being advocated as themost reproducible

technique for ventricle myocardial scar [33].

In order to gauge each challenger’s methodology against

fixed-model quantification methods, the LGE CMR

images were segmented using 2, 4, 6-SD and FWHM

methods. For each method, a segmentation of atrial

myocardium was necessary and this was approximated by

dilating the endocardial wall 3 mm. For the n-SD meth-

ods, an expert observer located a region of voxels in atrial

myocardial that was healthy. The mean and SD of this

region were calculated. Voxels with intensity greater than

2, 4, 6-SD, in the atrial myocardium, were labelled as scar.

For the FWHM method, an experienced observer iden-

tified an enhanced region within atrial myocardium. The

threshold was then set to 50% of themaximum intensity in

this selected region. In some rare instances, the 50% cut-

off was adjusted to 60% or 70% when a 50% cut-off was too

low for the image.

Evaluationmetrics

To evaluate the performance of each challenger’s segmen-

tations, they were compared against the pseudo ground-

truth. Since there is no single metric which works best

for evaluating segmentations, a few different metrics

were chosen for evaluating them. These were regional,

volumetric and surface-based metrics. This allowed us to

effectively test the reproducibility and accuracy of each

method. Segmentations from n-SD and FWHMwere also

compared using the samemetrics. This allowed each chal-

lenger’s algorithm to be gauged against these published

techniques. We briefly describe each evaluation metric:

1. Regional metric: The Dice similarity co-efficient was

used as a regional metric. It measures the proportion

of true positives in the segmentation:

s = 2|X ∩ Y |
|X| + |Y | (11)

where X is the region in ground-truth and Y is the

region in the challenger’s algorithm. The Dice was

measured both on the entire image and also locally.

Since Dice is a regional metric comparing single

voxels, when measured on images as a whole, the

Dice only gives the algorithm’s average performance.

An equal weighting is given to every slice, even

though some slices may only have a few pixels in the

segmentation. An algorithm may do very well in

slices that matter and yet be penalised for slices that

have a small number of enhancing voxels. To

counteract this issue, the Dice was computed for

selected local regions within each image. An

experienced observer selected several regions within

each image where: 1) there was enhancement and the

consensus segmentation agreed or, 2) there was

enhancement but consensus segmentation did not

agree (i.e. artefacts). The Dice was computed

individually for these regions.

2. Surface-based metric: It is common to visualise

segmentations of scar on the LA surface. This is

usually possible with a MIP. The LA surface can be

constructed as an iso-surface from a volumetric

binary segmentation using the marching cubes

algorithm [34]. Scar segmentation is MIP-ed and

each surface mesh vertex attains a label

(1 = scar, 0 = not scar). The surface-based metric

measures the root-mean-squared-error (RMSE)

between vertex points labelled as scar in the

algorithm’s output and ground-truth distance. The

RMSE is given by:

RMSE =

√

√

√

√

1

N

N
∑

i=1

d
(

gi, ti
)2

(12)

where {gi : i = 1, . . . ,N} is the set of mesh vertex

points labelled as scar in the ground truth and

{ti : i = 1, . . . ,N} labelled as scar in the test or

algorithm output image. Also, d is the Euclidean

distance function.

3. Volumetric-based metric: The total volume error

between the challenger’s segmentation and pseudo

ground truth was found:

δV = |VT − VG| (13)

where VT is the volume of scar in the segmentation

and VG is the volume of scar in consensus

segmentation.

Objective evaluation

Acquisition artifacts and non-scar related enhancement

are common in atrial LGE CMR scans. Unless these

enhancements are explicitly modelled into the technique,

it is challenging to distinguish them. Two sources of non-

scar related enhancements commonly seen in atrial LGE

CMR images are: 1) the navigator beam artifact often

seen near the right PVs, and 2) Gadolinium uptake by
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the aortic wall and valves. To test whether the methods

are able to handle un-related enhancements, each chal-

lenger’s segmentations were evaluated separately in these

regions. An experienced observer selected regions con-

taining navigator artefacts and aortic wall enhancements.

The percentage of voxels detected by eachmethod in these

spurious regions was determined. This gave an indication

of the proportion of false positives.

