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ABSTRACT:

Deforestation

 

is

 

one

 

of

 

the

 

main

 

causes

 

of

 

biodiversity

 

reduction,

 

climate

 

change

 

among

 

other

 

destructive

 

phenomena.

 

Thus,

 

early

 

detection

 

of

 

deforestation

 

processes

 

is

 

of

 

paramount

 

importance.

 

Motivated

 

by

 

this

 

scenario,

 

this

 

work

 

presents

 

an

 

evaluation

 

of

 

methods

 

for

 

automatic

 

deforestation

 

detection,

 

specifically

 

Early

 

Fusion

 

(EF)

 

Convolutional

 

Network,

 

Siamese

 

Convolutional

 

Network

 

(S-CNN)

 

and

 

the

 

well-known

 

Support

 

Vector

 

Machine

 

(SVM),

 

taken

 

as

 

the

 

baseline.

 

These

 

methods

 

were

 

evaluated

 

in

 

a

 

region

 

of

 

the

 

Brazilian

 

Legal

 

Amazon

 

(BLA).

 

Two

 

Landsat

 

8

 

images

 

acquired

 

in

 

2016

 

and

 

2017

 

were

 

used

 

in

 

our

 

experiments.

 

The

 

impact

 

of

 

training

 

set

 

size

 

was

 

also

 

investigated.

 

The

 

Deep

 

Learning-based

 

approaches

 

clearly

 

outperformed

 

the

 

SVM

 

baseline

 

in

 

our

 

approaches,

 

both

 

in

 

terms

 

of

 

F1-score

 

and

 

Overall

 

Accuracy,

 

with

 

a

 

superiority

 

of

 

S-CNN

 

over

 

EF.

1. INTRODUCTION

The Amazon Rainforest accommodates a large biodiversity. It

is home to a large number of species, including endemic and

endangered flora and fauna. It contains 20% of the fresh water

of the planet (Assunção , Rocha, 2019) and produces more than

20% of the world oxygen (Butler, 2008). Therefore, Amazon

provides essential resources for the maintenance of our planet

(De Souza et al., 2013), (De Souza , Junior, 2018) and its

preservation is of paramount importance.

For many years, the Amazon region has faced several threats

as a result of unsustainable economic development, such

as the extension of agricultural activities at industrial scale

(e.g., soybeans, cattle), slash-and-burn land grabbing by

underprivileged rural communities, forest fires, illegal gold

mining and logging, expansion of informal settlements, and

infrastructure construction (roads and train tracks) (Goodman

et al., 2019), (Malingreau et al., 2012), (Barreto et al., 2006).

Therefore, it is imperative to promote sustainable development

to achieve an ecological balance and to contribute to the

mitigation of climate change (Sathler et al., 2018). Controlling

and monitoring this ecosystem is fundamental to enforce public

policies and to avoid illegal activities in the region. Remote

sensing has proven to be a cost-effective information source to

attain such objectives.

Given the dynamics and complexity of the Amazon

region, there have been large government investments

aimed at controlling, preventing and combating illegal

deforestation (Diniz et al., 2015). The Brazilian National

Institute for Space Research (INPE) has developed and

maintained a number of projects to provide surveillance

reports over the Brazilian Legal Amazon (BLA). The best

known-action is the Amazon Deforestation Monitoring

Project (PRODES) (Valeriano et al., 2004), which supervises

the deforestation in areas with native vegetation of BLA

since 1988. The near real-time deforestation detection

(DETER) (Shimabukuro et al., 2007) project, was developed

to support land use policies in BLA and controls the illegal

deforestation and forest degradation. The Brazilian Amazon

Forest Degradation Project (DEGRAD) (Shimabukuro et

al., 2015) measures areas in the process of deforestation

where the forest cover has not yet been completely removed.

Finally, the Land Use and Land Cover Mapping of Amazon

Deforested Areas (TerraClass) project (De Almeida et al.,

2016) is responsible for qualifying deforestation in BLA and

investigating the possible causes of logging. These projects,

however, adopt methodologies that involve a lot of manual

operations. There is, therefore, a demand for automatic

procedures that can improve accuracy and alleviate the human

work process, as well as reduce the time needed to generate

results.

Numerous change detection techniques have been proposed

thus far. Some of the traditional no supervised methods are

based on image algebra such as Image Differencing (Jensen

, Toll, 1982), Image Ratioing (Howarth , Wickware, 1981),

Regression Analysis (Ludeke et al., 1990) and Change

Vector Analysis (CVA) (Nackaerts et al., 2005). In

addition, techniques based on transformations such as Principal

Component Analysis (PCA) (Deng et al., 2008) and Tasselled

cap (KT) (Han et al., 2007) have been also used for this purpose.

