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Abstract—This paper presents a new state-of-the-art for doc-
ument image classification and retrieval, using features learned
by deep convolutional neural networks (CNNs). In object and
scene analysis, deep neural nets are capable of learning a
hierarchical chain of abstraction from pixel inputs to concise
and descriptive representations. The current work explores this
capacity in the realm of document analysis, and confirms that
this representation strategy is superior to a variety of popular
hand-crafted alternatives. Experiments also show that (i) features
extracted from CNNs are robust to compression, (ii) CNNs trained
on non-document images transfer well to document analysis tasks,
and (iii) enforcing region-specific feature-learning is unnecessary
given sufficient training data. This work also makes available a
new labelled subset of the IIT-CDIP collection, containing 400,000
document images across 16 categories, useful for training new
CNNs for document analysis.

I. INTRODUCTION

Many document types have a distinct visual style. For
example, “letter” documents are typically written in a standard
format, which is recognizable even at scales where the text is
unreadable. Motivated by this observation, this paper addresses
the problem of document classification and retrieval, based on
the visual structure and layout of document images.

Content-based analysis of document images has a number
of applications. In digital libraries, documents are often stored
as images before they are processed by an optical character
recognition (OCR) system, which means basic image analysis
is the only available tool for initial indexing and classification
[26]. As a pre-processing stage, document image analysis can
facilitate and improve OCR by providing information about
each document’s visual layout [10]. Furthermore, document
information that is lost in OCR, such as typeface, graphics,
and layout, can only be stored and indexed using images or
image descriptors. Therefore, image analysis is complementary
to OCR at several stages of document analysis.

The challenge of document image analysis arises from
the fact that within each document type, there exists a wide
range of visual variability. For example, of the correspondence
documents shown in Figure 1, no two documents share the
exact same spatial arrangement of header, date, address, body,
and signature; some of the documents even omit these com-
ponents entirely. This level of intra-class variability renders
spatial layout analysis difficult, and rigid template matching
impossible [8]. Another issue is that documents of different
categories often have substantial visual similarities. For in-
stance, there exist advertisements that look like news articles,
and questionnaires that look like forms, and so on. From

Fig. 1. Examples of document images that share the visual style of “letter”.
Note that even when the text of these documents is illegible, their style type
is clear. The documents have similar spatial configurations of various parts:
addresses and dates typically appear near the top, and signatures typically
appear near the bottom, but no two documents share the exact same layout.
Identifying the style type of these documents is therefore difficult, but can
potentially facilitate the extraction of further information.

the perspective of “visual styles”, some erroneous retrievals
in such circumstances may be justifiable, but in general the
task of document image analysis is to effectively classify and
retrieve documents despite intra-class variability, and inter-
class similarity.

Similar challenges appear in other fields, such as object
recognition and scene classification. In those domains the
current state-of-the-art approach involves training a deep con-
volutional neural network (CNN) to learn features for the
task [24, 19, 29]. Inspired by the success of CNNs in other
domains, this paper presents an extensive evaluation of CNNs
for document classification and retrieval. In the end, it is
determined that features extracted from deep CNNs exceed
the performance of all popular alternative features on both
classification and retrieval, by a large margin. Experiments are
also presented on transfer learning, which demonstrate that
CNNs trained on object recognition learn features that are
surprisingly effective at describing documents. Furthermore,
it is found that the deep net strategy is not significantly im-
proved by additional guidance toward region-focused features,
suggesting that a CNN trained on whole images may already
be capable of learning some amount of the information that
region-based analysis would add.

A. Related Work

In the past twenty years of document image analysis,
research has oscillated from region-based analysis to whole
image analysis, and simultaneously, from handcrafted features
to machine-learned ones.