A good contrast between normal myocardium, blood

pool and scar is desirable and is the most technically chal-

lenging part of LGE CMR image acquisition. The quality

of contrast depends on achieving the optimal inversion

time. Each post-ablation image was scored by three raters

experienced in LGE CMR images and the average score

was taken. Images in the database (only post-ablation

scans) were ranked into three categories: good, average

and poor. The Dice metric was computed separately in

each category. This indicated how robust the algorithms

were against contrast enhancement quality.

Results
In this section results from our evaluation are presented

with figures and plots.

Segmentation accuracy with pseudo ground truth

For each LGE CMR scan available for the challenge, a

pseudo ground truth was available by combining manual

segmentations of scar from three experienced observers

as described in Section ‘Reference standard 1: pseudo-

ground truth’.

On the pre-LGECMR scans, segmentation accuracies of

each challenger were compared. However, accuracy could

not be computed for challenger HB as they provided no

segmentations on the pre-data. Figure 3 shows the Dice

overlap scores for all participants on pre-LGE CMR scans.

The median Dice overlap shown in the plot are as follows:

IC = 37, MV = 22, SY = 17, YL = 48, KCL = 30, UTA =
42, UTB = 45. Published methods for segmenting scar

such as 4-SD and FWHMwere also tested on the pre-data

and the Dice overlap scores for these were: 2-SD = 24,

3-SD = 16, 4-SD = 31 and FWHM = 5. Examples of

segmentations from a single slice are seen in Figure 4.

On the post-LGE CMR scans, segmentation accuracy

of each challenger was evaluated in a similar way to the

pre-data. Figure 5 shows Dice overlap scores of all partici-

pants on post-LGE scans. Themedian Dice overlap shown

in the plot are as follows: IC = 76,MV = 85, SY =
73,HB = 76, YL = 84, KCL = 78, UTA = 78, UTB = 72.

However, note that some participants (SY, HB and YL)

did not submit segmentations on all scans and their Dice

overlap scores are on a smaller cohort of scans compared

to other challengers who submitted segmentations on all

thirty scans. Examples of segmentations from a single slice

are seen in Figure 6.

Figure 3 Performance on pre-ablation LGE CMR images. Dice
overlap scores in selected regions on pre LGE CMR scans. An asterix(*)
denotes challengers who did not submit segmentations on all
patients. Note that the figure also displays results from the 2-SD, 3-SD,
4-SD and FWHMmethods.

Methods using a fixed-model, such as n-SD and FWHM

for segmenting scar in LGE CMR images, were tested

on the post-data. Figure 5 shows Dice overlap scores on

post- LGE scans using n-SD and FWHM. The median

Dice overlap were found to be: 2-SD = 58, 3-SD = 17,

4-SD = 14, 6-SD = 35, FWHM = 59. Apart from using

the Dice overlap for measuring accuracy, the RMSE and

volume difference were also computed. Table 4 lists the

RMSE and volume differences in pre- and post- data for

all algorithms. However, there are some exceptions. As HB

provided no submission on the pre-data, the metrics for

these could not be computed. In addition, SY and YL pro-

vided 20 and 15 (out of total 30) for both pre- and post-

data respectively.

Non-scar enhancing structures

There are various regularly enhancing structures in LGE

CMR images, for example the aortic wall or valves that

should be differentiated from scar. Some examples are

shown in Figure 7. For both pre- and post-LGECMR scans

of the challenge, the amount of enhancements not related

to scar detected by each method was quantified. They

were compared against enhancements separately labelled

by an experienced observer and deemed to be highly

unlikely from scar. These labels were divided into two

categories: aortic wall enhancement and navigator beam

artefact. The total volume detected by each method was

represented as a percentage of the total volume labelled by

the observer. The results are represented in Figure 8. KCL

and HB detected on average between 40-50% of total non-

scar enhancements labelled by the observer. This value for
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Figure 4 Sample segmentations from pre-ablation data. Segmentations from a pre scan. Clockwise from top-left: original LGE CMR scan,
consensus segmentation, IC, MV, SY, UTB, UTA, KCL, YL. Abbreviations: L- left side, R- right side, LA - left atrium, AO - aorta.

IC,MV, SY, YL, UTA andUTBwas between 5%–30%, with

YL less than 5%.

Image quality on segmentation

The LGE CMR images included in this challenge were

acquired at three imaging centres with differing protocols

and scanners (see Table 2). The quality of enhancement

is known to vary and this variation across the imaging

centres was quantified. Further the LGE CMR images

were qualitatively classified based on their quality and the

algorithms evaluated accordingly.

