
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

60 | P a g e
www.ijacsa.thesai.org

Evaluation of Different Hypervisors Performance in

the Private Cloud with SIGAR Framework

P. Vijaya Vardhan Reddy

Department of Computer Science & Engineering

University College of Engineering, Osmania University

Hyderabad, India

Dr. Lakshmi Rajamani

Department of Computer Science & Engineering

University College of Engineering, Osmania University

Hyderabad, India

Abstract— To make cloud computing model Practical and to

have essential characters like rapid elasticity, resource pooling,

on demand access and measured service, two prominent

technologies are required. One is internet and second important

one is virtualization technology. Virtualization Technology plays

major role in the success of cloud computing. A virtualization

layer which provides an infrastructural support to multiple

virtual machines above it by virtualizing hardware resources

such as CPU, Memory, Disk and NIC is called a Hypervisor. It is

interesting to study how different Hypervisors perform in the

Private Cloud. Hypervisors do come in Paravirtualized, Full

Virtualized and Hybrid flavors. It is novel idea to compare them

in the private cloud environment. This paper conducts different

performance tests on three hypervisors XenServer, ESXi and

KVM and results are gathered using SIGAR API (System

Information Gatherer and Reporter) along with Passmark

benchmark suite. In the experiment, CloudStack 4.0.2 (open

source cloud computing software) is used to create a private

cloud, in which management server is installed on Ubuntu 12.04 –

64 bit operating system. Hypervisors XenServer 6.0, ESXi 4.1 and

KVM (Ubuntu 12.04) are installed as hosts in the respective

clusters and their performances have been evaluated in detail by
using SIGAR Framework, Passmark and NetPerf.

Keywords—CloudStack; Hypervisor; Management Server;

Private Cloud; Virtualization Technology; SIGAR; Passmark

I. INTRODUCTION

Cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable
computing resources such as networks, servers, storage,
applications, and services that can be rapidly provisioned and
released with minimal management effort or service provider
interaction [1].

Virtualization, in computing, refers to the act of creating a
virtual version of something, including but not limited to a
virtual computer hardware platform, operating system, storage
device, or computer network resources. Storage virtualization
is amalgamation of multiple network storage devices into what
appears to be a single storage unit. Server virtualization is
partitioning of a physical server into smaller virtual servers.
Operating system-level virtualization is a type of server
virtualization technology which works at the operating system
(kernel) layer. Network virtualization is using network

resources through a logical segmentation of a single physical
network. Virtualization is the technology which increases the

utilization of physical servers and enables portability of virtual
servers between physical servers. Virtualization Technology
gives the benefit of work load isolation, work load migration
and work load consolidation.

For being able to reduce hardware cost, cloud computing
uses virtualization. Virtualization technology has evolved
really quickly during past few years. Also it is particularly due
to hardware progresses made by AMD and Intel. Virtualization
is a technology that combines or divides computing resources
to present one or many operating environments using
methodologies like hardware and software partitioning or
aggregation, partial or complete machine simulation,
emulation, timesharing, and many others [2]. A virtualization
layer provides an infrastructural support using the lower-level
resources to create multiple virtual machines that are
independent and isolated from each other. Such a virtualization
layer is also called Hypervisor. [2].

Cloud computing allows customers to reduce the cost of the
hardware by allowing resources on demand. Also customers of
the service need to have guaranty of the good functioning of
the service provided by the cloud. The Service Level
Agreement brokered between the providers of cloud and the
customers is the guarantees from the provider that the service
will be delivered properly [3].