However, these methods require the selection of a proper

threshold to identify the changed regions and the features

adopted by these conventional algorithms are hand-crafted,

which may lead to poor image representations (Zhan et al.,

2017).

Support Vector Machine (SVM) is one of the most

popular supervised algorithms used in satellite image

classification (Dhingra , Kumar, 2019), (Kranjčić et al.,

2019) due to its good performance and robustness when

labeled samples are scarse. Additionally, random forest (Pal,

2005) and methods based on artificial neural networks (ANN)

are also widely used (Maxwell et al., 2018). Recently, Deep
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Learning (DL) techniques have been successfully applied to

Remote Sensing (RS) image analysis. Using Deep Neural

Networks (DNNs), it is possible to learn multiple levels of

data representation and to extract more robust and abstract

features (Zhan et al., 2017), which usually provide more

meaningful information than hand-crafted ones. In this sense,

DNNs variants, such as Convolutional Neural Networks

(CNNs) and Siamese Networks, are potential candidates for

automatic deforestation detection.

In (Zagoruyko , Komodakis, 2015), the authors proposed

and explored different CNN architectures to learn similarity

functions between images pairs that implicitly suffered some

transformations and other kinds of effects (due to e.g., rotation,

translation, illumination, etc.). These algorithms presented

good performances in comparison to methods based on

hand-crafted feature descriptors. Examples of such algorithms

are the Early Fusion and the Siamese CNN approaches, which

were also used by (Daudt et al., 2018) to detect changes in urban

areas. Similarly, (Zhang et al., 2018) successfully applied a

Siamese CNN to identify building and tree changes, and also

to distinguish between real changes from false ones caused by

misregistration errors or false matches.

Moved by the success of DL methods for change detection

applications, in this work, we adapt and evaluate Early

Fusion and Siamese networks for deforestation detection in the

Amazon rainforest. We take as baseline a binary SVM classifier

for comparison purposes.

The remainder of this paper is organized as follows. Section 2

presents the change detection methods considered in this work.

Section 3 describes the dataset and the adopted experimental

protocols. The experimental results are presented in section 4

and some concluding remarks, which also point to future works

are included in section 5.

2. CHANGE DETECTION METHODS

In this section, we shortly describe the methods evaluated in

this work for deforestation detection: Early Fusion (EF) and

Siamese Convolutional Network (S-CNN).

2.1 Early Fusion (EF)

The EF method is inspired by the CNN model proposed

in (Daudt et al., 2018), which demonstrated good performance

for change detection in urban areas. It is composed of

several convolutions and pooling layers, followed by a fully

connected (FC) layer, and a softmax layer to carry out the final

classification.

The name Early Fusion is related to the concatenation of the

images from two different dates, before applying the CNN

model. The images are stacked along their spectral dimension

to generate a unique input image for patch extraction. These

patches are extracted in a sliding windows procedure.Then, the

class label is assigned to the central pixel of each patch. The

procedure is illustrated in (Figure 1).

2.2 Siamese Network (S-CNN)

The Siamese CNN is an adaptation of a traditional CNN,

which comprises two identical branches that share the same

hyperparameters and weights values (Zhang et al., 2018).

The architecture adopted in this work is inspired by (Daudt

et al., 2018), which was also used for urban changing

detection. Both input images are treated independently. Each

branch of the Siamese network receives as input one patch

cropped from corregistered image pair. The two outputs are

concatenated producing the final feature vector (Zhang et al.,

2018), (Zagoruyko , Komodakis, 2015). Such vector is the

input to a classifier that assigns it to a class: deforestation and

no-deforestation. Similar to EF, the class label is assigned to

the central pixel of each patch. This process is summarized in

Figure 2.

3. EXPERIMENTS

3.1 Data Set Description

The study area is located in BLA, more specifically

in Pará State, Brazil, centered on coordinates of 03◦

17’ 23” S and 050◦ 55’ 08” W. This area has facing

a significant deforestation process that has been tracked

and monitored by PRODES (Valeriano et al., 2004).

Figure 3(c) shows the reference change map of deforestation

occurred between December 2016 and December 2017.

This data is freely available at the PRODES database

(http://terrabrasilis.dpi.inpe.br/map/deforestation). However,

some polygons of the reference were unconsidered because they

had been deforested in the previous years.

The dataset comprises a pair of Landsat 8-OLI images, with

30m spatial resolution. We applied an atmospheric correction

to each scene, and then, clipped them to the target area. The

final images have 1100 × 2600 pixels and seven spectral

bands (Coastal/Aerosol, Blue, Green, Red, NIR, SWIR-1,

and SWIR-2). The first image is from August 2nd, 2016

(Figure 3(a)) and the second one from July 20th, 2017

(Figure 3(b)). These dates were chosen due to the lower

presence of clouds, a common problem over all BLA region.

