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Abstract 
 
 

A series of simplified approaches are evaluated for their effectiveness to estimate the seismic vulnerability of 

historic masonry towers. First, collapse loads are evaluated on sixteen “idealized” benchmark cases with 
different slenderness and shear area. Both analytical and computational approaches are used, namely the 

analytical procedure proposed by the Italian Guidelines on the Built Heritage and pushover analyses conducted 
using the commercial codes UDEC and 3Muri. The sixteen towers are representative cases which can be 

encountered in practice. Their geometry is idealized into parallelepiped blocks with hollow square cross-

sections, thus favoring the utilization of 2D approaches, beneficial to drastically reduce the effort required for 
repeated computations. In addition, a Monte Carlo MC upper bound limit analysis strategy is proposed, in 

order to have an insight into the possible failure mechanisms for the different cases investigated. Deliberately 
is avoided the introduction of any form of irregularity and they are supposed isolated from the neighboring 

buildings, to obtain results exclusively dependent from geometric features. Among all the possible collapse 

mechanisms, five of them are selected according to the probability of occurrence based on past earthquake 
experiences. Five million cloud points of collapse accelerations are obtained by carrying the height, 

slenderness and shear area of the idealized towers. The approach is very fast and allows identifying different 
regions where single mechanisms are active. The results are confirmed repeating MC simulations with a 

triangular FE upper bound limit analysis discretization of the idealized towers. A series of equations are 

provided in order to assist engineers and practitioners to obtain a preliminary estimation of their expected 
collapse acceleration. For validation purposes, the results obtained previously with refined full 3D FE models 

of 25 towers located in the Northern Italy are reported. Satisfactory agreement between the predictions 
provided by simplified methods and sophisticated analyses are obtained. 
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1 Introduction 
The preservation of the architectural heritage is a task of great societal importance for developed 

countries in Europe and technically a very challenging aim, especially in seismic areas. Masonry 
towers in form of medieval defense structures as well as clock and bell towers in churches are quite 
diffused all over Europe and are an important part of the historical and architectural heritage to be 
preserved. Recent seismic events have highlighted that ancient masonry towers are particularly 
susceptible to damage and prone to partial or total collapses under earthquake excitations. The safety 
assessment of such unique masterpieces against horizontal loads is therefore paramount and this paper 
deals with such particular topic. Old masonry towers usually show peculiar morphologic and 
typological characteristics which are at the base of all the difficulties encountered in the recent past 
to find a standardized methodology to predict their behavior under horizontal loads and hence give a 
reliable safety assessment. 

In ancient times, towers were exclusively conceived to be able to withstand vertical loads. Recently, 
however, national and international standards (e.g. NTC 2008; Circolare N617 2009; DPCM 2011; 
EC8 2005) have imposed the evaluation of the structural performance in presence of horizontal loads, 
which simulate earthquake excitations, encouraging the use of sophisticated non-linear methods of 
analysis. According to the previous remarks, it is pretty clear that the most accurate approach to deal 
with the analysis of masonry towers under horizontal loads should require specific ad hoc FE 
approaches (Curti el al. 2006; Carpinteri et al. 2006; Riva et al. 1998; Bernardeschi et al. 2004; Pena 
et al. 2010; Bayraktar et al 2010; Milani et al 2012a; Milani et al. 2012b; Casolo et al. 2013; Acito et 
al. 2014; Valente & Milani 2016a, 2016b, 2017; Milani et al. 2017) in order to deal with the 
complexity of the problem through a suitable level of accuracy. 

However, in engineering practice, the utilization of non-linear methods and full 3D Finite Element 
models is not so common, because commercial codes with advanced material models should be 
adopted by users that are supposed to have a strong mathematical and mechanical background and 
deep knowledge on sophisticated non-linear analyses conducted with FEs. 

To cope with this key issue, the Italian code for the built heritage (DPCM 2011) allows evaluating 
the seismic vulnerability of masonry towers by means of a simple cantilever beam approach, where 
only flexural failure is taken into consideration. Such procedure is very straightforward and can be 
tackled even by unexperienced practitioners without the need of using any advanced computational 
methods of analysis such as FE codes. The drawback is represented by the impossibility to account 
for a combined shear and flexural failure of the towers, which in practice is common in case of low 
slenderness. 

In order to put at disposal to practitioners some formulas to preliminarily estimate the seismic 
vulnerability of an existing tower (without the need to perform any calculation), in the present paper 
we analyze a series of “idealized” benchmark cases using different simplified approaches, namely the 
procedure proposed by the Italian code and pushover conducted with two commercial codes (UDEC 
and 3Muri). The geometry is intentionally idealized into parallelepiped blocks with hollow square 
cross-section, favoring the utilization of 2D approaches, in order to drastically reduce the 
computational effort required in carrying out medium scale systematic computations and avoiding 
the introduction of any kind of irregularity, such as presence of a bell cell, openings, internal vaults 
etc. Also, the variation of thickness along the height, which is a very common feature for slender 
towers, falls within the wide case of “geometric irregularities” and is preliminary disregarded in this 
study to limit the high number of possibilities that can be encountered in reality. Intentionally with 
the aim of furnishing results exclusively related to their own geometric features, towers are also 
assumed isolated from the neighboring structures. Obviously, such hypothesis represents a strong 
limitation, because towers are often connected to adjacent structures (the church, in the case of bell 
towers; the city walls or other buildings in aggregate, in the case of civic towers), and will be removed 
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in a dedicated research, where both irregularities and interaction with neighboring buildings will be 
dealt with parametrically. Within the present simplified framework, 16 different cases that can be 
encountered in practice are critically discussed, changing three key parameters that proved to be 
important for the vulnerability determination, namely height, slenderness and transversal shear area.  

The simplifications introduced in the modelling phase allow for fast sensitivity analyses in the 
inelastic range and an estimation of the vulnerability in that range of slenderness that is useful for 
practical purposes. Simplified formulas fairly representing the obtained seismic vulnerability are also 
reported and put at disposal to any practitioner interested in a preliminary estimation of the behavior 
of the towers before doing any calculation. 

Then, a Monte Carlo (MC) upper bound limit analysis strategy is proposed, in order to have an 
insight into the possible failure mechanisms active in the different cases. Among all the possible 
collapse mechanisms, five (the most meaningful) are selected in light of the experience of collapses 
deriving from post-earthquake surveys. These are: (a) vertical splitting into two parts, (b) base rocking, 
(c) overturning with diagonal cracks (Heyman 1995; Como 2013), (d) a combination of splitting and 
diagonal overturning; and (e) base sliding. In the framework of the upper bound theorem of limit 
analysis, the real mechanism is the one associated to the minimum multiplier and, being the 
possibilities reduced to only 5 options, large scale MC simulations can be performed changing height, 
slenderness and shear area of the idealized towers. Hence, 5 million cloud points of collapse 
accelerations are obtained, allowing the identification of clearly defined regions where single 
mechanisms are active, as a function of slenderness, shear area and height. The results are 
substantially confirmed repeating MC simulations with a triangular FE upper bound limit analysis 
discretization of the idealized towers, which roughly provided very similar outcomes. For validation 
purposes, the results obtained previously by one of the authors (Valente & Milani 2016a, 2016b, 2017) 
by means of refined full 3D Abaqus discretization of 25 towers located in the Northern Italy are 
finally reported. Good agreement between the predictions provided by the simplified methods here 
proposed and previously presented reference data is obtained. 

2 The sensitivity analysis conducted 
The sensitivity analysis conducted in the present paper is aimed at covering the majority of the 

real cases that can be encountered in practice. It relies into the investigation of the structural behavior 
of 16 “ideal” masonry towers, with different geometric features, such as a variety of heights, 
thicknesses and transversal cross sections, as illustrated in Figure 1. Intentionally, the ideal towers do 
not exhibit any form of irregularity, such as changes of thickness of the perimeter walls, presence of 
perforations of any kind (doors, windows, bell cells, etc.) and internal walls, stairs or vaults. The aim 
is indeed to simplify the approach to a great extent, in order to provide results in terms of seismic 
vulnerability that are dependent on only two geometric parameters, namely slenderness and cross 
shear area. 
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Table 1: Initial survey conducted in different Italian regions to investigate the typical geometrical features most diffused 
in the national territory 

REGION B1(1) (m) B2(1) (m) H (m) t (cm)   
sA  

 
Base edge 

length 
Base edge 

length Height thickness 
Slenderness 

min-max 
Shear area 
min-max 

Abruzzo 4–10 4–10 20–50 130–150 2-6 0.4-0.90 

Campania 6–13 5–13 30–75 60–100 2.5-8 0.35-0.80 
Emilia-

Romagna 
2–12 2–12 16-87 45-160 3-8.5 0.28-0.85 

Marche 2.50-9 2.50-8 16-45 60-120 1.5-8 0.25-0.82 

Molise 5-6.50 5-7 20-35 100-200 2-6 0.30-0.90 

Toscana 5-10 6-10 27-55 130-260 2-9 0.35-0.85 

Veneto 4-15 4-14 20-58 80-200 3-7 0.28-0.85 
(1) In the present computations it is assumed B1=B2=B 