This paper provides a quantitative comparison of three
hypervisors Xen Server 6.0, VMware ESXi Server 4.1 and
KVM (Ubuntu 12.04) in the private cloud environment.
Microsoft Windows 2008 R2 server is installed on three
hypervisors as a guest operating system and a series of
performance experiments are conducted on the respective guest
OS and results are gathered using SIGAR [36], Passmark [16]
and NetPerf [35]. This technical paper presents and analyses
the results of these experiments. The discussion in this paper
should help both IT decision makers and end users to choose
the right virtualization hypervisor for their respective private
cloud environments. The experimental results indicate that both
XenServer and VMware ESXi Server deliver almost equal and
near native performance in all the tests except in CPU test
ESXi is performing marginally better than XenServer and in
Memory test XenServer performing slightly better than that of
ESXi Server. Furthermore, KVM performance is noticeably
lower than that of XenServer and ESXi Server, hence it needs
to improve in all the performance aspects.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

61 | P a g e
www.ijacsa.thesai.org

II. VIRTUALIZATION TECHNIQUES

This section describes the different virtualization techniques
namely, Full virtualization and Paravirtualization used by
different hypervisors.

X86 operating systems are designed to run directly on the
bare-metal hardware, so they naturally assume they fully ‘own’
the computer hardware. The x86 architecture offers four levels
of privilege known as Ring 0, 1, 2 and 3 to operating systems
and applications to manage access to the computer hardware.
While user level applications typically run in Ring 3, the
operating system needs to have direct access to the memory
and hardware and must execute its privileged instructions in
Ring 0. Virtualizing the x86 architecture requires placing a
virtualization layer under the operating system (which expects
to be in the most privileged Ring 0) to create and manage the
virtual machines that deliver shared resources. Three
alternative techniques now exist for handling sensitive and
privileged instructions to virtualize the x86 Architecture. Full
virtualization [17] approach, translates kernel code to replace
non-virtualizable instructions with new sequences of
instructions that have the intended effect on the virtual
hardware. This combination of binary translation and direct
execution provides Full virtualization as the guest OS is fully
abstracted (completely decoupled) from the underlying
hardware by the virtualization layer. The full virtualization
approach allows datacenters to run an unmodified guest
operating system, thus maintaining the existing investments in
operating systems and applications and providing a non-
disruptive migration to virtualized environments. VMware
ESXi server uses a combination of direct execution and binary
translation techniques [4] to achieve full virtualization of an
x86 system. Paravirtualization [17], involves modifying the OS
kernel to replace non-virtualizable instructions with hyper-calls
that communicate directly with the virtualization layer
hypervisor. The hypervisor also provides hyper-call interfaces
for other critical kernel operations such as memory
management, interrupt handling and time keeping. The
paravirtualization approach modifies the guest operating
system to eliminate the need for binary translation. Therefore it
offers potential performance advantages for certain workloads
but requires using specially modified operating system kernels
[4]. The Xen open source project was designed initially to
support paravirtualized operating systems. While it is possible
to modify open source operating systems, such as Linux and
OpenBSD, it is not possible to modify “closed” source
operating systems such as Microsoft Windows. Hardware
vendors are rapidly embracing virtualization and developing
new features to simplify virtualization techniques. First
generation enhancements include Intel Virtualization
Technology (VT-x) and AMD’s AMD-V which both target
privileged instructions with a new CPU execution mode feature
that allows the VMM to run in a new root mode below ring 0.
The hardware virtualization [17] support enabled by AMD-V
and Intel VT technologies introduces virtualization in the x86
processor architecture itself.

III. HYPERVISOR MODELS

All three hypervisors which used in the experiment are
discussed from viewpoint of their virtualization technique.