3.2 Experimental Setup

Our experiments relied on a pair of optical images acquired

approximately one year apart from each other.

In addition, the Normalized Difference Vegetation Index (NDVI)

was calculated for every pixel as in Equation 1. This index

quantifies the presence and quality of vegetation and it is

calculated using bands 5 and 4 for Landsat 8, corresponding

to the spectral reflectance measurements acquired in the

near-infrared and red regions.

NDV I =
NIR−Red

NIR+Red
(1)

The NDVI was stacked along the spectral dimension of the

corresponding images, resulting in images with eight bands.

The spectral bands of each image were normalized to zero

mean and unit variance. The input to EF was a tensor of

a size of 15-by-15-by-16 and to S-CNN a tensor of a size

of 15-by-15-by-8 in each branch and the input. We used

as baseline a SVM classifier, whose input was a vector of

dimension 15×15×16. In all cases, the patches were extracted

using a sliding window procedure with stride equal to three.

The window size for each method and the stride size were

chosen empirically.
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Image T1

Image T2

Concatenation Extract patches CNN model
Deforestation/

No-Deforestation

Figure 1. EF approach. Images at different dates (T1 and T2) are concatenated to produce an image pair; then, patches

are extracted and fed to the CNN model.

Image T1

Image T2

Concatenation

CNN model

Deforestation /

No-Deforestation

Extract patches

Extract patches CNN model

Shared

weights

Figure 2. Siamese network. Patches of each image (T1 and T2) are extracted and fed to the CNN model independently.

The two branches in the network share exactly the same architecture and parameter values.

(a) T1: August, 2016 (b) T2: July, 2017

1 32 4 5

6 7 8 9 10

11 12 13 14 15

Deforestation No-Deforestation

(c) Reference change map: from December 2017 to December 2018.

Figure 3. RGB composition of the selected Amazon Forest region at dates T1 (a) and T2 (b); and the deforestation

reference set (c). The study area is divided into 15 tiles.

Similar to (Zhang et al., 2018), we divided the input images into

tiles. We obtained 15 tiles as shown in Figures 3(a) and 3(b).

Tiles 1, 7, 9 and 13 were used for training, tiles 5 and 12 for

validation, and tiles 2, 3, 4, 6, 8, 10, 11, 14 and 15 for testing.

The number of available samples of class no-deforestation was
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much higher than that of class deforestation. So, we performed

data augmentation on samples of deforestation class. Each

training pair was rotated by 90◦, flipped in the horizontal

and vertical axis. In addition, we applied an under-sampling

technique on the majority class (no-deforestation) to balance

the number of training pairs for both classes. This way, we

obtained 8,118 training pairs for each class. The validation

set had 40,642 pairs, 963 of the deforestation class and

39,679 of no-deforestation class. This corresponded to the

class distribution in the test set, which comprised 1.716,000

pairs, of which 40,392 were deforestation pairs and 1.675,608

no-deforestation pairs.

To assess the influence of the number of training samples, we

also considered three different scenarios: using only training

samples from a single tile (13), from two tiles (1, 13) and from

three tiles (1, 7, 13), yielding 717, 2,127 and 5,421 samples per

class, respectively.

We selected the Radial Basis Function (RBF) as SVM kernel

with the γ parameter set to 0.00027 based on following

relationships: γ =
1

d
, being d the number of features, as

proposed in (Gola et al., 2019).The parameter C was set to 10.

This choice was based on a k-fold cross-validation procedure,

where k was set to five. The experiments were implemented

and carried out in the Python environment using the SVM

implementation of the Scikit-Learn (Pedregosa et al., 2011)

library.

The CNN architecture used for EF approach is illustrated in

Figure 4. It was composed of three Convolutional layers (Conv)

with ReLU as activation function, two Max-pooling (MaxPool)

layers and two Fully Connected layers (FC) at the end, where

the last one is a softmax with two outputs, one associated

to deforestation and the other one to no-deforestation class.

Regarding the S-CNN model, the two branches comprises the

same network architecture Figure 4, but it this case, the network

has only a fully connected layer at the end, then, the vectors at

the output of each CNN branch were concatenated to compose

a new feature vector, which represented the image pair.

The parameter setup of the CNN was: batch size was set

to 32 and the number of epochs was set to 100. To avoid

over-fitting, we used early stopping to break after 10 epochs

without improvement and dropout with rate set to 0.2 in the

last fully connected layer. In contrast to (Daudt et al., 2018),

where Average Stochastic Gradient Descent (ASGD) was used,

we employed the Adam optimizer, which presented a better

performance in our preliminary experiments with learning rate

of 10−3 and weight decay of 0.9.