 
A preliminary work recently carried out at the University of Naples Federico II and partially 

presented in Formisano et al. (2017), deals with the geometric survey of several existing towers in 7 
Italian regions. Among other information, the survey reports as final result the typical ranges of 
variability of the height, base width and wall thickness of existing towers that can be found in Italy. 
A concise synopsis is provided in Table 1. Ideal towers analyzed in this paper turn out to exhibit 

slenderness   and normalized shear area sA  (defined respectively as  =H/B and 

 22 22 /sA B B t B      as depicted in Figure 2, where also minimum and maximum values of   

and sA  found during the survey are represented with green circles. From Figure 2, the ideal towers 

seem to fit well the general geometric characteristics of the real towers surveyed, meaning that they 
can be used to have a rough prediction of real cases under seismic loads. Each ideal tower is 

represented with its own symbol, differing in shape and color, so towers having small sA s are depicted 

with cold colors (i.e. blue and cyan), whereas those with large sA s with cool colors (i.e. yellow and 

red). Different values for  s are represented with different symbols, namely squares, triangles, circles 
and diamonds. Each tower belonging to the same series (denoted with A, B, C and D) is characterized 

by the same sA . 
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A series B series 

 
C series D series 

Figure 1: Geometric properties of the “ideal” case studies analyzed in the present paper. Each tower is labeled 
with a different symbol. Warm colors indicate large equivalent shear cross areas (>0.5), whereas cold colors 

indicate small equivalent cross areas. 
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             slenderness  

Figure 2: Relation between normalized shear cross area and slenderness for the 
different “ideal” towers analyzed for comparison purposes (green circles 

represent maximum and minimum values in different Italian regions, according to 
a survey made by the authors).  

3 Methodology of evaluation of collapse accelerations and seismic vulnerability 
In order to obtain the seismic vulnerability of the tower, three different approaches were utilized. 

These are: 1) the simplified approach according to Italian code (also known as Equivalent Static 
Analysis, ESA); 2) a push over analysis carried out using the UDEC software based on the distinct 
element method; and 3) a pushover analysis using the 3Muri software based on the finite element 
method. 

3.1 Italian code specifics, Equivalent Static Analyses (ESAs) 
According to the Italian Guidelines for the built heritage, equivalent static analyses (ESAs) should 

be carried out to estimate the seismic vulnerability of a masonry tower. They are conducted according 
to § 5.4.4 of the Guidelines (DPCM 2011)0, subdividing the tower in blocks with horizontal cross 
sections and adopting a distribution of horizontal forces on the blocks proportional to the product 
Wizi, being Wi the weight associated to the i-th block and zi the vertical position of its center of mass. 
When evaluating the resultant horizontal force as Fh = 0.85 Se(T1) W/(qg), reference is made to an 
elastic response spectrum Se reduced by the behavior factor q equals to 3.6 suggested by the above 
Guidelines in the case of geometry and mass regularity along the height. The spectral ordinate 
corresponding to the fundamental period T1 is referred to a given spectrum, which can be either 
obtained from the Italian code (NTC 2008) or from EC8 (2005). 

The fundamental period T1 can be evaluated rigorously in this case using the well-known results 
on vibration of Euler-Bernoulli beams, or either using FEs or through empirical procedures 
(Fabbrocino 2016) for real cases. In particular, the frequency assuming a cantilever beam hypothesis 
is given by the following simple formula: 

A

EI

L
f i

i 


22


 

( 1 ) 

Where   is the density of the structure, E  is the Young modulus, A  and I  the cross sectional area 
and inertia moment accordingly, L  the height and i  is a constant and is equal to 3.5156. 

According to the Italian Guidelines, it is necessary to compare the acting bending moments on 
different transversal sections, within the application of equivalent static loads and under the 
hypotheses of class use and soil done, with the resisting ones.  
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For towers with rectangular section, FEM may be avoided and simplified formulas could be 
adopted according to Italian Guidelines specifics (NTC 2008). Under the hypothesis that the normal 
pre-compression does not exceed 0.85 df A , the ultimate bending moment of a masonry rectangular 

sections is: 











d

u
af

A
b

A
M

85.02
00 

 
( 2 ) 

Where a  is the transversal edge length of the section, b  the longitudinal length edge, A  the 
section area, 0 /W A   the average pre-compression ( W : tower weight above the section considered) 

and df  the design compressive strength. In what follows, obviously we assume b a B  and 

 22 2A B B t   . 

External moments, within a cantilever beam hypothesis (subdivided into n elements), may be 
evaluated at the generic section j as: 

*

2

* 1

1

1

j hj j

j

i i
i

j jn

i i
i

n

i i
i j

hj hn

i i
i

M F z

z W

z z

zW

zW

F F

zW











 











 

( 3 ) 

With  10.85 /h dF S T W g  ( dS  spectrum, 1T  first period of the structure, g  gravity acceleration). 

In order to evaluate the seismic vulnerability of the tower, the Italian code suggests the evaluation 
of the so-called acceleration factor ,a SLVf . The acceleration factor is the ratio between soil peak 

accelerations corresponding to the capacity and the expected demand:  

SLVg

SLV
SLVa

a

a
f

,

, 
 

( 4 ) 

where SLVa  is the soil acceleration leading to the SLV ultimate state (SLV is an acronym that in 

the Italian Code indicates the ultimate limit state of life safeguard) and ,g SLVa  is the acceleration 

corresponding to the reference return period. The acceleration factor is a purely mechanical parameter, 
which may be useful for an evaluation of the weakness of the structure in terms of strength.  

The evaluation of the acceleration of the response spectrum corresponding to the instant where 
SLV limit state is reached on the i-th section can be obtained taking into account the reduction induced 
by the confidence factor as follows: 

 
,

1
, , 1

20.85

n

R i k k

k
e SLV i n n

C k k i k k

k i k i

qgM z W

S T

WF z W z z W



 


 
 
 
 



 
 ( 5 ) 

where q is the behavior factor, g the gravity acceleration, ,R iM  is the resistant bending moment 

on the i-th section, zk and Wk are the height and the weight in correspondence of the k-th section, 
respectively, W the total weight, FC the confidence factor (here assumed equal to 1.35), zi the height 
of the i-th section with respect to the base and n the number of cross sections.  
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3.2 UDEC model 
The distinct element method is an explicit method based on finite difference principles, derived 

from Cundall’s original work (Cundall 1971). It is presented in the two dimensional code UDEC 
(Universal Distinct Element Code) and the three dimensional code 3DEC, developed for commercial 
use by Itasca Ltd for either the static or dynamic analysis (ITASCA 2004). UDEC was developed 
initially to model sliding rock masses in which failure occurs along the joints (Cundall 1971). This 
has similarities with the behaviour of low bond strength masonry which often encountered in masonry 
towers (Sarhosis et al. 2016a). Typical examples of masonry structures that have been modelled using 
the discrete element method and UDEC software include masonry arches (Sarhosis et al 2014; 
Forgacs et al. 2017); wall panels (Sarhosis et al. 2015; Sarhosis & Sheng 2014; Bui et al. 2017); and 
ancient colonnades (Sarhosis et al. 2016b; Pulatsu et al. 2017). 

In UDEC, a masonry wall or a masonry structure can be represented as an assemblage of rigid or 
deformable distinct blocks which may take any arbitrary geometry. Rigid blocks do not change their 
geometry as a result of any applied loading and are mainly used when the behaviour of the system is 
dominated by the mortar joints. Deformable blocks are internally discretised into finite difference 
triangular zones and each element responds according to a prescribed linear or non-linear stress-strain 
law. Mortar joints are represented as zero thickness interfaces between the blocks. The soft contact 
approach is used, so a finite normal stiffness is taken to represent the measurable stiffness that exists 
at a contact or joint. A joint is represented numerically as a contact surface formed between two block 
edges. The representation of the interface between blocks relies on sets of point contacts (Sarhosis et 
al. 2016a). For each pair of blocks that touch (or are separated by a small gap), data elements are 
created to represent point contacts. Adjacent blocks can touch along a common edge segment or at 
discrete points where a corner meets an edge or another corner. 

A point contact hypothesis is used, see Figure 3, i.e. where the interaction force at each contact is 
a function of solely the relative displacement between blocks at that location. When two blocks come 
into contact, a force develops between them which can be resolved into normal and shear components. 