A. Paravirtualized Hypervisor

XenServer - Citrix XenServer is an open-source, complete,
managed server virtualization platform built on the powerful
Xen Hypervisor. Xen [21] uses para-virtualization. Para-
virtualization modifies the guest operating system so that it is
aware of being virtualized on a single physical machine with
less performance loss. XenServer is a complete virtual
infrastructure solution that includes a 64-bit Hypervisor with
live migration, full management console, and the tools needed
to move applications, desktops, and servers from a physical to a
virtual environment [8]. Based on the open source design of
Xen, XenServer is a highly reliable, available, and secure
virtualization platform that provides near native application
performance [8]. Xen usually runs in higher privilege level than
the kernels of guest operating systems. It is guaranteed by
running Xen in ring 0 and migrating guest operating systems to
ring 1. When a guest operating system tries to execute a
sensitive privilege instruction (e.g., installing a new page
table), the processor will stop and trap it into Xen [9]. In Xen,
guest operating systems are responsible for allocating the
hardware page table, but they only have the privilege of direct
read, and Xen [9] must validate updating the hardware page
table. Additionally, guest operating systems can access
hardware memory with only non-continuous way because Xen
occupies the top 64MB section of every address space to avoid
a TLB flush when entering and leaving the Hypervisor [9].
XenServer is a complete virtual infrastructure solution that
includes a 64-bit Hypervisor [8].

B. Full virtualized Hypervisor

ESXi Server - VMware ESXi is a Hypervisor aimed at
server virtualization environments capable of live migration
using VM motion and booting VMs from network attached
devices. VMware ESXi supports full virtualization [7]. The
Hypervisor handles all the I/O instructions, which necessitates
the installation of all the hardware drivers and related software.
It implements shadow versions of system structures such as
page tables and maintains consistency with the virtual tables by
trapping every instruction that attempts to update these
structures. Hence, an extra level of mapping is in the page
table. The virtual pages are mapped to physical pages
throughout the guest operating system‘s page table [6]. The
Hypervisor then translates the physical page (often-called
frame) to the machine page, which eventually is the correct
page in physical memory.

This helps the ESXi server better manage the overall
memory and improve the overall system performance [19].
VMware‘s proprietary ESXi Hypervisor, in the vSphere cloud-
computing platform, provides a host of capabilities not
currently available with any other Hypervisors. These
capabilities include High Availability (the ability to recover
virtual machines quickly in the event of a physical server
failure), Distributed Resource Scheduling (automated load
balancing across a cluster of ESXi servers), Distributed Power
Management (automated decommissioning of unneeded servers
during non-peak periods), Fault Tolerance (zero downtime
services even in the event of hardware failure), and Site
Recovery Manager (the ability to automatically recover virtual
environments in a different physical location if an entire
datacenter outage occurs) [7].

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

62 | P a g e
www.ijacsa.thesai.org

C. Hybrid methods

 KVM - KVM (Kernel-based Virtual Machine) is another
open-source Hypervisor using full virtualization apart from
VMware. And also as a kernel driver added into Linux, KVM
enjoys all advantages of the standard Linux kernel and
hardware-assisted virtualization thus depicting hybrid model.
KVM introduces virtualization capability by augmenting the
traditional kernel and user modes of Linux with a new process
mode named guest, which has its own kernel and user modes
and answers for code execution of guest operating systems [9].
KVM comprises two components: one is the kernel module and
another one is userspace. Kernel module (namely kvm.ko) is a
device driver that presents the ability to manage virtual
hardware and see the virtualization of memory through a
character device /dev/kvm. With /dev/kvm, every virtual
machine can have its own address space allocated by the Linux
scheduler when being instantiated [9]. The memory mapped for
a virtual machine is actually virtual memory mapped into the
corresponding process. Translation of memory address from
guest to host is supported by a set of page tables. KVM can
easily manage guest Operating systems with kill command and
/dev/kvm. User-space takes charge of I/O operation‘s
virtualization. KVM also provides a mechanism for user-space
to inject interrupts into guest operating systems. User-space is a
lightly modified QEMU, which exposes a platform
virtualization solution to an entire PC environment including
disks, graphic adapters and network devices [9]. Any I/O
requests of guest operating systems are intercepted and routed
into user mode to be emulated by QEMU [9].

IV. RELATED WORK

The following papers are studied to understand about the
relevant work which had happened in the selected research
area.