The power of region-based analysis of document images
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has been clearly demonstrated in the domain of rigidly struc-
tured documents, such as forms and business letters [7, 18]. In
general, this approach assumes that many document types have
a distinct and consistent configuration of visually-identifiable
components. For example, formal business letters typically
share a particular spatial configuration of letterhead, date and
salutation. To some extent, the classification of perfectly rigid
documents (e.g., forms) can be reduced to the problem of
template matching [7], and less-rigid document types (e.g.,
letters) can similarly be classified by fitting the geometric
configuration of the document’s components to one of several
template configurations, via geometric transformations [15].
The drawback of this approach is that it requires the manual
definition of a template for each document type to be catego-
rized. Furthermore, the approach is limited to documents for
which a template definition is possible. For documents with
more flexible structures, as considered herein, template-based
approaches are inapplicable.

An alternative strategy is to treat document images holis-
tically, or at least in very large regions, and search for
discriminative “landmark” features that may appear anywhere
in the document [32, 31]. This strategy is sometimes called
a “bag of visual words” approach, since it describes images
with a histogram over an orderless vocabulary of features
[12]. For example, a landmark feature discriminating letters
from most other document classes is the salutation: finding
a salutation in a document (potentially through OCR) is a
good cue that the document is a letter, regardless of that
feature’s exact spatial position [32]. The advantage of holistic
analysis is that the resulting representation of documents
is invariant to the geometric configuration of the features.
This approach has therefore been successful in retrieving and
classifying a broader range of documents than the template-
based approaches, although the approach is less discriminating
in the domain of rigid-template documents.

Recently, there have been attempts to bridge the gap
between region-based and holistic analyses. By concatenating
image features pooled at several stages, beginning with a
whole-image pool and proceeding into smaller and smaller
regions, it is possible to build a descriptor that contains both
global and local layout characteristics [23]. This technique,
known as spatial pyramid matching, was initially developed
for categorizing scenes, but it has been shown to apply well to
documents also, especially if the pooling regions are designed
with document categorization in mind [22]. For document
retrieval, this type of representation represents the current
state-of-the-art.

At the same time, many researchers have replaced hand-
crafted features and representations with machine-learned vari-
ants [10, 9]. A popular area of research in this domain concerns
the task of learning document structure. This typically in-
volves training a decision tree to navigate the various possible
geometric configurations of fixed features (i.e. “landmarks”)
within each document type, toward the goal of structure-based
classification [10, 21]. Most recently, it was shown that the
entire pipeline of supervised document image classification,
from feature-building to decision making, can be learned by
a convolutional neural network (CNN) [17]. In that work, the
authors reported a remarkable 22% increase in classification
accuracy compared to the previous best reported on the same

dataset, which had used spatial pyramid matching. However,
the CNN approach has not yet been applied to document
retrieval.

A shift toward machine-learned features has been taking
place in other areas of computer vision as well. In the object
recognition literature, CNNs currently exceed the performance
of every other approach by a very large margin [19, 13].
The CNN approach has even been shown to apply well to
domains for which it was traditionally believed ill-suited, such
as attribute detection, and fine-grained object recognition [29].
The success of CNNs in fine-grained object recognition is
especially relevant to document image analysis, since the two
fields share some significant challenges, e.g., (i) the items
being distinguished are very similar to each other, and (ii)
there do not exist problem-specific datasets large enough to
train a powerful CNN without causing it to overfit. It makes
sense, therefore, to draw inspiration from fine-grained object
recognition research on how to overcome these challenges.

Two major points on the training and usage of CNNs can be
gleaned from fine-grained classification research. First, before
training the CNN on the data of interest, it is recommended to
pre-train the network on a much larger related problem, such
as the ILSVRC 2012 challenge [30, 13, 6]. This regularization
technique addresses the issue of overfitting, and allows large
CNNs to be effectively applied to small problems. Second, in
problems where spatial information is important, it is poten-
tially better to encode this information in multiple networks
trained on specific regions of interest than in a single network
trained on the entire image [6, 5, 33]. More generally, this
second point suggests that it is unnecessary to rely entirely
on machine learning, especially when human knowledge can
be easily implemented in the system. This paper seeks to
investigate whether these insights are relevant to document
image analysis.