F s

Fn

us

u n

Old position

New position

 

Figure 3. Forces between blocks (left) and Representation of joints (center and right) within DEM (blocks are in 
contact, separation is shown for clarity) 

 

The simplest model of mechanical interaction is to assume that the blocks are connected by normal 
and shear elastic springs, Figure 3 (center and right), i.e. interaction forces are proportional to the 
relative displacement between the two blocks. This force-displacement law at the contacts is 
expressed in incremental form as: 

n n n

s s s

F K u

F K u

  

    ( 6 ) 

where nF  and nF  are the normal and shear force increments, nu  and su  are the normal and 

shear displacement increments, nK  and sK  are the contact normal and shear stiffnesses. 

 is the friction angle 

c is the cohesion 
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Contacts between two block edges (Figure 4-a) can be represented by two corner-edge contacts. 
The contact length, l, allows contact stresses to be calculated as (assuming a unit thickness): 

/

/
n n

s s

F l

F l






  ( 7 ) 

and stress increments to be expressed in terms of the usual joint normal ( nk ) and shear ( sk ) 

stiffnesses (stress/length) as: 
 

 

n n n

s s s

k u

k u




  

    ( 8 ) 

When blocks are discretized into a fine internal mesh (deformable blocks), grid-points may be placed 
along the original edges (Figure 4-b). These grid-points are treated as new corners, since the edge is 
now able to deform into a polygonal line. The same expressions are used, with contact lengths defined 
as shown in Figure 4-b, and where the length associated with each grid-point is equal to half the 
distance between the two closest grid-points located to each side of the edge it contacts. 

The overlaps displayed in these figures represent only a mathematically convenient way of 
measuring relative normal displacements. In finite element models, joints are similarly assigned a 
zero thickness, with overlapping indicating compressive joint stresses and separation indicating 
tension. If normal joint stiffness is increased, overlaps can be made as small as desired. 

(a) Edge-edge contact

l l

l1 l4l2 l3

C1

C2

C3 C4

(b) Contact lengths for fully-deformable blocks

 
Figure 4. Contact between blocks. 

 
A force-displacement law is used to find contact forces from known displacements. Incremental 
normal and shear displacements are calculated for each point contact.  
The basic joint model is the Coulomb slip, see Figure 5, capable of capturing several of the features 
that are representative of the physical response of joints. The necessary parameters to be defined are 
the normal and shear stiffnesses ( nk  and sk ), the friction angle (F) the cohesion (c) and the tensile 

strength (st). 
For the joints simulating the characteristics of masonry, a Coulomb slip model (linear elastic with 
damage and residual strength) is sufficient in the majority of the cases, see Figure 5. 
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Figure 5: Interfaces between two blocks constitutive laws (normal and shear) 

 
To perform pushover analyses, a so called “slow” dynamic approach is adopted, meaning that a 

distribution of horizontal forces is applied with a pre-assigned velocity and then the code finds the 
solution of the structural problem with an explicit approach, with possible non-linear behavior of the 
interfaces. This means that several dynamic analyses must be performed at different levels of the 
horizontal load applied to properly recover the entire global pushover curve. Obviously, before the 
application of any horizontal load, gravity loads are applied, as it occurs in common non-linear 
dynamic simulations.  

Towers under consideration are discretized in UDEC as shown in Figure 1. Such discretization has 
the following characteristics: 

1) It is two-dimensional, consistently with UDEC limitations, but takes into account the actual 
geometry assuming for the flanges (lateral walls) a thickness equal to B and for the core a 
thickness equal to 2t. 

2) By means of the discretization adopted, the code can provide failure modes under a pure 
flexural behavior, pure shear, vertical cracks or a combination of the previous typical failure 
modes observed in practice. 

3) It should be pointed out that the bottom row of elements in UDEC has been assigned as fixed 
in the horizontal and vertical direction, with potential consequences on the effective length of 
the towers in UDEC model. It is worth noting however that, when a no-tension material model 
is assumed and a failure due to the formation of a flexural hinge on the first horizontal interface 
from the ground, it is possible to find analytically the collapse load. If a reverse triangular 
distribution of horizontal actions is applied and 10 rows of elements are used (the most 
unfavorable mesh used here), it is easy to demonstrate that the ratio between the collapse load 
of the tower with interfaces at the base or shifted on the edge between first and second row of 
elements is 1.5/1.588, with a percentage error introduced equal to 5.87%, fully acceptable for 
practical purposes. In case of different failure modes, authors experienced that the error 
introduced is even lower. For this reason, it was made the choice to disregard this issue in the 
computations.  

It is worth mentioning that mechanical properties to assume for the masonry material in UDEC 
should be the same used when dealing with Italian Guidelines method, see Table 2. There are quite 
precise indications provided by the Italian Code NTC2008 (2008), Chapter 8, and subsequent 
Explicative Notes in this regard. In the paper, values adopted for cohesion and masonry elastic moduli 
refer to a masonry typology constituted by clay bricks (approximate dimensions 210 x 52 x 100 mm3) 
with very poor mechanical properties of the joint and quite regular courses. A low confidence factor 
FC = 1.35 should be also assumed. Such kind of masonry is typical for towers located in the Northern 
Italy, but calculations can be repeated also assuming different mechanical characteristics according 
to the Italian Code. In the impossibility in UDEC to precisely assign all the inelastic parameters 
provided by the Italian code, for interfaces a pure Mohr-Coulomb behavior is assumed, with friction 
angle 30°, higher than that suggested by the Italian code, to compensate cohesion and tensile strength 
totally vanishing. 
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A typical series of pushover curves obtained with UDEC is depicted in Figure 6 (only D typology 
is shown for the sake of conciseness), whereas in Figure 7 and Figure 8 the failure mechanisms found 
at the end of the simulations for all the 16 towers are depicted. As can be appreciated, there are several 
different mechanisms active, depending on the geometry of the tower investigated, and ranging from 
a pure rocking at the base (e.g. A1, A3) to a vertical splitting into two parts (e.g. B3). 

 

 
Figure 6: Typical pushover curves obtained with the software UDEC (D typology).  

 

 
Figure 7: Failure mechanisms found with UDEC, towers A-B. 
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Figure 8: Failure mechanisms found with UDEC, towers C-D. 

 
Table 2: Mechanical properties adopted for masonry and vaults infill 

 

Masonry with clay bricks 
and poor mortar 

fm 0  E G w 

MPa MPa MPa MPa kN/m3 
2.4 0.06 1500 500 18 

3.3 3Muri macro model 
The four types (A, B, C and D) of towers under investigation have also been modelled by means 

of the 3Muri macro-elements analysis software (Galasco et al. 2002; Lagomarsino et al. 2013; Stadata 
2016). Four masonry macro-elements have been assembled all together with effective joints at their 
intersection in order to create the box structure of the towers, which have been covered with a plane 
bi-directional rigid floor at the top (Figure 9-a). Therefore, towers are susceptible to undergo in-plane 
mechanisms only under the formation of shear and compression-bending failures, whereas local out-
of-plane collapses have not been taken into account. 

The same mechanical properties assumed for the previous two models have been adopted in 3Muri, 
see Table 2. A cracked condition has been assumed for Young and Shear moduli of the masonry, 
which however does not affect the calculation of the collapse acceleration. Linear dynamic (to 
estimate the first vibration mode) and non-linear static analyses have been performed on the towers 
considered.  

It is worth noting that, in practice, the evaluation of the ultimate load can be also carried out with 
manual calculations on the two shear walls loaded in plane, following Italian code formulas.  

Recalling the general Italian code NTC 2008, resisting shear tV  and bending moment for a 

masonry wall should be evaluated as follows. tV  assumes for existing buildings the following value 

(for diagonal cracks or Turnsek and Cacovic formula): 

0 0

0

1.5
1

1.5
d

t
d

V Lt
b

 


   
( 9 ) 

C1 C2 C3 C4

D1 D2 D3 D4
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where: 
- L B t   and t  are the panel width and thickness respectively; 
- b  is a coefficient depending on the panel slenderness. For / 1.5H b   it should be , but it is worth 

noting that the coefficient b is applicable in the case of a perforated wall modelled by the equivalent 
frame approach; in the case of a tower, each panel represents the web of the hollow section, where 
shear stresses are almost constant. Therefore, b=1 is used. 

- 0d  is masonry reference shear strength, obtained from the average masonry shear strength 0  by 

means of the relation 0 0 /d cF  , with CF  already defined; 

- 0  is the average vertical compressive stress, defined as 0 /N Lt  , where N  is the normal action 

on the panel at the iteration considered. 
On the other hand, tV  is evaluated for new structures as follows (base sliding shear): 

vdt tfLV '  ( 10 ) 
Where: 
- 'L  is the width of the compressed zone; 
-  0 0.4 /vd n cf F    is the design masonry shear strength. Here n  is the average compressive 

stress action on 'L  (i.e. / 'n N L t  ). The numerical coefficient 0.4 in the formula plays the role of 

friction, being the value of vdf  clearly obtained by means of the Mohr-Coulomb formula.  