Benchmark Overview - vServCon a white paper by
FUJITSU [10], scalability measurements of virtualized
environments at Fujitsu Technology Solutions are currently
accomplished by means of the internal benchmark "vServCon"
(based on ideas from Intel‘s "vConsolidate"). The abbreviation
"vServCon" stands for: "virtualization enables SERVer
CONsolidation. A representative group of application scenarios
is selected in the benchmark. It is started simultaneously as a
group of VMs on a virtualization host when making a
measurement. Each of these VMs is operated with a suitable
load tool at a defined lower load level. All known virtualization
benchmarks are thus based on a mixed approach of operating
system and applications plus an "idle" or "standby" VM, which
represents the inactive phases of a virtualization environment
and simultaneously increases the number of VMs to be
managed by the Hypervisor [10].

The virtualization overhead involves performances
depreciation rather to native performances. Research have been
made to measure the overhead of the virtualization for different
hypervisor such as XEN, KVM and VMware ESX [11]; [12];
[13]; [14]; [15]. For their researches Menon used a toolkit
called Xenoprof which is a system wide statistical tool
implemented specially for Xen [13]. Due to this toolkit they
have managed to analyse the performances of the overhead of
network I/O devices. Their study has been performed within

uniprocessor as well as multiprocessor. A part of their research
has been dedicated to performance debugging of Xen using
Xenoprof. Those researches have permitted to correct bugs and
improve by that the network performances significantly. After
the debugging part it has been focused on the network
performances. It has been observed that the performance seems
to be almost the same between Xen Domain0 and native
performances. However if the number of interfaces increase,
the receive throughput of the domain0 is significantly smaller
than the native performances. This degradation of network
performances is cause by an increasing CPU utilisation.
Because of the overhead caused by the virtualization there are
more instructions that need to be managed by the CPU. This
involves more information to treat and bufferization by the
CPU which cause a degradation of receive throughput
compared to native performances. More recent studies try to
compare the differences between hypervisors and especially the
performances of each one according to their overhead
[12];[15]. They are using three different benchmark tools to
measure the performances: LINPACK, LMbench and Iozone.
Their experiment is divided in three parts according to the
specific utilisation of each tool. With LINPACK Jianhua had
tested the processing efficiency on floating point. Different
pick value has been observed over the different systems tested
which are native performance, Xen and KVM. The result of
this show that the processing efficiency of Xen on floating
point is better than KVM because Fedora 8 virtualized with
Xen have performances which represent 97.28% of the native
rather than Fedora 8 virtualized with KVM represent only
83.46% of the native performances. The virtualization of
Windows XP comes up with better performances than with the
virtualization of fedora 8 on Xen. This is explained by the
authors by the fact that Xen own fewer enhancement packages
for windows XP than for fedora 8because of that the
performances of virtualized windows XP are slightly better
than virtualized fedora 8.

After having testing the processing efficiency with
LINPACK, Jianhua have analysed memory virtualization of
Xen and KVM compared to native memory performances with
LMbench. It has been observed that the memory bandwidth in
reading and writing of Xen are really close to native
performances. However the performances of KVM are slightly
slower for reading but significantly slower concerning the
writing performances. The last tool used by Jianhua is IOzone
which is used to perform file system benchmark. Once again
the native performances are compared to the virtualization
performances of Xen and KVM. Without Intel-VT processor
the performances of either Xen or KVM are around 6 or 7
times slower than the native performances. However within the
Intel-VT processor the performances of Xen increase
significantly because the performances are even better than
native performances. However KVM does not exploit the
functionalities of the Intel-VT processors and because of that
does not improve its performances.

