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ABSTRACT 
 
Tracking in multi sensor multi target (MSMT) 
scenario is a complex problem due to the 
uncertainties in the origin of observations. Solution 
to this problem requires appropriate gating and 
data association procedures to associate 
measurements with targets. A PC MATLAB 
program based on track-oriented approach is 
evaluated which uses nearest neighbor Kalman filter 
(NNKF) and probabilistic data association filter 
(PDAF) for tracking multiple targets from data of 
multiple sensors. For track-to-track fusion, state 
vector fusion philosophy is employed. The tracking 
performance in the presence of simulated track loss 
and recovery as well as in clutter is evaluated. 
During data loss PDAF performed better than 
NNKF. In the presence of mild clutter and sparse 
target scenarios, the NNKF and PDAF give similar 
performance.   

 
1. INTRODUCTION 

 
Tracking comprises of estimation of the current state of 
a target based on uncertain measurements selected 
according to a certain rule as sharing a common origin 
and calculation of the accuracy and credibility 
associated with the state estimate.  The problem is 
complex even for single target tracking because of 
target model uncertainties and measurement 
uncertainties. The complexity of the tracking problem 
increases further when multiple targets are to be tracked 
from measurements of multiple sensors.  
 
Data association i.e. to determine from which target, if 
any, a particular measurement originated, is the central 
problem in multi sensor multi target tracking1. The 
problem is complex due to uncertain data and disparate 
data sources. The identity of the targets responsible for 
each individual data set is unknown, so there is 
uncertainty as how to associate data from one sensor 
which are obtained at one time and location to those of 
another sensor at another point in time and location.  
Also, false alarms and the clutter detections may be 
present which are not easily distinguishable from the 
true target measurements. In addition, one may have to 

deal with measurement loss in some of the tracking 
sensors. 
 
Gating and data association enable tracking in multi 
sensor multi target (MSMT) scenario. Gating helps in 
deciding if an observation (which includes clutter, false 
alarms and electronic counter measures) is a probable 
candidate for track maintenance or track update. Data 
association is the step to associate the measurements to 
the targets with certainty when several targets are in the 
same neighborhood. Two approaches to data 
association are possible: i) using the nearest neighbor 
(NN) approach in which a unique pairing is determined 
so that at most one observation can be paired with a 
previously established track. The method is based upon 
likelihood theory and the goal is to minimize an overall 
distance function that considers all observation-to-track 
pairings  that satisfy a  preliminary  gating  test,           
ii) decision is achieved using probabilistic data 
association PDA algorithm in which a track is updated 
by a weighted sum of innovations from multiple 
validated measurements.  
 
For handling the problem of tracking in a MSMT 
scenario, a program based on gating and data 
association using both NNKF and PDAF2 approach has 
been developed in PC MATLAB.  This program is 
primarily an adapted version of software package of 
Ref1 and is updated/modified for the present 
application. The main features of FUSEDAT and the 
upgraded MSMT packages are shown in Table-1. The 
steps in the MSMT program for multi-sensor multi-
target tracking and data association are shown in Fig-1. 
In this paper, details of the algorithms, the steps in the 
development of the program and results of tracking for 
data from multiple sensors when there is measurement 
loss are presented. The test scenario considered for 
validating the program are i) data of three targets 
launched from different sites and nine sensors located at 
different locations tracking the targets. Three sensors 
are configured to track one target. In addition to the 
estimated target track position at the end of each scan, 
the program generates information on the target-sensor 
lock status. The performance has been evaluated by 
adding clutter to the data and simulating data loss in 
one or more of the tracking sensors for a short period. 
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Results are presented in terms of track scores, 
innovations of the filters with theoretical bounds and 
computed distance values, ii) The situation where 
each of the three sensors looks at six targets and then all 
the three sensor-results are fused, where there could be 
some data loss.  