In the majority of the cases, Eq. ( 4 ) furnishes values of tV  greater than Eq. ( 5 ) and this is the 

reason why here Eq. ( 5 ) is used. 
Finally, ultimate bending moment for rocking failure can be evaluated as follows: 

  du ftLM 85.0/12/ 00
2    ( 11 ) 

Where /d m cf f F , with mf  masonry average compressive strength ( / 0.7m kf f , kf  characteristic 

value). It is interesting to notice that Eq. ( 11 ) is conceptually identical to Eq. ( 2 ) and this is not 
surprising because the theoretical base is the same. 

 

 
 

 
No damage 
   

 
 
 
 
           

Plastic (compression – 
bending moment) 

 
 
 
 

Failure (compression – 
bending moment) 

 

 
 

-a -b 
Figure 9: Seismic pushover analysis in direction x with accidental 

eccentricity: the 3Muri model (a) and (-b) collapse mechanism 
experienced for all towers. 

 

The collapse mechanisms found with the pushover analyses conducted with 3Muri showed always 
rocking failure (Figure 9-b). It is interesting to notice that when a seismic accidental eccentricity is 

y 

x 



14 

 

considered, in all cases towers with the lowest slenderness (A1, B1, C1 and D1) exhibit the strongest 
coupling between translational displacement and torsion rotation, whereas all the remaining towers 
have a less pronounced torsion. However, it is worth noting that in the evaluation of the collapse 
acceleration to compare with other approaches, accidental eccentric is not taken into account, in order 
not to introduce possible causes of deviation from the expected results, being such parameter not 
considered in other approaches. It is also correct to disregard accidental eccentricity, not only because 
UDEC 2D model and the simplified formulation do not consider it, but because in this kind of 
structures the accidental loads are negligible, in comparison with permanent ones. In all investigated 
cases, towers show compression-bending plastic behavior and collapses only, without exhibiting 
shear failures. This is confirmed by the manual application of formula ( 11 ) on the two walls parallel 
to the application of the seismic load. Since Eq. ( 11 ) is theoretically identical to Eq. ( 2 ), but the 
former is applied only on two walls with thickness t1 and not on a hollow section, it is expected that 
3Muri furnishes a much smaller collapse acceleration, as confirmed by the results shown in the 
following Section.  

4 Straightforward interpolation formulas 

Results obtained with the three models proposed in terms of normalized collapse acceleration are 
depicted from Figure 10 to Figure 12. In particular, Figure 10 refers to Italian Guidelines, Figure 11 
to UDEC and Figure 12 to 3Muri. In the horizontal axis, slenderness is represented.  

A fitting exponential function is also reported with the corresponding equation, in order to give 
the possibility to any practitioner interested to enter into the diagrams and predict an acceleration at 
collapse on a real tower without the need to perform any computation. As a matter of fact, only the 
value of slenderness is needed.  

From an overall analysis of the obtained results, the following considerations are worth noting: 
1) Italian Guidelines and 3Muri outputs are almost completely independent from the normalized 

cross shear area, as shown by Figure 10 and Figure 12, where blue symbols almost superimpose 
with the corresponding red ones. Such results are quite obvious, because the observed failure 
mechanisms in 3Muri are flexural and the Italian Guidelines a priori exclude shear failures. In 
addition, as far as the Italian Guidelines are concerned, the evaluation of the resistant bending 
moment by means of formula ( 2 ) is little influenced by walls thickness, and this explains the 
small differences observed between series D (large shear area) and A (small shear area). 

2) UDEC results are quite sensible to shear area (see Figure 11), especially and as expected for 
low slenderness, i.e. where a shear failure is more likely. When slenderness increases, the two 
fitting curves (one for large shear areas the other for small shear areas) tend obviously to 
coincide, a clear indication that failure is purely flexural. 

3) Fitting function provided by 3Muri stands on the safe size, because the load carrying capacity 
(as already discussed) is evaluated only considering the two shear walls parallel to the 
horizontal action, whereas the actual hollow cross section should be considered to properly 
account for the box behavior favored by transversal walls. The most realistic prediction is 
provided by UDEC analyses, which are also sensitive to the different shear areas of the towers, 
thus providing, albeit approximate, an implicit indication on the failure mode. 
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Figure 10: Italian Guidelines for the Built Heritage. Normalized collapse 

acceleration ag/g vs slenderness and corresponding exponential fitting function. 

 

 
Figure 11: UDEC software. Normalized collapse acceleration ag/g vs slenderness 

and corresponding exponential fitting function. 
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Figure 12: 3Muri software. Normalized collapse acceleration ag/g vs slenderness and 

corresponding exponential fitting function. 
 

5 Limit analysis with pre-assigned failure mechanisms 

Sampling a limited number of pre-assigned failure mechanisms deduced from past earthquake 
experiences, it is possible to apply repeatedly the principle of virtual powers (in the framework of the 
upper bound theorem of limit analysis) and estimate very quickly a possible collapse acceleration ag 
normalized against the gravity acceleration g (it can be easily shown that ag/g corresponds to the 
collapse load) exhibited by a certain ideal tower, univocally defined by the knowledge of its height 
H, base B and wall thicknesses t1.  
In this framework, large scale Monte Carlo MC simulations can be repeated on such “ideal” towers 
(i.e. with square cross section and constant thickness) at a fraction of the effort needed in standard FE 
computations. 
For the sake of simplicity, we limited the study to few probable collapse mechanisms, assuming that 
the ideal tower can fail according to the five different schemes depicted in Figure 13. The choice is 
of course arbitrary but is based on the phenomenological awareness that they are the most probable, 
at least in practice. 
Mechanism #1 is typically observed for many existing masonry towers and is constituted by the 
vertical splitting into two portions and the rocking of such portions near the base. It is worth 

mentioning here that vertical ultimate shear 0v (i.e. shear stress along a vertical crack) should be 

higher than the horizontal one 0h (because of the interlocking effect, at least for regular masonry 

textures). However, to distinguish between 0v  and 0h would require the introduction of a further 

geometric parameter influencing load carrying capacities, namely masonry texture. As a matter of 
fact, different textures (considering also quasi periodic and random patterns) result into completely 
different orthotropic parameters for the masonry behavior at failure, as shown for instance in Milani 
et al. (2006a). The present paper is however devoted exclusively to the analysis of the behavior of 
towers as a consequence of their geometric features. Authors believe that, due to the variety and 
complexity of the patterns that can be encountered in practice, such analysis deserves dedicated 
research that is postponed in a specialized research.  
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Mechanism #2 is a monolithic rocking of the tower with cylindrical hinge at the base; such mechanism 
is the closest to Italian Code one. 
Mechanisms #3 exhibits an inclined crack pattern departing from the base, with consequent rocking 
of the upper part around the cylindrical hinge located on the compressed toe. It has been demonstrated 
by Heyman (1995) that such mechanism activates in case of leaning towers with full cross section 
and under the hypothesis of no tension material for masonry.  
Mechanism #4 is a combination of Heyman’s rocking and vertical splitting. It is worth noting that the 
sliding of the left block guarantees plastic admissibility on interfaces under the failure criterion 
adopted in the analyses.  
Finally, Mechanism #5 is a sliding of the upper part on a horizontal interface located near the base.  
It is worth noting that all mechanisms are admissible from a kinematic limit analysis standpoint. As 
a matter of fact, assuming for masonry the multi-surface isotropic failure criterion shown in Figure 
14-a, the jumps of displacements sketched in Figure 13 turn out to obey the plastic flow admissibility. 
It is interesting to notice that, for the sake of simplicity, we assumed a decoupled behavior between 
tangential and normal stresses. A more rigorous approach would require the adoption of a Mohr-
Coulomb failure criterion, which however is characterized by a slight complication in the definition 
of the jump of velocities on interfaces, since in this latter case a tangential velocity on an interface is 
always associated to a normal component.  
Such failure surface, which is obviously simplified, is consistent with the manual mechanisms of 
Figure 13 in terms of respect of the plasticity associated flow rule. In Mechanism #1, for instance, in 
case of adoption of classic limit analysis with a Mohr-Coulomb failure criterion, there would be axial 
separation between the right and left parts along the vertical crack, which is not present with the 
simplified approach proposed. The aim is to simplify computations to a great extent, in order to 
provide closed form formulas to give to practitioners and that can be used in common electronic 
spreadsheets. This, however, does not mean that the typical cohesive frictional behavior of masonry 
is lost, because the effect of the normal stress on tangential strength is taken into account increasing 
the ultimate shear strength according to the classic Mohr-Coulomb law. The typical increase of shear 
strength due to gravity loads (and friction angle) is taken indeed into account in Mechanism #5 when 
computing internal dissipation for horizontal cracks subjected to sliding, see Figure 13.Vertical stress 
acting on cracks is assumed equal to self-weight over the cross area, again a simplification commonly 
accepted in the specialized literature. On the other hand, authors experienced that the error committed 
in the evaluation of the collapse load for Mechanism #1 is lower than 1%, when as reference is 
assumed the rigorous associated plasticity approach. Similar outcomes are obtained for the other 
mechanisms. 
Large scale Monte Carlo simulations (5x106 of samples) are performed changing in a wide range 

tower height H, slenderness   and normalized shear area  . It is worth noting that the knowledge 

of H,   and   allows immediately evaluating the base width B and wall thicknesses t1 as follows: 

 1 1

B H

t B







   ( 12) 

In order to cover a wide range of possibilities that can be encountered in practical design, we adopted 

the following ranges for the geometric variability of the parameters: H between 5 and 80 m,   

between 1.5 and 15 and   between 0.1 and 0.9. 
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Figure 13: Different mechanisms considered in the kinematic simplified limit analysis approach proposed. 
Mechanism #1, rocking with vertical splitting. Mechanism #2, monolithic rocking. Mechanims #3, 

Heyman’s diagonal cracking and rocking. Mechanism #4, mixed Heyman’s mechanism with vertical 
splitting. Mechanism #5, base shear sliding. 