After analysing the relevant work on hypervisors
performance we have chosen the below experimentation to
compare the respective hypervisors in the private cloud
environment with CloudStack using SIGAR framework which
is a novel idea.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

63 | P a g e
www.ijacsa.thesai.org

V. TEST METHODOLOGY - PRIVATE CLOUD: CLOUDSTACK

WITH HYPERVISORS

In our experiment, the proposed test environment contains
following infrastructure using open source cloud computing
software. CloudStack is an Infrastructure as a service (IaaS)
cloud based software which is able to rapidly build and provide
private cloud environments or public cloud services.
Supporting KVM, XenServer and Vmware ESXi, CloudStack
is able to build cloud environments with a mix of multiple
different hypervisors. With rich web interface for users and
administrators with operations of cloud use and operation being
performed on a browser. Additionally, the architecture is made
to be scalable for large-scale environments [22]. CloudStack is
open source software written in java that is designed to deploy
and manage large networks of virtual machines, as a highly
available, scalable cloud computing platform. CloudStack
offers three ways to manage cloud computing environments: an
easy-to-use web interface, command line and a full-featured
RESTful API [22]. Private clouds are deployed behind the
firewall of a company where as public cloud is usually
deployed over the internet. It is always ideal to use open source
solutions to perform any experiment related to cloud
computing.

In our test environment XenServer, ESXi and KVM are
used as hypervisors (Hosts) in the CloudStack (private cloud).
One machine is Management Server, runs on a dedicated
server. It controls allocation of virtual machines to hosts and
assigns storage and IP addresses to the virtual machine
instances. The Management Server runs in a Tomcat container
and requires a MySQL database for persistence. In the
experiment, Management Server is installed on Ubuntu (12.04
64-bit). On the host servers XenServer 6.0, ESXi 4.1 and KVM
(Ubuntu 12.04) [31] hypervisors are installed as depicted in
Fig. 1. Front end will be any base machine to launch
CloudStack UI using web interface (with any browser software
IE, Firefox, Safari) to provision the cloud infrastructure by
creating zone, pod, cluster and host in the sequential order.
After respective hypervisors are in place, guest OS Windows
2008 R2 64-bit [33] installed on them to carry out all
performance tests.

Fig. 1. Test Environment Architecture – Private Cloud (CloudStack with
Multiple hypervisors)

A typical enterprise datacenter runs a mix of CPU, memory,
and I/O-intensive applications. Hence the test workloads
chosen for these experiments comprise several well-known
standard benchmark tests. Passmark, a synthetic suite of
benchmarks intended to isolate various aspects of workstation
performance, was selected to represent desktop-oriented
workloads. Disk I/O performance is measured using Passmark.
CPU and Memory performance on the guest OS are measured
using SIGAR Framework. SIGAR (System Information
Gatherer and Reporter) is a cross-platform, cross-language
library and command-line tool for accessing operating system
and hardware level information in Java, Perl and .Net. In the
experiment, Java program has written to gather system
information using SIGAR API by deploying sigar-amd64-
winnt.dll for Windows. And for network performance Netperf
is used in the experiment. Netperf was used to simulate the
network usage in a datacenter. The objective of these
experiments was to test the performance of the three
virtualization hypervisors. The tests were performed using a
Windows 2008 R2 64-bit as guest operating system. The
benchmark test suites are used in these experiments only to
illustrate performance of the three hypervisors.

VI. RESULTS

This section provides the detailed results for each of the
benchmarks run. Disk I/O and Network Performance results
have been normalized to native performance measures. Native
performance is normalized at 1.0 and all other various
benchmark results are shown relative to that number. Hence
benchmark results of 90% of the native performance would be
shown as 0.9 on the scale in the graph. Higher numbers
indicate better performance of the particular virtualization
platform, unless indicated otherwise. Near-native performance
also indicates that more virtual machines can be deployed on a
single physical server, resulting in higher consolidation ratios.
This can help even if an enterprise plans to standardize on
virtual infrastructure for server consolidation alone. CPU
utilization tests indicate lower CPU utilization is better for a
hypervisor, which is evaluated by using SIGAR API. In case of
Memory tests, High available memory indicated better
performance of a hypervisor which gathered using SIGAR.