2χ

 
2. DATA ASSOCIATION AND TRACKING 

ALGORITHMS 
 
 2.1 NN Kalman Filter2  
 
In NNKF, at any instant of time, the measurement that 
is nearest to the track is chosen for updating the track. It 
is to be noted that each measurement can only be 
associated with one track and no two tracks could share 
the same measurement. If valid measurement exists, the 
track is updated using NN Kalman filter. The time 
propagation follows the standard Kalman filter 
equations:  
                 (1) )1/1(ˆ)1/(~ −−Φ=− kkXkkX

~                (2) TT GQGkkPkkP +Φ−−Φ=− )1/1(ˆ)1/(
The state estimate is updated using: 
    )()1/(~)/(ˆ kKkkXkkX ν+−=

~and     P           (3) )1/()()/(ˆ −−= kkPKHIkk
~The Kalman gain    1)1/( −−= SHkkPK T

~Residual vector ν            
Residual covariance S        (4) 

)1/()()( −−= kkzkzk
HkkPH T +−= )1/(~ R

where  is the measurement vector and  
is the predicted value at scan , the is the 
measurement matrix and  is the measurement error 
covariance matrix given by 

)(kz )1/(~ −kkz
Hk

R
[ ]22

zy σσ2
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diagR = σ  - 
for the case where three observables x, y, z are 
considered. 
 
If there is no valid measurement, the track retains the 
extrapolated value: 
     )1/(~)/(ˆ −= kkXkkX

~and               (5) )1/()/(ˆ −= kkPkkP
The information flow in NNKF is shown in Fig-2. 

2.2 Probabilistic Data Association Filter2 

The PDAF algorithm calculates the association 
probabilities for each valid measurement at the current 
time to the target of interest. This probabilistic 
information is used in a tracking filter (PDAF) that 
accounts for the measurement origin uncertainty. If 
there are m measurements falling within the gate and it 
is assumed that there is only one target of interest and 
track has been initialized2, the association events    
 

    = { yiz i is the target originated measurement}, 
i=1,2,…,m, 
 {none of the measurements is target 
originated}, i=0                 (6) 
are mutually exclusive and exhaustive for m ≥  1. The 
conditional mean of the state can be written as 

                  (7) ∑
=

=
m

i
ii pkkXkkX

0

)/(ˆ)/(ˆ

 where is the updated state conditioned on the 
event that the i

)/(ˆ kkX i
th validated measurement is correct and 

is the conditional probability of this event. The 
estimate conditioned on measurement ‘i’ being correct 
is given by 

ip

)()1/(~)/(ˆ kKkkXkkX ii ν+−= ,  i=1,2,…,m         (8) 
 the conditional innovation is given by 
    ν             (9) )1/(ˆ)()( −−= kkzkzk ii

The gain K is the same as in Kalman filter eqs.(4).  For 
i=0, i.e. if none of the measurements is valid (m=0), 
then  
                 (10) )1/(~)/(ˆ

0 −= kkXkkX
Combining the equations (8), (10) & (7) yield, the state 
update equation of the PDAF 
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The combined innovation is given by 
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where the covariance of the state updated with correct 
measurement 
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and the spread of the innovations  
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The conditional probability is calculated using Poisson 
clutter model2 
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where  =false alarm probability.  λ
           = Detection probability. DP
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The information flow in PDAF algorithm is shown in 
Fig-3. The features of these algorithms are given in 
Table-2 
 

3. PROGRAM FOR TRACKING AND DATA 
ASSOCIATION ALGORITHMS FOR MSMT 

 
Two commonly used approaches for multi target 
tracking are ‘target oriented’ and ‘track oriented’ 
approaches. In the target-oriented approach, the number 
of targets is assumed to be known and all data 
association hypotheses are combined into one for each 
target.  The track oriented approach treats each track 
individually while it is initiated, updated and terminated 
based on the associated measurement history.  Track 
oriented approach is pursued for the application in this 
paper (since the other approach cannot handle track 
initiation and can only handle track continuation). In 
the track-oriented algorithm, a score is assigned to each 
track and is updated according to the association 
history. A track is initiated based on a single 
measurement, and will be eliminated when the score is 
below a predetermined threshold. A brief description of 
each of the steps in the program is given below. 
 
a). Sensor attributes including sensor location, 
resolution, field of view (FOV), Detection probability 
(PD) and False alarm probability ( ) are provided.  
Using  the number of false alarms is calculated 
using            (17) 

Pfa
Pfa
Nfa = FOVPfa µ*

           where  is the expected number of false 
alarms and µ is the volume of FOV. 