Finally, CNNs in other domains have recently been ex-
tended to the task of image retrieval. After a CNN is trained
on classification, the layers of the network can be interpreted
as forming a hierarchical chain of abstraction, where the lowest
layers contain simple features, and the highest layers contain
concise and descriptive representations [24]. Therefore, output
extracted near the top of a CNN can serve as a feature
vector which can be used for any task, including retrieval
[29, 3, 14, 2]. The present work is the first to apply this idea
toward document retrieval.

B. Contributions

In the light of previous work, this paper makes the fol-
lowing contributions. First, the paper thoroughly evaluates
the power of deep CNN features for representing document
images. Toward this end, the paper presents experiments in
CNN design, training, feature processing, and compression.
Results show that features extracted from CNNs are superior
to all handcrafted competitors, and furthermore can be com-
pressed to very short codes with negligible loss in performance.
Second, this work demonstrates that CNNs trained on non-
document images transfer well to document-related tasks.
Third, this paper explores a strategy of embedding human
knowledge of document structure into CNN architectures, by
guiding an ensemble of CNNs toward learning region-specific



features. Interestingly, results show little to no improvement in
classification and retrieval after this augmentation, suggesting
that a basic holistic CNN may be learning region-specific
features (or perhaps better features) automatically. Finally, this
work makes available a new labelled subset of the IIT-CDIP
collection of tobacco litigation documents [25], containing
400,000 document images across 16 categories.

II. TECHNICAL APPROACH

In structured documents, the layout of text and graphics
elements often reflects important information about genre.
Therefore, documents of a category often share region-specific
features. This paper attempts to learn these informative features
by training either a single holistic CNN or an ensemble
of region-based CNNs. Additionally, the paper explores two
different initialization strategies: the first initializes the weights
of the CNNs randomly, and relies entirely on the training
process to find the features; the second transfers weights from
a network trained on another task, and relies on training only
to fine-tune the features to the domain of document analysis.

A. Holistic convolutional neural networks

In most modern implementations of neural networks for
computer vision, the network takes as input a square matrix of
pixels as input, processes this input through a stack of convolu-
tional layers, then classifies the output of those convolutional
layers using two or three fully-connected layers [24, 19]. A
typical network of this type has approximately 60 million
trainable parameters; this vast representational capacity, along
with the hierarchical organization of that representation, is
assumed to be responsible for the network’s power as a feature-
builder and classifier [24].

Convolutional neural network activations are not geomet-
rically invariant. In applications such as object detection, this
is sometimes an inconvenient property. Much work has been
done to add spatial invariance to CNNs, e.g., by “jittering”
the training data to add geometric variants of each image in
the dataset [24], or by altering the architecture of the CNN
to process the input at multiple scales and positions [14].
For document analysis, however, spatial specificity in CNN
activations may be beneficial. For example, it makes sense
to treat the header region of a document differently than the
footer region. By design, a holistic CNN trained on a dataset of
well-aligned document images should be capable of learning
region-specific features automatically.

Typically, CNNs are trained to perform a classification task,
but a CNN trained on classification can be exploited to perform
retrieval also. It has been found that the activation patterns
near the top of a deep CNN make very descriptive feature
vectors [29]. These feature vectors are high-dimensional (e.g.,
4096 dimensions), but their dimensionality can be reduced
significantly via principal component analysis (e.g., to 128
dimensions) without significantly affecting their discriminative
power [3]. Retrieval involves computing the Euclidean distance
between a query descriptor and every descriptor of the training
set. The sorted distances are then used to rank the images of
the training data, and return a sorted list of documents.

Fig. 2. Some document types differ only at specific regions. The letter (left)
and memo (right) only differ at the address section.

B. Region-based guidance

Accounting for the possibility that a holistic CNN may
not take advantage of region-specific information in document
images, guiding CNNs to learn region-based features may aid
fine-grained discrimination by isolating subtle region-specific
appearance differences between document categories. Consider
the example of discriminating letters and memos, as illustrated
in Figure 2. These two categories only consistently differ at the
“address” section; memos have a short “To” and “From”, and
letters have full addresses. It is possible that a holistic CNN
will learn this automatically, but training a CNN to classify
documents using only this region increases the likelihood that
this feature will be learned. The idea of this approach is to
devote one CNN to each region of interest, and therefore force
multiple CNNs to learn rich region dependent representations,
from which features can be extracted and combined.