A. SIGAR

CPU utilization on the guest Operating System is captured
when it is running on the respective Hypervisor. CPU
utilization details are captured through java program using
SIGAR API on the guest OS for each hypervisor. As shown in
Fig. 2, ESXi for its guest OS shows less utilization of CPU as
compared to other hypervisors. Lower utilization CPU
indicates the better performance for a hypervisor. XenServer
also shows low utilization of CPU for its guest OS but little
higher than ESXi hypervisor. On the other hand KVM’s CPU
utilization is slightly high for its guest OS as compared to other
two hypervisors.

Memory performance is evaluated by considering the
available memory in the respective hypervisor when the single
guest Operating Systems is given full available memory.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

64 | P a g e
www.ijacsa.thesai.org

Fig. 2. CPU Utilization captured using SIGAR (Lower value is better)

Fig. 3 shows Available memory on the respective
hypervisor when guest OS is running. Memory details are
captured using Java program with SIGAR API on the guest OS.
XenServer for its guest OS shows maximum available memory
as compared to other hypervisors. Higher available memory
indicates better performance for a hypervisor. ESXi also
exhibits higher available memory only but slightly less
compared to XenServer. KVM indicates marginally less
available memory compare to other hypervisors.

Fig. 3. Available Memory captured using SIGAR (Higher Value is better)

B. PASSMARK

The following Fig. 4 shows benchmark results for Passmark
Disk I/O read write tests. Sequential Read and Sequential Write
are the disk mark tests which were conducted on the three
hypervisors in the private cloud environment. Both XenServer
and ESXi perform almost equal to native performance.

Fig. 4. Passmark – Disk I/O Read Write results compared to native (Higher
values are better)

In Sequential Read and Sequential Write XenServer slightly
shows better performance than that of VMWare ESXi Server.
In overall disk mark performance XenServer shows 2.7%
overhead vs native whereas ESXi shows 3.4% overhead vs
native. KVM significantly falls behind other two hypervisors
and native as well.

C. NETPERF

For experiment, in the private cloud for all the three
hypervisors, Netperf test involved running single client
communicating with single virtual machine through a dedicated
physical Ethernet adapter and port. All tests are based on the
Netperf TCP_STREAM test. Fig. 5 shows the Netperf results
for send and receive tests. XenServer and ESXi demonstrated
near native performance in Netperf test, while KVM lags
behind other hypervisors and native.

Fig. 5. Netperf results compared to native (higher values are better)

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

65 | P a g e
www.ijacsa.thesai.org

VII. DISCUSSION ON RESULTS

Performance results show convincingly that XenServer and
ESXi Server both perform equally well in all experiments close
to near native performance without showing the signs of any
virtualization overhead except KVM falling behind other two
hypervisors and native as well.

In CPU utilization tests ESXi CPU utilization is 0.06% less
than that of XenServer and 0.24% less than that of KVM thus
exhibiting better performance in CPU utilization. In memory
tests XenServer available memory is 1% more than that of
ESXi Server and 6% more than that of KVM hence showing
better memory performance among two other hypervisors. In
I/O tests XenServer scores over ESXi and KVM, where
XenServer shows 4% overhead in sequential read and 6%
overhead in sequential write as compared to native. ESXi
shows 5% overhead in sequential read and 7% overhead in
sequential write as compared to native. And KVM shows 35%
overhead in sequential read and 36% overhead in sequential
write as compared to native. In Network performance tests both
XenServer and ESXi gives near native performance and KVM
falls marginally behind other two hypervisors. In Client-
Receive tests both XenServer and ESXi gives performance
equal to native and in Client-Send tests XenServer gives equal
to native performance but ESXi shows 3% overhead as
compared to native. In Client-Send and Client-Receive tests
KVM shows 22% overhead as compared to native.

