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ABSTRACT 

 

With the rapid growth in the availability of data and computational technologies, multiple machine learning frameworks 

have been proposed for forecasting air pollution. However, the feasibility of these complex approaches has seldom been 

verified in developing countries, which generally suffer from heavy air pollution. To forecast PM2.5 concentrations over 

different time intervals, we implemented three machine learning approaches: multiple additive regression trees (MART), a 

deep feedforward neural network (DFNN) and a new hybrid model based on long short-term memory (LSTM). By 

capturing temporal dependencies in the time series data, the LSTM model achieved the best results, with RMSE = 

8.91 µg m–3 and MAE = 6.21 µg m–3. It also explained 80% of the variability (R2 = 0.8) in the PM2.5 concentrations and 

predicted 75% of the pollution levels, proving that this methodology can be effective for forecasting and controlling air 

pollution. 
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INTRODUCTION 

 

As one of the major air pollutants, atmospheric aerosols 

are groups of solid or liquid particles suspended in the air 

and come from different sources and in various shapes and 

sizes. Moreover, the large portion of particulate matter is 

produced in the lowest layer of the atmosphere. In general, 

the finer the size of the particulate matter, the deeper it can 

penetrate inside the respiratory system where adsorption is 

more efficient. Particles reaching deep inside the lung are 

deposited by diffusion to the surface of alveoli, and water-

soluble components can pass through cell membranes by 

simple passive diffusion. Previous works have investigated 

the linkage between exposure to fine particles (i.e., with 

diameters less than 2.5 µm (PM2.5)) and premature mortality 

(Di et al., 2017; Hung et al., 2018). This highlights the 

importance of predicting air pollution concentrations so as 

to aid the generation of appropriate responses. 

Methods for predicting air pollution concentrations can 
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be broadly classified into two major categories: simulation-

based and data mining-based methods. Simulation-based 

method incorporates physical (for generating meteorological 

and background parameters) and chemical models to 

simulate emission, transport and chemical transformation 

of air pollution (Grell et al., 2005; Emmons et al., 2010). 

However, this method suffers from numerical model 

uncertainties, and due to the lack of data, the parameterization 

of aerosol emissions is restricted (Karimian et al., 2016). 

Data mining-based approach exploits statistical or machine 

learning techniques to detect patterns between predictors 

and dependent variables in the time series data. Linear 

mixed-effects regression (Wang et al., 2017), multiple linear 

regression (Dimitriou, 2016), geographically weighted 

regression (Karimian et al., 2017) and land use regression 

(Huang et al., 2017) are some of the widely used models 

that have been developed by assuming a linear correlation 

between explanatory and response variables. However, 

sometimes the linear assumption in these models may not 

reflect the direct relation between the explanatory variables 

and the air pollutant concentrations (Huang et al., 2017). 

In addition, aerosol optical depth (AOD) is one of the 

satellite-based products which has been used to produce 

surface distribution of PM2.5. However, application of AOD 

for studies that aim to forecast hourly PM2.5 concentrations 
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is limited due to low temporal resolution and the issue of 

missing values (Qi et al., 2019).  

In recent years, machine learning methods have 

demonstrated their feasibility in nonlinear regimes. Thus, 

their applications in air pollution concentration forecasts 

are increasing (Peng, 2015). Gardner and Dorling (1998) 

presented the advantages of artificial neural networks 

(ANN) in dealing with nonlinear systems. Kukkonen et al. 

(2003) compared the performances of five ANN models, a 

linear model and a deterministic model to forecast NO2 

and PM10. They concluded that the ANN-based models 

perform better, particularly in NO2 forecasts. In addition to 

that, including meteorological data, especially planetary 

boundary layer height (PBL), can improve the accuracy of 

predictions (Hooyberghs et al., 2005). Some recent works 

have proposed hybrid models and have claimed their robust 

performances in severe pollution scenarios (Feng et al., 

2015; Kumar, 2015; Tamas et al., 2016; Perez and Menares, 

2018).  

Air pollution forecasts have attracted interest from 

scholars in Iran, as a region which suffers from notable air 

pollution problems. Kamali et al. (2015) proposed a hybrid 

model including the Kolmogorov–Zurbenko filter and an 

ANN to forecast PM10 concentrations over a station in 

Tehran. They claimed R2 = 0.90 between predicted and 

observed values. Memarianfard and Hatami (2017) presented 

daily averaged PM2.5 forecasts using a three-layer 

feedforward neural network (FNN) with daily averaged 

meteorological data (wind speed, relative humidity and 

temperature) obtained from a meteorological station. The 

performance of random forest feature selection in predictions 

of PM2.5 was investigated by Shamsoddini et al. (2017). 