To quantify quality of enhancement, using images

from all three centres, histograms of signal intensity of

enhanced regions in the pseudo ground truth, presented

as SDs above the mean blood pool signal were computed.

These histograms can be seen in Figure 9 and was sep-

arately quantified for each imaging centre. In both pre-

and post-ablation images, the quality of enhancement did

not vary greatly, except for Utah in post-ablation: pre-

ablation (BIDMC, Utah, KCL-IM) = (2.2 ± 0.9, 2.5 ±
0.9, 2.1 ± 0.9), and post-ablation: (BIDMC, Utah, KCL-

IM) = (3.5 ± 1.1, 4.7 ± 1.3, 3.5 ± 1.2). These values

provided the basis for selecting 2-SD, 3-SD, 4-SD and

6-SD cut-offs in the fixed models used for establish-

ing the reference standard. However, even with select-

ing optimal cut-offs: 2- to 3-SD for pre-ablation and

3- to 4-SD for post-ablation images, results from Section

‘Segmentation accuracy with pseudo ground truth’ sug-

gest that these settings may not yield the best segmenta-

tions. This can be explained by the amount of variation

Figure 5 Performance on post-ablation LGE CMR images. Dice overlap scores on post LGE CMR scans. An asterix(*) denotes challengers who did
not submit segmentations on all patients. Note that the figure also displays results from the 2-SD, 3-SD, 4-SD, 6-SD and FWHMmethods.
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Figure 6 Sample segmentations from post-ablation data. Segmentations from a post scan. Clockwise from top-left: original LGE CMR scan,
consensus segmentation, IC, MV, SY, UTA, UTB, KCL, YL, HB. Abbreviations: L- left side, R- right side, LA - left atrium, AO - aorta.

in enhancement quality of images from a particular cen-

tre: 36-42% for pre-ablation and 27-32% for post-ablation

images. Thus a fixed model was found to suffer for these

reasons.

The LGE CMR images were qualitatively classified

based on enhancement quality and classified into three

categories: good, average and poor. A good scan had both

Table 4 Segmentation accuracy with

root-mean-squared-error (RMSE) and volume difference

(δV) on pre and post data for both submitted algorithms

(IC to UTB) and fixed-models

Pre data Post data

RMSE (mm) |δV | (ml) RMSE (mm) |δV | (ml)

IC 0.72 (0.5) 2.87 (2.0) 9.52 (8.2) 4.79 (2.9)

MV 1.42 (0.7) 38.08 (6.7) 9.20 (8.8) 4.15 (5.7)

SY†∗ 0.17 (0.1) 12.87 (2.8) 9.22 (9.3) 10.19 (3.9)

HB∗ n.a. n.a. n.a. 20.16 (10.3)

YL†∗ 1.03 (0.4) 0.62 (0.7) 6.34 (8.2) 2.77 (2.3)

KCL 1.33 (0.6) 2.24 (2.2) 9.20 (8.3) 3.10 (2.3)

UTA 0.36 (0.3) 3.24 (2.6) 10.72 (8.0) 3.54 (2.5)

UTB 0.52 (0.5) 3.10 (2.2) 8.91 (8.2) 1.25 (1.5)

2-SD n.a. 7.51 (3.6) n.a. 17.7 (10.1)

3-SD n.a. 12.73 (8.3) n.a. 7.64 (3.7)

4-SD 0.15 (0.1) 12.74 (8.3) 11.69 (7.5) 11.98 (8.5)

6-SD n.a. n.a. n.a. 15.47 (8.5)

FWHM n.a. 70.52 (38.4) 7.67 (8.2) 6.61 (5.9)

The standard deviation of each metric is quoted in brackets. Symbols (†∗) for pre
and (∗) for post denote algorithms that could only be tested on a subset of the

complete set of images. Abbreviations: n.a. data not available or could not be

computed.

reasonably good signal-to-noise ratio and contrast ratio

for enhanced areas. The algorithms’ accuracy were eval-

uated based on image quality, the Dice metric was com-

puted separately for post scans in each category. Results

are given in Table 5. No significant drop in performance

was found with any of the methods (WilCoxon rank-sum

test). Formost algorithms, amarginally higher Dice is seen

on better quality scans but this was not significant. The

fixed-model methods (2-SD to FWHM) performed pre-

dictably with slight reduction in accuracy going from good

to poor quality scans.