Nfa

FOV
 
b). New data set:  The measurements acquired from 
the sensors are converted to a common reference point 
in a Cartesian coordinate frame using: 
xref = xtraj – xloc, 
yref = ytraj – yloc, 
zref = ztraj – zloc. 
where xref, yref and zref  are x,y and z co-ordinates of 
target w.r.t common reference, xloc, yloc and zloc  are x,y 
and z co-ordinates of corresponding sensor location, 
xtraj, ytraj and ztraj  are x,y and z co-ordinates of target 
trajectory measured  by the sensors.  
 
c) Gating: Gating is performed to eliminate unlikely 
measurement-to-track pairs. Assuming that the 
measurement vector is of dimension m, a distance 

(normalized distance) representing the norm of the 
residual vector is computed using 

2d

νν 12 −= Sd T            (18) 
For example, consider two tracks (yi(k-1), i=1,2) at scan 
(k-1). At scan k, as shown in Fig-4, if four 
measurements zj(k), j=1,2,3,4 are available, then the 

track to measurement distance dij (from ith track to jth 
measurement) for each of the predicted tracks        
(yi(k-1), i=1,2) is computed using (18).  A correlation 
between the measurement and track is allowed if the 
distance , where G  is the  threshold. The 

 threshold is obtained from the tables of chi-square 
distribution since the validation region is chi-square 
distributed with number of degree of freedom equal to 
the dimension of the measurement

Gd ≤2 2χ
2χ

2. For those 
measurements that fall within the gate, the likelihood 
value computed using 22 dS +)log( π  is entered in the 
correlation matrix (called Track to Measurement 
Correlation matrix - TMCR) formed with the 
measurements along the rows and tracks along the 
columns. For those measurements that fall outside the 
gate, a high value is entered in the TMCR matrix (see 
Table-3).  

 
d). Measurement to track association & track 
updation:  When NNKF is used for tracking, the 
measurement that is nearest to the track is chosen for 
updating the track.  Once the particular measurement-
to-track association pair is chosen from the correlation 
matrix for updating track, both will be removed from 
the matrix and next track with the least association 
uncertainty will be processed. In the present example 
(Fig-4), measurements z1(k) and z3(k) fall within the 
gate region of predicted track y1(k), z2(k) falls within 
the gate region of predicted track y2(k) and z4(k) falls 
outside of both y1(k) and y2(k) gate regions as shown in 
Table-3. The measurement z1(k) is taken for updating 
the track y1(k), because it is nearer than z3(k).  

 
 In cases where PDAF is used for tracking, all 
measurements falling within the gate, formed around 
the extrapolated track and their associated probabilities, 
are used for track updating. In present example, the 
measurements z1(k) and z3(k) are taken for updating 
track y1(k) and z2(k) is taken for updating the track 
y2(k). This process continues until all tracks are 
considered. Measurement that has not been assigned to 
any track will be used to initiate a new track. A score is 
obtained for each track based on the association history 
and is used in the decision of eliminating or confirming 
tracks. 
 
e). Track initiation: A new track is initiated with a 
measurement that is not associated with any existing 
track. A score is assigned to each initiated new track. A 
track is initiated by three position measurements (x,y,z) 
and the velocity vector. The initial score for new track 
is calculated using  

           
faNT

NTp
ββ

β
+

=           (19)  
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 where = expected number of true  targets and    

= expected number of false alarms per unit 
surveillance volume per scan. In the present example, 
z

NTβ

faβ

4(k) is used for track initiation. 
  
f). Track Extrapolation: It is possible that a track may 
not have any validated measurement, in which case the 
track will not be updated but existing tracks are just 
extrapolated for processing at next scan. 

 
g). Extrapolate tracks into next sensor FOV1: The 
surviving tracks in current sensor FOV are taken into 
next sensor FOV, because it is assumed that in MSMT 
scenario all sensors are tracking all targets. Also, the 
track score is propagated to the next sensor FOV using 
the Markov chain transition matrix.  In computing the 
scoring function, two models are used one for 
‘observable target’ (true track) designated as Model O 
and one for ‘unobservable target’ (a target outside the 
sensor coverage or erroneously hypothesized target) 
designated as model U1. For both models, target 
measurements (with detection probability PD) as well as 
clutter is to be considered. PD = 0 for model U. The 
models O and U are given by a Markov chain assuming 
the following transition probabilities1: 
 