On overall XenServer and ESXi two hypervisors are
reliable, affordable and offer the windows or any other guest
operating system IT professional a high performance platform
for server consolidation for production workloads. KVM needs
to improve up on almost all fronts if it has to become on par
with other two hypervisors. ESXi and XenServer are matured
hypervisors as compare to KVM and their Reliability,
Availability and Serviceability (RAS) is significantly higher
than that of KVM.

VIII. CONCLUSION AND FUTURE WORK

The objective of this experiment is to evaluate the
performance of VMWare ESXi Server, XenServer and KVM
Hypervisors in the private cloud environment. After evaluation
results indicate that XenServer and ESXi hypervisors exhibit
impressive performance in comparison with KVM.
Virtualization infrastructure should offer certain enterprise
readiness capabilities such as maturity, ease of deployment,
performance, and reliability. From the test results VMware
ESXi Server and XenServer are better equipped to meet the
demands of an enterprise datacenter than the KVM hypervisor.
And KVM needs significant improvement to become an
enterprise ready hypervisor. The series of tests conducted for
this paper proves that VMware ESXi Server and XenServer
delivers the production-ready performance needed to
implement an efficient and responsive datacentre in the private
cloud environment.

The performance tests are conducted in the private cloud
with 64-bit Windows guest operating system. While evaluating
network performance, one client send and receive tests are
performed on three hypervisors which are supported by
CloudStack private cloud platform. The future work can

include multiple client send and receive network tests for
hypervisors. Experiments can also be carried out with
paravirtualized Linux guest operating system as well. With
more workloads scalability tests can be performed with other
hypervisors which are not covered in the present experiment.
And future work can also consider public cloud environment
for experimentation.

REFERENCES

[1] Mell, P. & Grance, T. (2009) The NIST Definition of Cloud Computing.
Version 15, 10-7-09. National Institute of Standards and Technology,

Information Technology Laboratory.

[2] Nanda, S., T. Chiueh, ―A Survey on Virtualization Technologies,

Technical report, Department of Computer Science, SUNY at Stony
Brook, New York, 11794-4400, 2005.

[3] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I. (2009)

“Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility”. In: Future Generation

Computer Systems, Elsevier B. V.

[4] Adams K. and Agesen O. A Comparison of Software and Hardware
Techniques for x86 Virtualization. ASPLOS October 2006.

[5] AMD. (2005) Amd secure virtual machine architecture reference

manual.

[6] Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield, Xen and the art of virtualization,

Proceedings of the Nineteenth ACM Symposium on Operating systems
Principles. ACM Press, New York, 2003, pp. 164–177.

[7] Hostway UK VMware ESXi Cloud Simplified, Comprehensive

explanation of the features and benefits of VMware ESXi Hypervisor.

[8] Fujitsu Technology Solutions, DataSheet Citrix XenServer,

[9] Che, J., Q. He, Q. Gao, D. Huang, ―Performance Measuring and

Comparing of Virtual Machine Monitors,College of Computer Science,
Zhejiang University, Hangzhou 310027, China, IEEE/IFIP International

Conference on Embedded and Ubiquitous Computing, 2008.

[10] FUJITSU, Benchmark Overview-vServCon, white paper, March 2010.

[11] Apparao, P. & Makineni, S. & Newell, D.Virtualization (2006)
Characterization of network processing overheads in Xen. Technology

in Distributed Computing, 2006. VTDC 2006.

[12] Jianhua, C. & Qinming, H. & Qinghua, G. & Dawei, H. (2008)
Performance Measuring and Comparing of Virtual Machine Monitors.

Embedded and Ubiquitous Computing, 2008. EUC '08.

[13] Menon, A. et Al. (2005) Diagnosing Performance Overheads in the Xen
Virtual Machine Environment. Conference on Virtual Execution

Environments (VEE'05).

[14] Shan, Z. & Qinfen, H. (2009) Network I/O Path Analysis in the Kernel-

based Virtual Machine Environment through Tracing. Information
Science and Engineering (ICISE).

[15] VMware (2007) A Performance Comparison of Hypervisors VMware.