Any number of region-specific CNNs can be used in this
approach. In this work, a total of five CNNs are used. Four
of these are region-tuned, placed at the header, left body, right
body, and footer of the document images. The fifth is a holistic
CNN, trained on the entire images. The final region-based
representation of document images is built by combining and
compressing features extracted from each region-tuned CNN.
The final descriptor is represented by the concatenation of
region specific features: [φ0, φ1, . . . , φn], where φ0 represents
the PCA-compressed feature vector extracted from the holistic
CNN, and φ1, . . . , φn represent the analogous vectors extracted
from regions 1 through n. Figure 3 illustrates the full process
of this vector’s construction. For retrieval, this new vector is
used directly. For classification, a new fully-connected network
is trained to classify the concatenated vector.

C. Transfer learning

The goal of transfer learning is to take advantage of
shared structure in related problems, to facilitate learning
on problems with little training data [1]. In the context of
CNNs, transfer learning can be implemented at the weight
initialization step. The typical initialization strategy for CNNs
is to set all weights to small random numbers, and set all
biases to either 1 or 0 [24]. An alternative strategy is to pre-
train the network network on a complementary task, which
potentially has more training data than the target task. This
puts the network near a good solution in the target problem,
and prevents it from descending into local minima early in
the training process [29]. A popular choice for pre-training
is the ILSVRC 2012 ImageNet challenge, as it contains over
a million training examples of natural images, categorized
into 1000 object categories [30]. Features extracted from an
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Fig. 3. Construction of the region-based representation, delineated in three
steps. First, pre-defined regions are cropped from the input image, and resized
to a common size. Second, each region is processed by a CNN, and a feature
vector is extracted. Third, the feature vectors are compressed by PCA and
concatenated.

ImageNet-trained network have been shown to be effective
general-purpose features in a variety of other vision challenges,
even without fine-tuning on the target problem [29].

This paper studies three questions about transfer learning
for document analysis. First, the paper investigates whether the
ImageNet features are general enough to be applied to docu-
ments. That is, with no fine-tuning on documents, are generic
object-recognition features applicable to document analysis?
Second, the paper addresses the question of whether the ini-
tialization provided by pre-training on the ILSVRC challenge
provides better results than random initialization for document-
classifying CNNs. Third, the paper seeks to investigate the
usefulness of transfer learning between document categories; if
a CNN is trained with a small number of document categories,
are the features learned in that process useful for discriminating
between unseen document categories? These questions will be
answered in the retrieval tasks to follow.

III. EMPIRICAL EVALUATION

A. Datasets

The performance of the various proposed approaches was
evaluated on two versions of the IIT CDIP Test Collection [25].
This collection contains high resolution images of scanned
documents, collected from public records of lawsuits against
American tobacco companies. In total, the database has over
seven million documents, hand-labelled with tags. Often, the
first tag of a document image is indicative of the document’s
category, but many documents in the dataset have missing or
erroneous tags.

The first version of the dataset, listed in the results as
SmallTobacco, is a sample of 3482 images from the collection,
selected and labelled in another work [20]. This version of the
dataset was used in a number of related papers [20, 22, 17].
Each image has one of ten labels. There are an uneven

number of images per category, with the largest proportion of
images in the “letter” category. The distribution of categories
is representative of the distribution present in the full dataset.