UUOUUU

OOUOOO

MMPMMP

MMPMMP

εε

εε

=−=

=−=

)(1)(

)(1)(

,

,          (20) 

 
where  denotes the event that model x is in effect 
during the current sampling interval and 

xM

XM  for the 
previous interval. Eq. (20) indicates that the transition 
between the models is assumed with low probabilities. 
The exact values of εA and εD are to be chosen based on 
the scenario under consideration.  
 
h). Extrapolate tracks into the next scan: The 
surviving tracks are extrapolated for processing at next 
scan using target dynamic model. The target dynamic 
model is as follows: 
           (21) )()()1( kGwkFXkX +=+
 where the target dynamic state transition matrix       
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and w(k) is assumed to be a zero-mean white Gaussian 
process noise with covariance 
[ ] )()()( kQkwkwE T = and is the sampling interval. 

The extrapolation is done using the Kalman filter eq(5).   
t∆

 
i). Track management: Many tracks could be initiated 
in a clutter environment. Scoring threshold is used to 
eliminate the false tracks. The scoring threshold is one 
of the system design parameters and it should be 
adjusted based on the scenario and performance 
requirement. Similar tracks are fused to avoid 
redundant tracks. In general, the direction of tracks has 
to be considered while combining similar tracks.  An 
ND-scan approach is recommended in literature3 
wherein tracks that have the last ND observations in 
common, are combined together. Depending on the 
value of ND, this approach would automatically take the 
velocity as well as acceleration into account for 
combining similar tracks, e.q. x(2)-x(1) can be regarded 
as velocity, etc. A 3–scan approach has been 
incorporated into the program for combining the tracks. 
Consider two tracks whose state vector estimates and 
covariance matrices are given at scan k: 
      track i : , P  )/(ˆ kkX i )/(ˆ kki
      track j: ,           (22) )/(ˆ kkX j )/(ˆ kkPj
Combined state vector:    

     (23) )]/(ˆ)/(ˆ[)(ˆ)/(ˆ)/(ˆ)( kkXkkXkPkkPkkXkX ijijiic −+= −1

Combined covariance matrix:  
            (24)                                )/(ˆ)(ˆ)/(ˆ)/(ˆ)( 1 kkPkPkkPkkPkP iijiic

−−=

where P                      (25) )/(ˆ)/(ˆ)(ˆ kkPkkPk jiij +=
 
The logic developed finally generates the information 
regarding the surviving tracks and sensors to target lock 
status. 
 

]

j). Graphical display: This module displays the true 
trajectory and measurements and also performance 
measures such as true & false track detections, number 
of good and false tracks, good and false track 
probabilities and also the sensor and target lock status 
at each instant of time.  
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4. PERFORMANCE EVALUATION 

 
The performance of the NNKF and PDAF is checked 
by computing: 
i). The percentage fit error (PFE) in x, y and z positions 

   
)(

)ˆ(*100
xnorm
xxnormPFE −

=             (26) 

where, is the true x-position data, is the estimated 
x-position data 

x x̂

ii). The root mean square position error  
 

∑
=

−+−+−
=

N

i

iiiiii zzyyxx
N

RMSPE
1

222

3
)ˆ()ˆ()ˆ(1     (27) 

iii). The root sum square position error  
222 )ˆ()ˆ()ˆ( zzyyxxRSSPE −+−+−=         (28) 

iv). Singer-Kanyuck track association metric 
2

)( 1
ˆˆ

−+
−=

ji PPjiij xxC  

)ˆˆ()()ˆˆ( 1
jiji

T
jiij xxPPxxC −+−= −               (29)                   