Discussion
We presented a standardised evaluation framework,

accessible via a web-based interface, that allows the effec-

tive comparison of scar segmentation algorithms in the

LA for pre- and post-ablation fibrosis and scar. The frame-

work has been used to compare eight algorithms as part of

the cDEMRIS challenge, a workshop organised at ISBI in

2012. The data is publicly available via the website: http://

www.isd.kcl.ac.uk/cdemris/.

Evaluation framework

The usefulness and effectiveness of an evaluation frame-

work is important. The evaluation framework presented

in this work comprised thirty pre-ablation and thirty post-

ablation image database from three separate imaging cen-

tres (KCL-IM, Utah and BIDMC) acquired using scanners

of two different vendors (Siemens Healthcare and Philips

Healthcare). Further, images differed in slice-thickness

(1.25 - 2.0 mm reconstructed) and acquisition time-point

(1-7 days for pre- and 30 - 180 days for post-ablation).

This ensured that algorithms would not be biased towards

http://www.isd.kcl.ac.uk/cdemris/
http://www.isd.kcl.ac.uk/cdemris/
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Figure 7 Non-scar enhancing structures in LGE CMR images. Images show examples of regularly enhancing structures (first row) and
enhancement due to the navigator beam (second row). Arrows indicate enhanced sections of interest. Abbreviations: LA - left atrium, Ao - aorta,
L - left, R - right.

a specific acquisition protocol. The selection of images

for the framework was not random. They were carefully

chosen to include images that exhibited artefacts (naviga-

tor, aortic wall, valve fibrosis), poor contrast-noise ratio

and poor enhancement. Thus the presented framework

Figure 8 Artefact analysis. Amount of artefact (navigator beam
artefact in the right superior pulmonary vein and enhancement in
aortic wall) included in segmentations of each challenger. An
asterix(*) denotes challengers which could not be assessed on all
artefact samples.

provides a wide spectrum of data suitable for testing

algorithms.

Two reference standards are established within the

framework: the algorithms were tested against consen-

sus segmentations of multiple observers and established

techniques n-SD and FWHM. The task of creating a ref-

erence standard from multiple observers is complex and

tedious. The observers were provided with set guide-

lines. Although, their delineations were approximately

consistent, some differences remained. It was thus impor-

tant to merge the segmentations with STAPLE [31]. For

instance in images with poor contrast enhancement ratio,

observers may differ in their opinion of the level of

enhancement that is likely to be scar. When generating

consensus segmentations, such disagreement problems

are solved by establishing some common ground.

The second reference standard of obtaining locations of

enhanced regions with fixed models, n-SD and FWHM

methods, was performed by fixed thresholding on the

atrial wall. The wall was approximated by dilating the

endocardial LA segmentation by three pixels. Both the

SD and FWHM require a region of normal myocardium

and results can vary with a different selection. The region

within normal myocardium was thus carefully selected

to exclude any enhanced pixels. The FWHM was imple-

mented as described in [12] with manual selection of
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Figure 9 Enhancement quality at imaging centres. Variation in enhancement quality: Enhancement normalisation in images (n = 60) from all
three centres supplied for the challenge in pre-ablation (left) and post-ablation (right) LGE CMR. The histograms plot enhanced pixels in the
consensus segmentation. Intensities are normalised to atrial blood pool mean. Horizontal axes represents intensity in enhancement as standard
deviations (SD) from blood-pool mean. Increasing enhancement corresponds to increasing SD.

an enhanced region and 50% of the maximum inten-

sity in this region used as a threshold. In some rare

instances the 50% cut-off was re-adjusted. Note region-

growing was used to obtain the final segmentation result

and this ensured pixel connectivity and coherence in the

result.

A range of different metrics for measuring algorithm

performance were explored. The Dice metric was selected

for measuring volumetric overlap. It was computed

regionally on carefully selected enhanced areas where the

consensus segmentation was in agreement for scar or

not scar (i.e. artefact). A surface metric was also selected

for measuring the amount of overlap in segmentations.