The second version of the dataset, listed in the results as
BigTobacco, is a new random sample of 25000 images from
each of 16 categories in the IIT CDIP collection, for a total of
400000 labelled images. This sample was collected specifically
for the present paper. The 16 categories are “letter”, “memo”,
“email”, “filefolder”, “form”, “handwritten”, “invoice”, “adver-
tisement”, “budget”, “news article”, “presentation”, “scientific
publication”, “questionnaire”, “resume”, “scientific report”,
and “specification”. The selection of categories was guided
by earlier work on document categorization [27], and also
by the range of categories present in the already-existing
SmallTobacco sample from the same collection. Another factor
was the knowledge that CNNs do well with large datasets
(e.g., over a million images) [19], so selection was restricted
to categories that were well represented in the dataset. A
representative sample of the dataset is shown in Figure 4.
The final categories are not perfectly distinct: many images
were originally labelled with multiple tags, which potentially
covered several of the categories eventually selected; in this
version of the dataset each image is labelled with a single
category.

Each dataset was split into three subsets for the purposes of
experimentation. The SmallTobacco dataset was split as in the
related work [20, 22, 17]: 800 images were used for training,
200 for validation, and the remainder for testing. Since this is
a small dataset, 10 random splits in those proportions were
created; results reflect the median performance from those
splits. In the case of retrieval, the median was selected based
on mean average precision at the 10th retrieval (mAP@10).
The BigTobacco dataset was split in proportions similar to
those of ImageNet [30]: 320000 images were used for training,
40000 images for validation, and 40000 images for testing. The
validation sets were used to find plateaus in the CNN training
process. All results are reported on the test sets.

B. Implementation details

The CNNs were implemented in Caffe [16]. All networks
computed an N -way softmax at the top layer, where N is the
number of categories being learned.

All but two of the CNNs used Caffe’s reference ImageNet
architecture, which is based on the work of Krizhevsky et
al. [19]. This network has five convolutional layers, and
three fully-connected layers. The network takes images of
size 227 × 227. The full architecture can be written as
227 × 227 − 11 × 11 × 96 − 5 × 5 × 256 − 3 × 3 × 384 −
3× 3× 384− 3× 3× 256− 4096− 4096−N . Features were
extracted from these CNNs by taking the output of the first
fully-connected layer, which has 4096 dimensions.

The first network with a different architecture is listed
in the results as “Small holistic CNN”, which uses hyper-
parameters established in another work on document image
analysis [17]. This network has two convolutional layers and
three fully-connected layers, with pooling, ReLU, and drop-
out employed at several stages in between. The network takes
as input images of size 150×150. The full architecture can be
written as 150×150−36×36×20−8×50−1000−1000−N .



Fig. 4. Representative examples from each category of the dataset. For each category, three images are shown in a column. In order, the document classes shown
are “letter”, “memo”, “email”, “filefolder”, “form”, “handwritten”, “invoice”, “advertisement”, “budget”, “news article”, “presentation”, “scientific publication”,
“questionnaire”, “resume”, “scientific report”, and “specification”. Notice that although each category has certain distinctive features, there is wide variation
within each category, and images from certain pairs of categories could easily be confused (e.g., “memo” and “letter”).

As with the ImageNet networks, features were extracted from
this network by taking the output of rhe first fully-connected
network, which in this case has 1000 dimensions.

The second network with a different architecture is the
“Ensemble of CNNs” network, which uses vectors extracted
from the region-based CNNs to perform classification. Since
a vector of length 4096 · 5 is too large to classify, the indi-
vidual region-based vectors were compressed using principle
component analysis (PCA) to 640 dimensions before they
were concatenated for classification. The network architecture
can be written as 3200 × 4096 × N . For retrieval, features
for this approach were created by individually compressing
each region’s feature vector to 128 dimensions, and then
concatenating, resulting in a vector with 640 dimensions.

To test the effect of transfer learning between categories
of documents, one holistic CNN was trained using only two
categories of the BigTobacco dataset: letters and memos. This
network was pre-trained on ImageNet. In the results, it is listed
as “LetterMemo CNN”.

To extract regions from the images, all images were first
resized to 780 × 600. The header region was defined by the
first 256 rows of pixels in each image. The footer region was
similarly defined by the last 256 rows of pixels in each image.
The left body region was delineated by the intersection of the
400 central rows and the 300 left columns; the right body
region was symmetrically defined. Every extracted region was
resized to 227× 227 before being used as input.