 

 
 

Horizontal, inclined and 
vertical interfaces 

 

 
(a) (b) 

Figure 14 (a) simplified failure surface adopted for the interfaces in Figure 13; (b) Triangular element used in 
the upper bound FE limit analysis (left), velocity jumps on interfaces between adjacent triangles (middle) and 

parametric FE mesh used to perform MC simulations with the kinematic FE limit analysis (right). 
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 Mechanism #1 
Mechanism 1 is a combination of rocking around the base with vertical splitting into two parts. It is 
worth mentioning that such mechanism is frequently observed during post-earthquake surveys on 
collapsed towers.  
According to the sketch shown in Figure 13, the collapse multiplier associated to such mechanism is 
the following:  

 
1 2

1 2

2
1 1 1 1 1 1

0 2 1 2 1 2 1 1 1

1
2 4 2 4 2 2 2 2 2 2 2

A B B C t t t t

A A B B C

B t B t B t t B t B B B t
W W W W BHt f at f t t f t t t f at

z W W W W




                             
        

  
 ( 13) 

Where, exception made for symbols already introduced, the different quantities (see also Figure 13) 
can be evaluated as follows: 

- 1A MW t aH , 
1 2B MW t BH , 

2 2B MW t BH  and 1C MW t aH  are the different weight of the blocks 

( M  is masonry specific weight); 

- a  is tower width along the transversal direction and here kept equal to B  and 2t  is the 

thickness of the walls along the longitudinal direction; 
- Az  is the vertical position of the horizontal load dependent on the load multiplier, which in 

this case it is kept equal to 
2

A
H

z   in agreement with classic limit analysis computations, even 

if Italian Code utilizes a reverse triangular distribution of seismic loads, i.e. 2

3
A

H
z  . However, 

it is worth mentioning that no theoretical difficulties arise if a triangular distribution assumed 
instead of the classic constant one.  

 Mechanism #2 
According again to Figure 13, Mechanism #2 is a simple rocking around the base, which is the 
mechanism closest to the Italian code. Some differences are however noticeable, as for instance the 
different evaluation of the ultimate bending moment for the Italian code, which involves a cantilever 
beam approach, a limited compressive strength and a simplified evaluation for hollow sections. These 
results in a different evaluation of the collapse acceleration, as will be shown later on. The collapse 
multiplier associated to Mechanism #2 is the following:  

 

 

1 1 1 1
2 2 1 2

2

2 2
2 2 2 2 2 2

A B C t t t

A A B C

t B t t B t
W B W W f at B f t B t f at

z W W W


             
   

   
( 14 ) 

Where 1 2B B BW W W  , 
2

A
H

z   and all the other symbols have been already introduced. 

 Mechanism #3 
With reference to Figure 13 , Mechanism #3 inspired by the results found by Heyman Ref in case of 
leaning towers. The analogy between leaning towers and seismic load makes sense because it can be 
easily shown, indeed, that the out-of-verticality angle has the same effect of the application of a 
horizontal load. Assuming masonry unable to withstand tensile stresses, Heyman shown that a limit  
out-of-verticality exists that makes the tower collapse under gravity loads for the formation of a 
mechanism constituted by a diagonal crack departing from the base and ending on the opposite side, 
having a non-linear shape. Heyman discussed his results for a full rectangular cross section. It can be 
easily shown that the linearization of the crack curve forming the mechanism is affected by an error 
of about 3% on the collapse load, therefore fully acceptable for practical purposes. The procedure of 
linearization can be repeated for a hollow thin walled cross section. It can be proved that the angle   
in Figure 13 assumes the following values: tan 0.573 /H B  and tan 0.20 /H B  for full and hollow thin 
walled sections, respectively. In the Monte Carlo simulations treated hereafter we use a linear 
interpolation between the two values in order to take approximately into account the real thickness of 
the walls. 
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Under such hypotheses, the collapse multiplier is the following: 

3
AR AR At At BR BR Bt Bt CR CR Ct Ct i

AR AR At At BR BR Bt Bt CR CR Ct Ct

W x W x W x W x W x W x P

W z W z W z W z W z W z


     


      ( 15 ) 

Where the symbols have the following meaning: 

-   1
1 tan tan tan

2 2 2
AR M AR AR

H B t
W at H B z B x B          ; 

- 2
1 1 1

1 1 2
tan tan tan

2 3 3
At M At AtW at z B t x B t       ; 

-      1 2 1 1
1

2 2 tan tan
2 2

BR M BR BR
B

W B t t H B t z H H B t x                 ; 
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2 3 3
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-   1
1 1 1 1

1
tan tan tan

2 2
CR M CR CR

t
W H t t a z t H t x           ; 

- 2 1
1 1

1 2
tan tan

2 3 3
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t
W t z t x    ; 

- 
2 2 2 2 2

1 1 1 1
2

1 1

2 cos cos cos 2 cos cos
i t t t

t B t t B B t
P Bf t f Bf

    

                                            
. 

 Mechanism #4 
Mechanism #4, Figure 13, is a combination between Heyman’s failure mechanism and vertical 
splitting in the middle section. It is sometimes observed in real cases and also is provided by UDEC 
code, compare for instance Figure 7 and Figure 8.  
Assuming such composite mechanism, the collapse load can be evaluated using the following formula: 

1 1 2 2 2 2
4

1 1 2 2 2 2

AR AR B R B R B R B R B t B t CR CR Ct Ct i

AR AR B R B R B R B R B t B t CR CR Ct Ct

W x W x W x W x W x W x P

W z W z W z W z W z W z


     


      ( 16 ) 

Where the symbols have the following meaning: 
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. 

 Mechanism #5 
The last Mechanism #5, Figure 13, is a pure shear sliding at the base, which is expected to be possible 
for small slenderness and low friction angles. 
The associated collapse multiplier is the following: 

 1 2 1
5

2 2 2

A B C

at t B t

W W W




   
   ( 17 ) 
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Where we assume that 
  0

2 1

tan
2 2

A B CW W W

aB a t B t
 

 
  

  
. It is worth noting that the simplified failure 

surface adopted in the computations, see Figure 14, allows for an independent deformation of the 
interface under shear and normal actions. This implies that blocks are not subjected to a spurious 
displacement due to the fulfilment of plastic admissibility on the interfaces, but at the same time the 
Mohr-Coulomb behavior (i.e. increase of the tensile strength with pre-compression, ruled by the 
friction angle) is preserved.  
In the framework of the upper bound theorem of limit analysis, the failure mechanism active is 
associated to the minimum of the collapse loads evaluated from Eq. ( 13) to ( 17 ), which represents 
the ag/g ratio that the tower can carry in an incipient state of failure.   

6 Limit analysis with an upper bound triangular FE approach 

MC simulations can be also performed with a 2D FE kinematic limit analysis software, as that 
proposed by one of the authors in Milani et al. (2006b).  
Such FE limit analysis approach is based on the upper bound theorem of limit analysis and uses 
triangular elements with linear interpolation of the velocity fields and interfaces, Figure 14-b, where 
velocity jumps can occur. Classically, to find the collapse load of a structure with a finite element 
discretization, in the framework of the upper bound theorem, a linear programming problem is written 
where the objective function to minimize (under equality and inequality constraints) is represented 
by the total internal power dissipated. 
Equality constraints collect compatibility, plastic flow in continuum and on interfaces and boundary 
conditions. 
For the sake of clarification, hereafter we discuss in brief some of the most important features on the 
constraints to be imposed, referring the reader to Milani et al. (2006b) for further details. As a matter 
of fact, one important equality set of constraints to be imposed at the interface between two adjoining 
elements    nm  , involves nodal velocities of the elements and jumps of velocity on the common 

interface. In particular, it can be easily shown that after trivial algebra, the tangential and normal 
jumps on interfaces depend linearly on the Cartesian nodal velocities of elements    nm  , resulting 

into four linear equalities per interface, that in a general form are written as 

0uAuAuA  eqEneqEmeq
131211 , where u  is a 4 1x  vector collecting velocity jumps of the interface 

nodes (one tangential and one normal per node), Emu  and Enu  are the 16x  vectors collecting the 

velocities of the elements  m  and  n  respectively, eq
11A  and eq

12A  are 94x  matrices depending only 

on nodal coordinates of element  m  and  n , respectively, and eq
13A  is a 44x  geometric matrix of 

the interface. 
Another important set of equality constraints representing the plastic flow in continuum (obeying an 
associated flow rule) must be written for each triangular element. In particular, three equations must 
be written as follows: 
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   ( 18 ) 

where E
plİ  is the plastic strain rate vector of element E , 0E  is the plastic multiplier, CS  indicates 

a generic (non) linear failure surface for continuum and  T

yx
C Ȉ  is the plane-stress vector 

in continuum ( x : normal x -axis stress, y : normal y -axis stress,  : tangential stress).  