All segmentations were projected onto their LA surfaces

Table 5 Analysis of segmentation accuracy based on

image quality (good, average and poor) on post-scans

Challengers
Good Average Poor

Mean (SD) Mean (SD) Mean (SD)

IC 64 (26) 64 (27) 69 (23)

MV 83 (20) 80 (21) 79 (20)

SY* 70 (21) 64 (26) 71 (22)

HB* 76 (17) 71 (21) 74 (16)

YL* 80 (20) 73 (25) 74 (24)

KCL 78 (18) 77 (25) 73 (26)

UTA 64 (29) 70 (29) 71 (28)

UTB 63 (28) 67 (28) 67 (24)

2-SD 56 (27) 53 (29) 53 (27)

4-SD 17 (19) 21 (27) 17 (15)

6-SD 38 (21) 35 (25) 34 (20)

FWHM 68 (30) 66 (27) 56 (34)

The mean and standard deviation (SD) of the Dice metric is given for each

challenger (IC to UTB) and fixed-model methods (2-SD to FWHM).

and the cumulative Euclidean distance between the cor-

responding scar labels on the surface was represented as

RMSE error. Furthermore, a third measure looked at com-

puting the difference of fibrosis/scar volumes in segmen-

tations. This assessed the quantifiable infarct reported by

each method.

Segmentation of scar from LGECMR images poses vari-

ous challenges and thus an overlap assessment is not alone

sufficient. To detect which false positives and negatives

are more prevalent, regional assessments of aortic wall

and navigator beam artefacts were provided. Regions con-

taining these artefacts were carefully chosen and an over-

lap assessment was made for eachmethod. This highlights

how algorithms fare with regularly enhancing features of

LGE CMR images. Further, the framework provided a

grading for each post-ablation image in its database. Algo-

rithms can select images of a specific quality when using

the framework through the web-based interface.

A limitation of the framework is the size of the image

database. It is sufficient for most purposes, for instance

assessing an algorithm initially against different proto-

cols and acquisition parameters. The website hosting the

image database is scalable and can easily be scaled to

include additional images when they become available.

A second limitation is the performance metrics. Dice is

known to be highly sensitive to mismatch of small struc-

tures and thus can disproportionately penalise algorithms

in some instances. The surface based metric (i.e. RMSE)

also has an important limitation; images with a large

amount of false-positive scar detected yield a very low

RMSE error. This is because there are false positive points

in the vicinity of most surface points labelled by raters as

scar making the distance error small. However, this limita-

tion can be overcome if the surface measure is combined

and read with the volume difference measure. This gives a

truer picture of the segmentation.
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Evaluated algorithms

Some methods make assumptions about the intensity dis-

tribution of enhanced pixels within atrial myocardium.

Modelling the distribution with a statistical distribution

such as a Gaussian is a common technique. Prior to mod-

elling, some normalise atrial myocardium intensities to

the easily observable atrial blood pool by taking its average

(see Eq. 1). Table 6 summarises the approaches under-

taken by each method. To compare the proposed models

with the true intensity distribution of scar, the distri-

bution of intensities in the consensus segmentation was

investigated in Section ‘Image quality on segmentation’

and shown in Figure 9. A limitation with the Gaussian

approach is that the Gaussian function diminishes at its

tail with increasing enhancement; greater enhancement is

more likely to be scar. The sigmoid curve has an open-

end and can overcome this limitation. Normalisation can

be important as intensities in CMR do not correspond

to tissue types as they do in computed tomography (CT)

imaging. However, modelling enhancement and normal-

ising it is not alone sufficient given the dynamic range

and using other modes of information might be necessary.

Examples within the evaluated methods include extract-

ing contextual information from a pixel neighbourhood

(KCL, SY), exploiting pixel connectivity (IC), adjusting the

fixed model for every slice (YL, UTA), utilising a feature

space (SY, UTB).

All the methods outperformed the FWHM and n-SD

methods in our evaluation. There was also significant

improvement offered in some: pre-ablation (YL vs. 4-SD,

paired t-test: p < 0.05) and post-ablation (KCL vs. 2, 4,

6-SD, paired t-test: p < 0.05). This suggests that a fixed

model for scar is not a viable solution and improvements

can be made. There is further evidence for this as evalu-

ated methods YL and UTA using simple thresholding find

it necessary to adjust thresholds for each slice and achieve

significant improvements over fixed models (paired t-test

p < 0.05).