Several state-of-the-art bag of words (BoW) approaches
to document representation were also implemented. As in
previous work [22], the words were k-means clustered SURF
features [4]. These features were pooled in a spatial pyramid
[23], as well as in various combinations of horizontal and ver-
tical partitions [22]. In the results, we denote these horizontal-
vertical partitioning schemes with HaVb, where a is the
number of times the image was recursively split horizontally,
and b is the number of times the image was recursively split
vertically. For example, H0V3 has 15 bags: 1 for the original
image, 2 for the first vertical split, 4 for the second vertical
split, and 8 for the third. For the holistic bag of words, the
resulting feature vector has 300 dimensions; H2V0 has 2100
dimensions; H0V3 has 4500 dimensions; H2V3 and L3 both
have 6300 dimensions. For classification of the BoW features,

a random forest with 500 trees and
√
D feature dimensions

was trained, where D was the length of the feature vector of
the complete (concatenated) bag of words.

Three additional features were added as baselines to the
featured approaches: the GIST descriptor [28], average bright-
ness, and ensemble-of-regions average brightness. The GIST
descriptor has been shown to perform well on image retrieval
tasks [11], but has not yet been applied to document analysis.
Average brightness acts as a baseline for minimum perfor-
mance; images in this representation are represented with a sin-
gle value. Ensemble-of-regions average brightness represents
document images a vector of five elements, corresponding to
the average brightness in each of the regions created for the
ensemble of CNNs approach. This is intended to demonstrate
on a small scale the basic benefit afforded by region-based
analysis.

Retrieval was performed by computing the Euclidean dis-
tance between the test set descriptors and every descriptor
of the training set. The sorted distances were then used to
rank the images of the training data, and return a sorted list
of documents for each test query. For all approaches with
feature vectors larger than 128 dimensions, the vectors were
first compressed to 128 dimensions using PCA before they
were used for retrieval. This is consistent with the related work
[29, 14]; it not only enables fast retrieval, but also to keeps the
task within reasonable memory limits. As in the related work,
the feature vectors were L2-normalized before and after PCA
compression.

C. Classification results

Table I shows the classification accuracies of the various
BoW approaches, along the various CNNs-based appraoches,
on both the SmallTobacco dataset and the BigTobacco dataset.

On SmallTobacco, the ensemble of region-based CNNs
performed better than any other approach, achieving 79.9%
classification accuracy. The previous best reported result on
this dataset was 65.4% with a randomly initialized “Small”
CNN, which was approximately replicated here. The holistic
network performed only slightly worse than the ensemble of
CNNs, suggesting that the holistic CNN may be learning
some amount of the information that region-based analysis



TABLE I. CLASSIFICATION ACCURACIES

Approach SmallTobacco BigTobaccco

Holistic BoW .645 .446

H0V3 BoW .679 .483

H2V0 BoW .652 .461

H2V3 BoW .681 .493

Pyramid BoW .687 .491

Small holistic CNN (random init.) .643 .851

Header CNN .710 .849

Left body CNN .667 .827

Right body CNN .708 .795

Footer CNN .622 .794

Holistic CNN .756 .898

Holistic CNN (random init.) .634 .878

Ensemble of CNNs .799 .893

was expected to add. Interestingly, the “Small” CNN compares
similarly to the large-sized holistic CNN when both are ini-
tialized with random weights. This appears to indicate that the
additional parameters in the large network are not necessarily
beneficial. Initializing the larger networks with ImageNet-
trained weights improves performance substantially. Without
this initialization, the CNNs perform similarly to (or worse
than) the BoW approaches. Between the BoW approaches, the
spatial-pyramid-pooled BoW performs best.

On BigTobacco, the holistic CNN finetuned from Imagenet
performed better than any other approach, including the ensem-
ble of CNNs. This suggests that given sufficient training data,
the advantage gained by region-tuned analysis is eliminated by
the learning power of the holistic CNN. In these results, the
CNN approaches perform far better than the BoW approaches,
likely due to the benefit of additional training data. As observed
in SmallTobacco, finetuning improves results, although by a
smaller margin here than in the small dataset. Comparing the
performance of BoW approaches between the two datasets, it
is interesting to observe that performance drops by nearly 20%,
suggesting that (i) the larger dataset presents a more difficult
classification task (likely because it has more categories), and
perhaps also (ii) the additional training data does not help
these approaches. The confusion matrix for the holistic CNN
is shown in Figure 5.