There is the possibility to solve the limit analysis problem using consolidated linear programming 
routines, after a suitable linearization with m  planes of the failure surface in the form 

inCinCS bȈA  , where inA  is a 3mx  matrix (each row corresponds to coefficients of one 
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linearization plane) and inb  is the 1mx  vector of linearization planes right hand sides. Within such 
assumption, and remembering that the velocity interpolation inside one triangular element is linear, 

three linear equality constraints per element can be written as   0ȜAuA  ETinEeq 
21   where Eu  is 

the vector of element velocities, EȜ  is the 1mx  vector of plastic multiplier rates of the element (one 

for each plane of the failure surface), and eq
21A  is a 63x  matrix of coefficients depending on the 

coordinates of the element nodes. 
It is worth also noting that, analogously to continuum, a similar set of equality constraints must be 
imposed for interfaces in order to cope with the plastic flow condition on interfaces. 
Boundary conditions translate into mathematics with further equality constraints, whereas the 
admissibility of the plastic flow requires that plastic multiplier rates (of interfaces and continuum) are 
non-negative, being strictly positive only those active, i.e. associated to a plasticization of the node.  
After some elementary assemblage operations, a simple linear programming problem is obtained (the 
reader is again referred to Milani et al. (2006b) for a comprehensive discussion on the topic) where 
the objective function is represented by the total internal power dissipated minus the power expended 
by the loads independent from the load multiplier: 

   , 0min

such that

T T
in ass in ass T
ass E I ass I

eq eq

ass
E

ass
I

  
  

 
    

 

b Ȝ b Ȝ P u

A U b

Ȝ 0

Ȝ 0

 
( 19 ) 

where:  

- in
assb  and in

assI ,b  are the assembled right-hand sides of the inequalities, which determine the linearised 

failure surface of the material of the continuum and of the interfaces, respectively; 

- 0P  is the vector of nodal loads independent from the load multiplier; 

-      
T

T T T
T ass ass ass

E I
 

  
 

U u Ȝ u Ȝ  is the vector of global variables, which collects the vector of 

assembled nodal velocities ( u ), the vector of assembled element plastic multiplier rates ( ass
EȜ ), the 

vector of assembled velocity jumps on interfaces ( assu ), and the vector of assembled interface 

plastic multiplier rates ( ass
IȜ ); 

- eqA  is the overall constraints matrix and collects velocity boundary conditions, relations between 
velocity jumps on interfaces and elements velocities, constraints for plastic flow in velocity 
discontinuities and constraints for plastic flow in continuum. 

It is worth noting that   ass
E

Tin
ass Ȝb   and   ass

I

Tin
assI Ȝb 

,  in the objective function represents the total power 

dissipated by the continuum and by the interfaces, respectively.  
Within a computations scheme where MC simulations must be performed, we assume the parametric 
mesh shown in Figure 14-b, which is sufficiently flexible to allow to speed up limit analysis 
computations, without the need to utilize a new mesh for the following simulation.  
A total of 100000 FE simulations have been performed, which took more than 5 days of processing 
time on a common PC with 8Gb RAM. Whilst limit analysis with pre-assigned failure mechanisms 
allow for larger simulations (hereafter a 5x106 cloud of points is utilized) with a minimal 
computational effort (less than 2 minutes), FE limit analysis can be regarded as a further validation 
of the approach proposed, because at least theoretically a procedure based on pre-assigned failure 
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mechanisms could in principle overestimate collapse loads, with an incorrect evaluation of the active 
failure mechanism. 

7 Results of MC simulations 

Monte Carlo simulations are conducted on a population of 5x106 ideal towers utilizing the approach 
based on the five pre-assigned failure mechanisms.  
Three sets of simulations are repeated, changing slightly the mechanical properties of the interfaces 
according to the sensitivity scheme summarized in Table 3. 
From a detailed analysis of Table 3, it can be observed that Case 1 is characterized by a fairly good 
cohesion for the interfaces, an almost vanishing tensile strength (which well approximates the no-
tension material hypothesis done by both the Italian Code and Heyman 1995) and a reasonable friction 
angle, very near to that assumed by Italian Code NTC 2008. Case 2 is characterized by vanishing 
cohesion and tensile strength and small friction angle. This situation, as it will be discussed later on, 
favors a sliding failure mechanism, at least for small slenderness values. It is also worth noting that 
Case 1 and Case 2 are two cases where tensile strength can be considered reasonably. However, Case 
1 has a quite high cohesion, whereas in Case 2 cohesion is lower, more near to a NTM hypothesis 
with frictional behavior. Case 3 is characterized by very good cohesion, small but non-zero tensile 
strength and reasonable friction angle.  
 

Table 3: Mechanical properties adopted for interfaces for different cases in MC simulations. 
 
 0  [MPa] tf  [MPa]   [Deg] 

Case 1 0.10 0.1 0  26 

Case 2 0.05 0.5 0  15 

Case 3 0.2 0.25 0  26 

 
Results obtained with MC simulations for Case 1 are shown in Figure 15. In subfigures from –a to –
c, the normalized collapse accelerations so obtained, i.e.  1 5/ minga g   , is plotted for 