Table 6 Enhancement normalisationmodels adopted (if

any) in eachmethod

Method Normalisation Model

IC Y Sigmoid

MV Y Gaussian

SY N Gaussian

HB N Gaussian

YL N None

KCL Y Gaussian

UTA N Gaussian

UTB Y Gaussian

Y = normalisation to blood pool intensity, N = no normalisation.

Segmentation of LA myocardial wall is an important

step before segmenting scar. The LA wall is much more

thin and flexible than that of the ventricle. It is known to

be 2.5 mm in thickness [35]. Also in areas of no contrast

the LA wall is impossible to visualise and thus can only

be approximated. In the evaluated algorithms, there were

several that used a fixed distance from the endocardial LA

border (IC, MV, SY, HB, KCL) of which two (IC, HB) com-

puted this distance directly using an Euclidean distance

measure and the rest (MV, SY, KCL) used morphological

dilation. However, there were three methods (YL, UTA,

UTB) that used a manual delineation of the wall. From

the artefact analysis of Figure 8 it is also YL, UTA and

UTB that have the least amount of aortic wall and navi-

gator artefacts. The aortic wall problem is very minimal

in YL, UTA and UTB, whilst there is yet some navigator

beam artefact. This is suggestive of the fact that a good

LA wall segmentation can counteract to a great extent the

aortic wall problem but also overall improves LGE CMR

segmentation.

Pre-ablation enhancement that is likely to be due

to fibrosis is more challenging to detect than post-

ablation enhancement due to scar. One reason is fibrosis

appears more diffuse with greater overlap with normal

myocardium. Algorithms IC, YL, UTA and UTB only

show reasonable overlap (Dice, RMSE and |δV |), with YL’s

results available on a smaller cohort (10 out of 30) and

both YL and UTA requiring significantly longer process-

ing times than the rest. Fixed models (4-SD an FWHM)

fare poorly in comparison. This comes as no surprise as

with greater overlap of intensities for normal myocardium

and fibrosis in pre-ablation, a fixed model is bound to

fail. Even with an optimal separation between the distri-

butions computed, further processing is needed and this

is included in IC (pixel connectivity) and SY (contextual

information) algorithms. Others have similar process-

ing steps but were developed primarily for post-ablation

enhancement and thus has a bias (MV and KCL). In

post-ablation enhancement, most evaluated algorithms

demonstrated that good segmentation is possible. This

is true in the case of automated (IC, SY, MV, HB, KCL,

UTB) and semi-automated ones (YL, UTA). Fixed mod-

els had lesser accuracy with a difference of at least 10

points on the Dice compared with some methods (MV,

KCL, YL), but their performance was better compared to

performance in pre-ablation.

Future algorithms

The aim of this work is to provide a standardised method-

ology and framework for evaluating state-of-the-art algo-

rithms that was made available to the wider community

through a web-based interface. The framework has poten-

tial that upcoming state-of-the-art algorithms can utilise

it to evaluate their performance. That would enable
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algorithms to be benchmarked against other algorithms.

Eight different algorithms were evaluated with the pro-

posed framework, three of which are published or slightly

modified versions of published techniques ([5,15,18]).

This gives the framework some standing and acceptability

and gives future algorithms a sensible ground for test-

ing. Also to our knowledge, this is the first proposed

framework of its kind for testing LGE CMR algorithms.

Conclusions
CMR continues to play an increasingly important role for

quantifying LA fibrosis and scar before and after an abla-

tion procedures for AF. LGECMR is a challenging imaging

technique with variation often seen in image and enhance-

ment quality. Currently, algorithms have only been tested

on centre- and vendor-specific images. Their suitability

and performance in images from other centres or vendors

is not very clear. Also, algorithms cannot be tested on the

same datasets and thus they cannot be cross-compared.

The proposed framework evaluated 8 different algorithms

and measured their performance on a common scale.

Reference standards for evaluation were established. Fol-

lowing evaluation, no algorithmwas deemed clearly better

than the others. This leaves scope to push for further algo-

rithmic developments in LA fibrosis and scar imaging.

Benchmarking of future scar segmentation algorithms

is important. The proposed framework remains pub-

licly available for accessing the image database, uploading

algorithm segmentations for evaluation and contribut-

ing manual segmentations for improving the reference

standard.
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