Track loss is simulated in data from sensors 1-3 during 
100 to 150 secs. Fig-6 shows the data with simulated 
clutter ( ) added to the sensor data. It is clear 

from the Table-5 that the performance of the two data 
association algorithms in the presence of clutter for this 
scenario is almost identical. The comparison of true 
tracks and estimated tracks with NNKF is shown in 
Fig-7.  The Fig-8 shows the track score, the innovations 
with bounds and the distance measure on the X-axis 
data for target/track-1 (indicated as T1X in Fig-8) 
where there is data loss and for target/track-2 (indicated 
as T2X in Fig-8) where there is no data loss. The track 
score is zero during the measurement data loss, 
innovations are within the theoretical bounds and the 

 distance values at each scan are below the threshold 
values obtained from the tables. Fig-9 and Fig-10 
show the RSSPE in track-1 without and with data loss 
respectively. The RSSPE is very large during the data 
loss segment as shown in Fig-10. The PFE and 
%RMSPE when there is a data loss in track-1 are 
shown in Table-6. It is observed from the table that the 
PFE and %RMSPE increase as the duration of data loss 
increases. The Singer-Kanyuck association metric for i

1510−=Pfa

2χ

2χ
2χ

th 
track and jth track from the same target are almost zero, 
which means that the association is feasible.  The 
association metric for ith track and jth track from the 
different targets are shown in Fig-11. The metric is 
large, which means that the association is infeasible. It 
is seen from Fig-12 and Fig-13 that the performance of 
PDAF is better than that of NNKF in presence of data 
loss. The data loss for longer time may be acceptable if 
PDAF is used since it gives lower PFE and RMSPE. 
The Fig-14 & 15 show the results of data fusion of 3-
sensors and 6-targets and associated performance 
aspects like track probability, good tracks etc, with 20 
Monte-Carlo simulation runs. 

The metric4
ijC can be viewed as the square of the 

(normalized) distance between two Gaussian 
distributions with mean vectors and and a 
common covariance matrix .  

ix̂ jx̂

ji PP +

v). Percentage root mean square position error 

100*

3
1

%

1

222

∑
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++
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N

i

iii zyx
N

RMSPERMSPE
                 (30) 

 
5. RESULTS AND DISCUSSIONS 

 
The interactive program for MSMT data association 
and tracking is used to identify which of the sensors in 
the MSMT scenario are tracking same targets using the 
scenario of nine sensors located at different points in 
space and their measurements. Fig-5 shows the 
trajectories as seen from the 9 sensors. At each scan, the 
program displays the target identification (Id) and the 
sensors, which are tracking that particular target on the 
screen. It is found that initially 9 tracks survive before 
similar tracks are combined using a predetermined 
distance threshold. After this combination, it is seen 
that only 3 tracks survive and they have been assigned 
three target Id numbers (T1, T2 and T3). The sensors, 
which track a particular target, are shown in Table-4 
from which it is clear that three sensors track one target.   
 

 
6. CONCLUDING REMARKS 

 
A PC MATLAB program based on track-oriented 
approach has been evaluated NNKF and PDAF for 
tracking multiple targets from data of multiple sensors. 
The performance in the presence of simulated track loss 
and recovery as well as in clutter is evaluated. During 
data loss PDAF performed better than NNKF. In the 
presence of mild clutter and sparse target scenarios, the 
NNKF and PDAF give similar performance.   
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Table-1 Features of two packages 

S.No FUSEDAT (obtained by NAL) Modified MSMT  
1 Simulated data w.r.t common 

reference point is used 
(*) Simulated/Real data w.r.t sensor location is used and converted to 
common reference point in Cartesian coordinate frame. 

2 NNKF/PDAF NNKF and PDAF 
3 Similar tracks are combined Similar tracks are combined using distance threshold and track-to-track 

fusion 
4 Direction of two tracks not 

included while tracks are 
combined 

(*) ND-scan approach (ND =3) used to combine similar tracks while 
direction of tracks taken into account. Depending on the value of ND, 
this approach would automatically take the velocity and acceleration 
into account for combining similar tracks, e.q. x(2)-x(1) can be 
regarded as velocity, etc. 