The CNN trained to classify only letters and memos
achieved 95% accuracy on that task.

D. Retrieval results

Retrieval was measured using mean average precision
(mAP). Average precision computes the average value of
precision as a function of recall on some interval. Formally,
the discrete version of this metric is given by

AP =

∑
n

k=1
(P (k)× rel(k))

number of relevant documents
, (1)

where k is the rank of the document being retrieved, and
rel(k) equals 1 if the document is relevant and 0 otherwise.
This metric is sensitive to ranking order, so the score is
higher if relevant documents are retrieved before irrelevant
documents. Mean average precision is simply the average
precision summed over all queries, divided by the number of
queries. Retrieved documents were determined to be “relevant”
if they had the same class label as the query image. Mean
average precision for the first 10 retrievals on both datasets
are summarized in Figure 6.

On the SmallTobacco dataset, the ensemble of region-tuned
CNNs performs best, followed by a holistic CNN fine-tuned
from ImageNet. Interestingly, the generic ImageNet descrip-
tor performs well also, exceeding the performance of most
other descriptors. Between the BoW approaches, the spatial-
pyramid-pooled BoW performs best. The GIST descriptor
performs approximately as well as the BoW approaches.

On the BigTobacco dataset, the holistic CNN performs
best, exceeding the ensemble of region-tuned CNNs by a
small margin, but exceeding most other approaches by a large
margin. The confusion matrix for the finetuned holistic CNN,
computed using the first 10 retrievals, is shown in Figure 5.
The BoW approaches are outperformed by every CNN vector,
including the generic ImageNet vector. The “LetterMemo”
CNN slightly improves upon the generic ImageNet descriptor,
suggesting that some of the knowledge learned from letters
and memos transfers to all 16 categories, but the gain is only
marginal. Between the BoW approaches, the spatial-pyramid-
pooled BoW performs best, as in SmallTobacco. Interestingly,
the GIST descriptor exceeds the performance of the BoW
descriptors by a large margin on this dataset.

Figure 8 shows a representative sample of the retrieval
output of the holistic CNN on the BigTobacco dataset. In that
figure, it is interesting to notice that in the first row, in which
the query image is a memo, the top seven retrievals are all dif-
ferent memos from the same author (with the same signature)
as the memo in the query image. The final row is similarly
impressive: every document in the top ten retrievals has the
same letterhead as the query document, despite variations in
the other content, and also despite differing typefaces of the
letterhead. There may exist biases in the dataset that lead to
such fortunate retrievals (e.g., only a few letterheads, and only
a few memo authors), but the results are still remarkable.

An additional experiment was performed to measure the
effect of PCA compression on mAP@10 performance on the
BigTobacco dataset, the results of which are summarized in
Figure 7. Remarkably, the CNN vectors show almost no loss
in performance until they are reduced to 16 dimensions. At all
levels of compression, the holistic CNN performs exceeds the
performance of every other approach.

IV. CONCLUSION

This paper established a new state-of-the-art for document
image classification and retrieval, using features learned by
deep convolutional neural networks (CNNs). Generic features
extracted from a CNN trained on ImageNet exceeded the
performance of the state-of-the-art alternatives, and fine-tuning
these features on document images pushed results even higher.
Interestingly, experiments also showed that given sufficient
training data, enforcing region-specific feature-learning is un-
necessary; a single CNN trained on entire images performed
approximately as well as an ensemble of CNNs trained on
specific subregions of document images. In all, this work
showed that the CNN approach to document image represen-
tation exceeds the power of hand-crafted alternatives.
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Fig. 5. Confusion matrices for classification performance (left) and retrieval performance (right) of the holistic CNN. Darkness of the off-diagonal cells was
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