each sampled tower against slenderness (Figure 15-a), tower height H (Figure 15-b) and normalized 
shear area (Figure 15-c). 
Each sample is represented by a thick dot, with a color correspondent to the failure mechanism active, 
so that color yellow is used for Mechanism #1, blue #2, purple #3, green #4 and red #4. 
As can be observed, MC results cumulate on well-defined areas of influence with different colors, 
which clearly indicate that different failure mechanisms are active for well-defined ranges of 
slenderness. 
An interesting remark is that blue-failure mechanism (#2) is active only for large values of slenderness, 
meaning that the approach suggested by the Italian code may exhibit some strong limitations outside 
this range, because based on the activation of a failure mechanism which is improbable in reality. The 
determination of the active failure mechanism, indeed, appears particularly important in light of a 
possible strengthening intervention aimed at a vulnerability reduction. 
The most probable failure mechanisms (observed in the majority of the cases) are either a “Heyman-
type” collapse (with the formation of an inclined yield line) or a vertical splitting into two portions. 
Such outcome appears fully in agreement with post-earthquake surveys. Green failure mechanism, 
i.e. a combination of the previously mentioned two mechanisms clearly constitutes the smooth 
passage between vertical splitting and inclined rocking, in the region with smaller slenderness, 
probably because of the pure shear failure of the upper left portion of the tower.  
Monolithic rocking at the base is possible (blue failure mechanism) but unlikely and occurs only for 
very large values of slenderness, which are also uncommon in practice. 
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Results obtained for Case 2 are synoptically depicted in Figure 16. In this particular situation, we are 
in presence of all the five failure mechanisms, with a strong reduction of the area where the inclined 
rocking (#3) is active, in favor of monolithic rocking (#2). Also, vertical splitting seems to become 
more probable, clearly providing normalized collapse accelerations lower than those obtained with 
Mechanism #2. Whilst in this case monolithic rocking appears more probable, the corresponding 
collapse acceleration is however always larger than that provided by Mechanism #1, so not on the 
safe size. It is also interesting to point out that the relatively small friction angle allows in this case a 
sliding failure (red Mechanism #5) which obviously occurs for towers exhibiting small slenderness. 
It is interesting to notice that in the same figure results obtained with both the procedure proposed by 
the Italian code and UDEC are also represented. Thick black curve refers to the interpolation 
exponential formula found in the previous section assuming Italian code data, whereas dashed curves 
refer to UDEC results. Such curves are multiplied roughly by 4/3, because the distribution of 
horizontal loads adopted in MC limit analysis is constant, whereas for both UDEC and Italian code 
is reverse linear. It is also worth noting that Case 2 is the most adequate to compare with, because 
mechanical properties of the interfaces approximate a no tension material.  
As can be observed, Italian code data (but UDEC as well in the majority of the cases) generally stand 
within the scatter area provided by MC simulations, but once again it is stressed how the active failure 
mechanism involves in the majority of the cases vertical shear cracks. UDEC trend is generally 
characterized by low collapse accelerations for large slenderness, with a deviation from MC scatter 
data. Italian code results seem to be less sensitive to slenderness, but the trend is conceptually similar. 
This feature can be justified by the role played by the assumption done in MC simulations of an 
infinite compressive strength, which can lead to an overestimation of the corresponding resisting 
bending moment on interfaces, see Eq. ( 2 ). 
Finally, in Figure 17, the same results are replicated for Case 3, which seems to represent an 
intermediate situation between the previous two, where four of the five possible mechanisms are 
active. Again, green mechanism liaises with #1 and #3 and this appears pretty obvious being #2 a 
combination of them.  
Blue mechanism, i.e. #2 (the one with the highest similarity with the Italian code) seems to increase 
its probability of occurrence, as shown by the extension of the blue scatter area. At least qualitatively, 
this last case seems the nearest to Italian code predictions, with a range of slenderness where rocking 
failure is possible much larger.  
Again, the quantitative differences between Italian code prediction and present approach can be 
justified into the different formulas utilized to evaluate the ultimate bending moment (an approximate 
approach is adopted by the Italian code) and the adoption in the present investigation of non-null 
values for both tensile and tangential strength.  
Data scatter seems larger in the last two cases, probably because of the possibility to activate more 
failure mechanisms (like the vertical splitting) that are quite sensible to a variation in the tower 
geometry and mechanical properties of the interfaces. 
For Case 1, also FE upper bound limit analysis computations are performed on a sample of 100000 
replicates, assuming for the interfaces the same failure criterion adopted in Figure 14-a. Results are 
summarized in Figure 18 in terms of ag/g versus slenderness. A comparison with Italian code data 
and UDEC is also reported, in this case without multiplying fitting curves by 4/3 because in the FE 
limit analysis computations a reverse triangular distribution of horizontal loads is applied. The 
deviation on the collapse load at large values of slenderness can be again justified by the assumption 
of good mechanical properties for the interfaces with an infinite compressive strength.  
As can be noted from the results, there is general agreement between MC FE limit analysis results 
and previously discussed approaches in terms of collapse acceleration, but again the variety of the 
failure mechanisms numerical found is much wider. For the sake of completeness, in Figure 18-b 
three different mechanisms (roughly corresponding to manual mechanisms 2, 3 and 4 evaluated 
previously) obtained with FE limit analysis at three slenderness values are represented. The limit 
analysis with FE exhibits a smooth transition between different mechanism and this feature is in 
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common with UDEC, which to some extent is able to fairly capture such variability, see Figure 7 and 
Figure 8.  
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Figure 15: Case 1, Monte Carlo (5mln points) ag/g diagrams and active 
mechanisms. 
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Figure 16: Case 2, Monte Carlo (5mln points) ag/g diagrams and active 
mechanisms. 
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Figure 17: Case 3, Monte Carlo (5mln points) ag/g diagrams and active 
mechanisms. 
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Figure 18: Case 1, Monte Carlo simulations performed with the FE upper 
bound limit analysis approach.-a: ag/g vs slenderness diagram. –b; some 

meaningful failure mechanisms found. 
 

8 Comparison with real case-studies 

One of the authors of this paper performed in the recent past different FE vulnerability analyses 
on 25 existing masonry towers located in the Northern Italy (Valente & Milani 2016a, 2016b, 2017). 
Partial results of the analysis are available in Valente & Milani (2016a) where the reader is referred 
for a full insight of the geometry and the numerical strategies adopted to evaluate the seismic 
vulnerability and hence the acceleration factors. In brief, the analyses where carried out using refined 
3D FE discretizations within the commercial code ABAQUS (2006), assuming for masonry a 
sophisticated Concrete Damage Plasticity (CDP) model and performing non-linear static and dynamic 
simulations. By means of such approach, it was possible to evaluate the acceleration factor of each 

=3 =6.3=4
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tower and therefore such data can represent a valuable reference to eventually benchmark the results 
obtained with the simplified approaches here adopted. In Figure 19, Figure 20 and Figure 21 the 
acceleration factors found with Italian code approach, UDEC and 3Muri respectively are depicted 
against tower slenderness. The spectral ordinate corresponding to the fundamental period T1 is here 
referred to a seismic zone Z1 by EC8 with soil D. Italian code is not utilized in this case because the 
spectrum is given there only knowing the latitude and longitude of tower location instead giving 
distinct seismic zones. 

For the sake of comparison, the acceleration factors of the aforementioned 25 real towers are also 
represented using green diamonds.  
As can be noted, the vulnerability of the real 25 towers is generally well predicted by the fitting curves 
provided by all models. Italian Guidelines curve slightly overestimates the acceleration factor, clearly 
because it does not take into account the presence of irregularities.  
However, once again and for the reasons previously discussed, the variability of the failure 
mechanisms is totally lost in both Italian code and 3Muri, whereas only UDEC seems able to 
reproduce –despite roughly- vertical splitting and rocking at the base. In Figure 22 the results in terms 
of damage patterns (red: full damage, blue: no damage) obtained in ABAQUS for 6 of the 25 real 
towers studied are depicted with the aim of having an insight into the different failure mechanisms 
active. As can be observed, towers are ordered from the left to the right at increasing slenderness. In 
general, the transition is consistent with MC results obtained with pre-assigned mechanisms (see 
Figure 16), so that a small slenderness favors a sliding at the base and then, smoothly all the other 
mechanisms become active, ending with the vertical splitting that is observed for moderate/high 
slenderness values. 

 
Figure 19: Italian Guidelines for the Built Heritage. Acceleration factor vs slenderness, comparison between 

idealized approach and real case studies. 
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Figure 20: UDEC software. Acceleration factor vs slenderness, comparison between idealized approach and real case 

studies. 
 

 
Figure 21: 3Muri software. Acceleration factor vs slenderness, comparison between idealized approach and real case 

studies. 
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Figure 22: Damage patterns (red: full damage, blue: no damage) obtained in Abaqus for 6 real size and configuration 
towers in order of increasing slenderness. 

 

9 Conclusions 

We have presented several different simplified approaches to roughly predict, without needing any 
calculation, an estimation of collapse acceleration and associated active failure mechanism of 
masonry towers subjected to seismic excitation. The approaches used rely into (1) a simplified 
approach by Italian Code, (2) UDEC, (3) 3Muri and (4) an upper bound limit analysis performed 
either with pre-assigned failure mechanisms or FEs. The procedure is applied on idealized towers, 
geometrically regular (without openings, bell cells and internal vaults) exhibiting variable height, 
cross shear area and slenderness. By means of the application of models (1) - (3) on 16 idealized 
towers we presented simplified fitting formulas to predict, without any computation, the collapse 
acceleration and acceleration factor of any existing tower as a function of slenderness. Model (4) 
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allowed performing large scale Monte Carlo simulations, showing how different failure mechanisms 
can take place in dependence of the geometrical features of the structures.  

The results have been also benchmarked using previously presented vulnerability studies 
conducted on 25 real case-studies, showing a satisfactory agreement.  

The comparative study however puts in evidence how Italian Code, which bases on the assumption 
of failure for the formation of a flexural hinge (in this case at the base thanks to the regularity of the 
examples treated) provides collapse accelerations generally on the safe side, but with a possibly 
wrong failure mechanism. This limitation appears particularly important in light of a strengthening 
intervention, where the knowledge of the crack pattern is mandatory. UDEC on the contrary, despite 
roughly, seems to provide more accurate mechanisms to be used for practical purposes. 

Finally, in UDEC an important question arises on the choice of the optimal mesh. In order to be 
effective, indeed, UDEC (like any other DEM code available in the market) would require that the 
edges of the blocks preferentially coincide with the active crack patterns. In the simulations performed 
in the present paper, it has been shown that the active failure mechanism involves only vertical and 
horizontal yield lines, therefore a rectangular discretization is perfectly adequate. When Mechanisms 
#3 and #4 are active, i.e. when failure involves some inclined yield lines, a regular pattern of blocks 
still adapts reasonably well, because the inelastic deformation zigzags around the real inclined crack. 
If the refinement is relatively high (even medium meshes proved to be effective), the approximation 
turns into a slight overestimation of the load carrying capacity, which can be considered fully 
acceptable for practical purposes. 

References 
ABAQUS®, Theory Manual, Version 6.14, 2006. 

Acito M., M. Bocciarelli, C. Chesi, G. Milani, Collapse of the clock tower in Finale Emilia after 
the May 2012 Emilia Romagna earthquake sequence: Numerical insight. Engineering 
Structures, 72, 70-91, 2014. 

Bayraktar A., A. Sahin, M. Özcan, F. Yildirim, Numerical damage assessment of Haghia Sophia 
bell tower by nonlinear FE modeling. Applied Mathematical Modelling, 34, 92–121, 2010. 