5 Performance metrics used (*) Additional metrics: S-K, %RMSPE and RSSPE   
6                         ------ (*) Data loss feature included (measurements are removed from the 

data set for a fixed duration) 
7 Target/track oriented approach Track oriented approach is used 
8 Clutter is added Clutter is added 

* Some additional features 
 
Table-2 Features of NNKF/PDAF 

Feature NNKF PDAF 
Filter Linear Kalman filter. Linear Kalman filter. 
State updation Measurement nearest to the predicted 

measurement in validation region 
Association probabilities for each 
measurement lying in the validation region 

Possibility of Track loss  Moderately high Less 
False track adaptation Moderately high  Less  
During data loss Degradation due to some uncertainty in 

estimation of previous state 
Better performance due to better estimation 
of previous states 

Computational time Low High  (≈1.5 KF) 
Tracking capability Less reliable in clutter environment Reliable in clutter environment 

 
Table-3 TMCR table for two tracks (i=1,2) and                    Table-4  Target and corresponding tracking 
 four measurements (j=1,2,3,4) at scan k  (Fig-4)       sensor identification (Id) numbers 

                 Track 
Measurement 

y1(k) 
 

y2(k) 
 

z1(k) d11 1000 
z2(k) 1000 d22 
z3(k) d13 1000 
z4(k) 1000 1000 

Target number Sensor Id 
T1 S1, S2, S3 
T2 S4, S5, S6 
T3 S7, S8, S9 

 
 Table-5   Percentage fit error in track positions  (Figs-5 to 8) 

NNKF PDAF  Track No. 
PFE in x PFE in y PFE in x PFE in y 

Track 1 0.0604 0.0557 0.081 0.075 
Track 2 1.0398 1.0491 1.0397 1.0490 

Track 3 0.0522 0.0283 0.0523 0.0284 
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Table-6 PFE and %RMSPE, when there is data loss in track-1  (distance in meters) 
 

  NNKF                                 PDAF 
PFE PFE 

Data loss 

x y 
%RMSPE 

x y 
%RMSPE 

0 sec 0.06 0.05      0.0669 0.081 0.075 0.0559 
5sec 1.32 1.4 1.369 0.083 0.078 0.0593 

10sec 2.04 2.18 2.13 0.11 0.102 0.1067 

20sec 3.62 3.87 3.77 0.48 0.448 0.4632 

30sec 5.65 6.0 5.87 1.32 1.22 1.2628 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      

t∆

Extrapolate tracks into the     
future time specified by the    
time difference ( ) Extrapolate into next scan 

Extrapolate into next sensor  
FOV

next sensor 
FOV 

Sensor attributes 

Graphical display 

Track to track fusion 

For un-assigned 
measurement(s) 

For existing tracks 
with assigned 
measurement(s) 

For existing tracks 
with un-assigned 
measurement(s) 

Track extrapolation Track initiation 
Track updating 
(NNKF/PDAF) 

Gating  & Measurement-to-track association  

New data set 

yes 

no 

 
Fig-1.  Flow chart of the MSMT program 
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Fig-2. Information flow in NNKF 
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Fig-3.  Information flow in PDAF algorithm 
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Fig-4.  Illustrating gating principle. 

           
Fig-5. Trajectories as seen from respective sensor             Fig-6. Measurement data with simulated clutter,        
           locations (fy and fx are factors)                       (converted to a common reference location)   

         
      Fig-7.  Comparison of estimated trajectories                     Fig-8. Performance Evaluation measures 
                   with true trajectories 
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    Fig-9. RSSPE in track-1 without data loss                                Fig-10. RSSPE in track-1 with data loss                                
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Fig-11.  Singer-Kanyuck association            Fig-12. PFE with data loss            Fig-13. Percentage RMSPE 
       metric for  ith and jth tracks from                                                                              with data loss      
      different sensor (data loss) 
  
 
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
              

(b) Sensor-2 detections (a) Sensor-1 detections (d) Simulated scenario (c) Sensor-3 detections 

 
 

Fig-14. Simulated scenario having 6-targets tracked by 3-sensors (data loss) 

(d) Estimated trajectories 
           (sensor-2 alone) 

(d) Estimated trajectories 
          (sensor-3 alone) 

(e) Estimated trajectories 
           (all sensors) 

(d) Estimated trajectories 
         (sensor-1 alone) 

 
           
Fig-15. Performance evaluation measures         
             
             
             
             
      
 
 
 
 
 

(a) Total tracks (d) False track probability (c) Good track probability (b) Good tracks 

Fig-15. Performance evaluation measures  
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