White paper feb 1, 2007.

[16] Passmark. Performance Test – PC Benchmarking

[17] VMware (2007) Understanding Full Virtualization, Paravirtualization,
and Hardware Assist. VMware, white paper nov 10, 2007.

[18] Vallee, G. & Naughton, T. & Engelmann, C. & Ong, H. &Scott, S.L.

(2008) System- Level Virtualization for High Performance Computing.
Parallel, Distributed and Network-Based Processing, 2008. PDP 2008.

16th Euromicro Conference on. Varia, J. (2008) Cloud Architectures.
White Paper of Amazon.

[19] VMware, ―The Architecture of VMware ESXi, white paper, 2007.

[20] Xu, X., F. Zhou, J. W. Y. Jiang, ―Quantifying Performance Properties
of Virtual Machines, School of Computer Science and Technology,

Hangzhou Dianzi University, Hangzhou 310018, China, International
Symposium on Information Science and Engineering, 2008.

[21] Xen,―How does Xen work, Xen Orgnaization

[22] CloudStack – OpenSource Cloud Computing

[23] Greenberg, A & Hamilton, J & Maltz, D. A. & Patel, P. (2009) The Cost

of a Cloud: Research Problems in Data Center Networks.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 5, No. 2, 2014

66 | P a g e
www.ijacsa.thesai.org

[24] He, Q. & Zhou, S. & Kobler, B. & Duffy, D. & McGlynn, T. (2010)

Case study for running HPC applications in public clouds. HPDC '10
Proceedings of the 19th ACM International Symposium on High

Performance Distributed Computing.

[25] Karger, P.A. & Safford, D.R. (2008) I/O for Virtual Machine Monitors:

Security and Performance Issues. Security & Privacy, IEEE.

[26] King, R. (2008) How Cloud Computing Is Changing the World. CEO
guide to technology.

[27] Kloster, J. F. & Kristensen, J. & Mejlholm, A. (2007) A Comparison of

Hardware Virtual Machines Versus Native Performance in Xen.

[28] Lui, J. & Huang, W. & Abali, B. & Panda, K. D. (2006) High
performance VMM Bypass I/O in virtual machines. USENIX 2006

Annual technical conference refereed paper.

[29] Mollick, E. (2006) Establishing Moore's Law. Annals of the History of
Computing, IEEE.

[30] XenSource (2007) A Performance Comparison of Commercial

Hypervisors. XenEnterprise vs. ESX Benchmark Results. 2007
XenSource.

[31] Ubuntu 12.04 – Free Operating System

[32] Padala, P. & Zhu, X. & Wang, Z. & Singhal, S. & Shin, K. G. (2007).
Performance Evaluation of Virtualization Technologies for Server

Consolidation. Enterprise Systems and Software Laboratory, HP

Laboratories Palo Alto.

[33] Windows 2008 R2 Server Operating sytesm

[34] Zhao, T. & Ding, Y. & March, V. & Dong, S & See, S. (2009) Research

on the Performance of xVM Virtual Machine Based on HPCC.
ChinaGrid Annual Conference, 2009. ChinaGrid '09. Fourth.

[35] Network Performance Benchmark Netperf.

[36] Hyperic's System Information Gatherer (SIGAR)

AUTHOR’S PROFILE

 Vijaya Vardhan Reddy (First Author): He received his

M.Tech degree in Computer Science and Engineering

from Osmania University in 2000. For the past 14 years

he has been working in the IT industry. He had worked in

Tokyo (2001) for CSFB Project and in London (2005-06)

for ADP Freedom Payroll Project in Java / J2EE

Technologies. Currently he is working as an Assistant

Vice President in GE Capital. His research areas include distributed

computing, grid computing and cloud computing.
Dr. Lakshmi Rajamani (Second Author): She is a retired professor from

Osmania University. She has many papers published in journals across the
world. She had served as a HOD for computer science department from 2010 to
2012.