Bernardeschi K., C. Padovani, G. Pasquinelli, Numerical modelling of the structural behaviour 
of Buti’s bell tower. Journal of Cultural Heritage, 5, 371–378, 2004. 

Bui T.T., A. Limam, V. Sarhosis, M. Hjiaj, Discrete element modelling of the in-plane and out-
of-plane behaviour of dry-joint masonry wall constructions. Engineering Structures, 136, 277-
294, 2017. 

Carpinteri A., S. Invernizzi, G. Lacidogna, Numerical assessment of three medieval masonry 
towers subjected to different loading conditions. Masonry International, 19, 65–75, 2006. 

Casolo S., G. Milani, G. Uva, C. Alessandri, Comparative seismic vulnerability analysis on ten 
masonry towers in the coastal Po Valley in Italy. Engineering Structures, 49, 465-490, 2013. 

Circolare n° 617 del 2 febbraio 2009. Istruzioni per l'applicazione delle nuove norme tecniche 
per le costruzioni di cui al decreto ministeriale 14 gennaio 2008. [Instructions for the application 
of the new technical norms on constructions]. 

Como M., Statics of Historic Masonry Constructions, Springer, 2013 

Cundall P.A. A computer model for simulating progressive, large-scale movements in blocky 
rock systems. In: Proceedings of the International Symposium on Rock Mechanics, Nancy, 
France, 129–136, 1971. 



34 

 

Curti E., S. Lagomarsino, S. Podestà, Dynamic models for the seismic analysis of ancient bell 
towers. In Proc.: Lourenço PB, Roca P, Modena C, Agrawal S (Eds.), Structural Analysis of 
Historical Constructions SAHC-2006, MacMillan, New Delhi, India. 

DPCM 9/2/2011. Linee guida per la valutazione e la riduzione del rischio sismico del patrimonio 
culturale con riferimento alle Norme tecniche delle costruzioni di cui al decreto del Ministero 
delle Infrastrutture e dei trasporti del 14 gennaio 2008. [Italian guidelines for the evaluation and 
the reduction of the seismic risk for the built heritage, with reference to the Italian norm of 
constructions]. 

EC8. EN 1998-3, Eurocode 8: Design of structures for earthquake resistance – Part 3: Assessment 
and retrofitting of buildings. European Committee for Standardization, Brussels, Belgium, 2005.  

 

Fabbrocino F., Estimation of the natural periods of existing masonry towers through empirical 
procedure. International Journal of Sustainable Materials and Structural Systems, 2(3-4), 250 
–261, 2016.  

Forgacs T., Sarhosis V., Bagi K., Minimum thickness of semi-circular skewed masonry arches. 
Engineering Structures, 140, 317–336, 2017. 

Formisano A., Vituat. R., Milani G., Sarhosis V., Parametric seismic analysis on masonry bell 
towers. In Proc. ANIDIS 2017, XVII Congress of the Italian Association of Seismic 
Engineering. Pistoia, Italy, 17-21 September 2017, 2017. 

Galasco A., S. Lagomarsino, Penna A., TREMURI Program: Seismic Analyser of 3D Masonry 
Buildings, University of Genoa, Italy, 2002. 

Heyman J., The stone skeleton, Cambridge University Press, 1995. 

ITASCA: UDEC – Universal Distinct Elements Code Manual. Theory and Background, Itasca 
consulting group, Minneapolis, USA, 2004. 

Lagomarsino S., Penna A., Galasco A., Cattari S. TREMURI Program: An equivalent frame 
model for the nonlinear seismic analysis of masonry buildings. Engineering Structures, 56, 
1787-1799, 2013. 

Lubliner J., J. Oliver, S. Oller, E.A. Onate, A plastic-damage model for concrete. International 
Journal of Solids and Structures, 25(3), 299-326, 1989. 

Milani G., R. Shehu, M. Valente, Role of inclination in the seismic vulnerability of bell towers: 
FE models and simplified approaches, Bulletin of Earthquake Engineering, 15(4), 1707-1737, 
2017. 

Milani G., S. Casolo, A. Naliato, A. Tralli, Seismic assessment of a medieval masonry tower in 
Northern Italy by limit, nonlinear static, and full dynamic analyses. International Journal of 
Architectural Heritage, 6 (5), 489-524, 2012a. 

Milani G., Lourenço P.B., Tralli A, Homogenised limit analysis of masonry walls, Part I: Failure 
surface. Computers & Structures, 84(3-4), 166-180, 2006a. 

Milani G., P.B. Lourenço, A. Tralli, Homogenised limit analysis of masonry walls, Part II: 
Structural examples. Computers & Structures, 84(3-4), 181-195, 2006b. 

Milani G., S. Russo, M. Pizzolato, A. Tralli, Seismic behavior of the San Pietro di Coppito church 
bell tower in L'Aquila, Italy, The Open Civil Engineering Journal, 6 (Sp. Issue #1), 131-147, 
2012b. 

http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=6603607483&zone=
http://www.scopus.com/authid/detail.url?origin=resultslist&authorId=55208130300&zone=
http://www.scopus.com/record/display.url?eid=2-s2.0-84860615423&origin=resultslist&sort=cp-f&src=s&nlo=&nlr=&nls=&sid=DSUEL6_FN0oohwcud5Yi4tX%3a90&sot=aut&sdt=a&sl=30&s=AU-ID%28%22Casolo%2c+S.%22+6603607483%29&relpos=13&relpos=13&searchTerm=AU-ID%28%5C%22Casolo,%20S.%5C%22%206603607483%29
http://www.scopus.com/record/display.url?eid=2-s2.0-84860615423&origin=resultslist&sort=cp-f&src=s&nlo=&nlr=&nls=&sid=DSUEL6_FN0oohwcud5Yi4tX%3a90&sot=aut&sdt=a&sl=30&s=AU-ID%28%22Casolo%2c+S.%22+6603607483%29&relpos=13&relpos=13&searchTerm=AU-ID%28%5C%22Casolo,%20S.%5C%22%206603607483%29
http://www.scopus.com/source/sourceInfo.url?sourceId=19700181322&origin=resultslist
http://www.scopus.com/source/sourceInfo.url?sourceId=19700181322&origin=resultslist


35 

 

NTC 2008 Decreto Ministeriale 14/1/2008. Norme tecniche per le costruzioni, Ministry of 
Infrastructures and Transportations. G.U. S.O. n.30 on 4/2/2008; 2008 (in Italian) 

Peña F., P.B. Lourenço, N. Mendez, D. Oliveira, Numerical models for the seismic assessment 
of an old masonry tower. Engineering Structures, 32, 1466-1478, 2010. 

Pulatsu B., Sarhosis V., Bretas E. Lourenco P. Nikitas N. Nonlinear static behavior of multi-drum 
ancient columns. Structures and Buildings, 1(1), 1-13, 2017. 

Riva P., F. Perotti, E. Guidoboni, E. Boschi. Seismic analysis of the Asinelli Tower and 
earthquakes in Bologna. Soil Dynamics and Earthquake Engineering, 17, 525–550, 1998. 

S.T.A.DATA. 3Muri. Seismic calculation of masonry structures according to the Italian 
Ministerial Decree 14/01/2008 “New technical codes for constructions”, 2016. 

Sarhosis V., D.V. Oliveira, J.V. Lemos, P.B. Lourenco, The effect of skew angle on the 
mechanical behaviour of masonry arches. Mech Res Commun, 61, 53–59, 2014. 

Sarhosis V., P. Asteris, T. Wang, W. Hu, Y. Han (2016b). On the stability of ancient colonnades 
under static and dynamic conditions, Bulletin of Earthquake Engineering, 1-22, DOI 
10.1007/s10518-016-9881-z.V.  

Sarhosis, K. Bagi, J.V. Lemos, G. Milani, Computational modelling of masonry structures using 
the discrete element method. USA: IGI Global, 2016. DOI: 10.4018/978-1-5225-0231-9 

Sarhosis V., Garrity S.W., Sheng Y., Influence of brick–mortar interface on the mechanical 
behaviour of low bond strength masonry brickwork lintels. Eng Struct, 88, 1–11, 2015. 

Sarhosis V., Sheng Y., Identification of material parameters for low bond strength masonry, 
Engineering Structures, 60, 100-110, 2014. DOI: 10.1016/j.engstruct.2013.12.013.  

Valente M., G. Milani, Effects of geometrical features on the seismic response of historical 
masonry towers. Journal of Earthquake Engineering, in press, 2017. 

Valente M., G. Milani, Non-linear dynamic and static analyses on eight historical masonry towers 
in the North-East of Italy. Engineering Structures, 114, 241–270, 2016a.  

Valente M., G. Milani, Seismic assessment of historical masonry towers by means of simplified 
approaches and standard FEM. Construction and Building Materials, 108, 74–104, 2016b. 