4. RESULTS

Figure 5 summarizes the results of our experiments in terms of

F1-score of class deforestation achieved by the three methods

described in Section 2. The figure shows the performance

obtained by each method for different number of tiles used for

training.

S-CNN achieved the best performance in terms of F1-score

in all experiments. As expected, the methods improved their

performance as the number of training samples increased.

When just one tile was used for training, we recorded F1-scores

equal to 46%, 44% and 48%, for SVM, EF and S-CNN

respectively. SVM outperformed EF but was still below

S-CNN. This was not unexpected because SVM tends to

generalize well under scarce labeled data. In contrast, when

two, three and four tiles were taken for training, the EF and

S-CNN presented better performance than SVM. With four

training tiles, EF and S-CNN outperformed SVM in 10% and

13%, respectively, in terms of F1-Score. Clearly, the DL

methods benefited from the increase of training samples than

SVM.

We should bear in mind that, in the target application,

the classes are highly unbalanced with a predominance of

no-deforestation class. Then, under these conditions, the

F1-score often tends to decrease for deforestation class.

The results in terms of Overall Accuracy (OA) are presented in

Figure 6. As in the F1-Score, the results were improved when

the number of training tiles increased. In all scenarios, scores

above 90% were achieved. The scores went from about 95%,

for one tile, to 97% when four tiles were used. In comparison to

the F1-score results, the higher values for OA are related to the

higher number of no-deforestation samples that were correctly

classified.

Figures 7, 8 and 9 show the RGB composition of tile

2, 6 and 14, respectively, using four tiles for training.

They show the tiles in both dates as well as the change

maps delivered by each method. The maps show that

S-CNN better identified deforested areas (Figures 7-e, 8-e,

9-e). It achieved the highest true deforestation rate, so it

presented a lower false deforestation rate than SVM and EF,

demonstrating a more accurate result in these three tiles. On

the other hand, EF produced the lowest number of false

detections, but it did not correctly identify many areas that

suffered deforestation as revealed in Figures 7-d, 8-d, 9-d.

Notably, much of the false deforestation (reddish) and false

no-deforestation (blueish) occurred at the borders of true

detected deforested areas (yellowish). This type of error

might have resulted from inaccuracies in the delimitation of

deforestation polygons. Figures 7-c, 8-c, 9-c shows that SVM

presented low performance for deforestation detection. The

false deforestation rate was relatively high in all the cases:

many pixels were incorrectly identified as deforested areas. We

can also observe a salt-and-pepper effect in the SVM outcomes.

The same aforementioned trends are presented in the rest of the

test area.

5. CONCLUSIONS

This work reported an evaluation of recently proposed deep

learning based methods for detection of deforestation in the

Amazon forest. Three methods were tested: Early Fusion

(EF), Siamese Convolutional Neural Network (S-CNN) and

the Support Vector Machine (SVM), the last one taken as

the baseline. We used as database a region of the Brazilian

Legal Amazon, which has suffered under intense attacks in the

last few years. In our experiments, S-CNN was consistently

superior to its counterparts in terms of F1-score and Overall

Accuracy. The difference to the second approach, EF, was

in the range of 3% in terms of F1-score. Actually, in just

one experimental setup SVM outperformed EF but not S-CNN

by a small margin. Yet, in this case, as in all other tested

configurations, S-CNN and EF were much superior to SVM in

terms of F1-score.

It is worth mentioning that the performance recorded in our

experiments was generally below what was reported in the
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Conv1
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MaxPool2
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3x3x256
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Input
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    S-CNN: 8
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Figure 4. Parameters of the EF and S-CNN architecture.

Figure 5. F1-Score from each method using 1, 2, 3 and 4

Tiles for training.

Figure 6. Overall Accuracy from each method using 1, 2,

3 and 4 Tiles for training.

literature for the same methods to detect changes in urban areas.

This indicates that deforestation detection is comparatively a

more challenging task and more research is required to obtain

viable operational automatic solutions.

Future works are intended to fine-tune the hyperparameters of

the tested methods in order to reduce the false deforestation

rate. Another investigation is related to the usage of a sequence

of images for change detection instead of only an image pair,

as well as the usage of Synthetic Aperture Radar (SAR) data.

Indeed, the Amazon region is covered by clouds most of the

year, which limits considerably the usage of optical data. Under

these conditions, SAR data becomes an attractive alternative.
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Figure 7. RGB composition and the change maps predicted by SVM, EF and S-CNN on the tile number two, which is

part of the test region.
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Figure 8. RGB composition and the change maps predicted by SVM, EF and S-CNN on the tile number six, which is

part of the test region.
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Figure 9. RGB composition and the change maps predicted by SVM, EF and S-CNN on the tile number fourteen, which

is part of the test region.
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