The authors claimed that better performance was achieved 

in comparison to linear regression model and FNN. Jamal 

and Nabizadeh Nodehi (2017) found improvement in PM2.5 

and air quality index forecasts (RMSE = 21.26 µg m–3) 

through a combination of decision trees and FNN. However, 

these predictions have been carried out using historical 

meteorological data observed from a station without 

considering the conditions at forecast time, which can have 

an influence on accuracy of the forecasts. Moreover, 

although multiple machine learning frameworks have been 

proposed for air pollution forecasts, it should be noted that 

most of these models have not been tested in developing 

countries with significantly higher PM2.5 levels and different 

emission source profiles (Liu, 2013). To the best of our 

knowledge, considering the effect of temporal dependencies 

in air pollution data and deep neural networks (DNN) has 

not been investigated over the study area. In this study, we 

implement and evaluate three methods to forecast PM2.5 

concentrations, including a model based on machine learning 

(no neurons) and two models based on deep neural 

networks. Details of each of these techniques are presented 

in the following sections.  

 

DATA AND METHODS 

 

Study Area 

Tehran, the capital of Iran (~51.1–51.6°E, 35.6–35.8°N), 

is located in arid region with a population of 13.3 million 

(native) plus 10 million (diurnal migration). It is one of the 

most polluted cities of Iran, where haze scenarios are 

reported frequently (Kamali et al., 2015). 

 

Ground Level PM2.5 

This study used hourly concentrations of PM2.5 provided 

by Tehran Air Quality Control Company. This data was 

collected from 9 stations for a period of 4 years from 1 

January 2013 to 31 December 2016 (Fig. 1). In order to 

improve the predictive performance of our models, we 

have omitted anomalies by performing an initial check. In 

addition to that, to account for the missing data due to 

instrumental malfunctions, we applied the interpolation 

method (before and after mean), as described in Ghasemifard 

et al. (2019). However, to ensure the accuracy of the process, 

time sequences with more than 3 hours of consecutive 

missing data were excluded from the interpolation and 

discarded from the dataset. This was done through 

partitioning the data in different blocks, where length of 

the blocks was based on the duration for which forecasting 

was desired. It was ensured that each block consists of 

required data. Our models have been trained using 60% of 

the dataset, and remaining 40% has been used for 

validation (20%) and testing (20%). 

 

Meteorological Data 

As described before, meteorological parameters are an 

important determinant of air pollution concentrations. Due 

to 700 m of altitude difference between the highest and 

lowest geographical points of Tehran, the weather conditions 

vary across the city (Habibi et al., 2017). In consideration of 

that, improving on previous studies which used ground-based 

meteorological data from only one station, we collected 

hourly meteorological data, including temperature (T), 

PBL, surface-level pressure (P), east and north components 

of 10-m wind (U, V) and relative humidity (RH) from 

European Centre for Medium-Range Weather Forecasts 

(ECMWF) for the period of our study. This center provides 

high spatial resolution (0.1° × 0.1°) data with 10 days’ 

forecast. A statistical summary and features of input data 

are given in Table 1. The values (maximum, minimum, 

mean and standard deviation) are based on hourly data of 

all stations. The mean value of PM2.5 is 3 times higher than 

WHO guidelines for the annual average (10 µg m–3). It has 

been found that usage of explanatory variables which are 

highly correlated reduces the applicability of models (Feng 

et al., 2015; Karimian et al., 2017). Variance inflation factor 

(VIF) detects the severity of redundancy by examining the 

correlation coefficient (R) between each pair of explanatory 

variables (Eq. (1)). A VIF lying between 5 and 10 indicates 

high correlation that may be problematic (Akinwande et al., 

2015). Table 2 shows the VIF values for different auxiliary 

variables. It can be seen that meteorological variables are 

weakly correlated and no redundancy is observed.  
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Fig. 1. Tehran metropolitan area and the air pollution monitoring stations (green pin). 

 

Table 1. Statistical summary of input data from 1 January 2013 to 31 December 2016. 

Variable Unit Range Mean Std. Dev. 

PM2.5 µg m–3 [1, 300] 32 20 

T °C [–23, 40] 13.50 11.6 

PBL m [10, 4775] 620 864 

P Pa [78,184, 86,321] 82124 1803 

U m s–1 [4.88, 6.57] 0.04 1.12 

V m s–1 [–4.55, 5.72] –0.31 1.64 

RH % [2, 100] 42 21 

 

Table 2. VIF values between different explanatory variables. 

 T U V PBL RH P 

T - 1.004 1.639 1.471 2.702 1.002 

U 1.004 - 1.006 1.191 1.008 1 

V 1.639 1.006 - 2.326 1.351 1.008 

PBL 1.471 1.191 2.326 - 1.370 1 

RH 2.702 1.008 1.351 1.370 - 1 

P 1.002 1 1.008 1 1 - 

 

Multiple Additive Regression Trees 

Multiple additive regression trees (MART) is a machine 

learning method proposed by Friedman (Friedman, 2002; 

Friedman and Meulman, 2003). It is an extension and 

improvement for classification and regression trees (Beriman 

et al., 1984) that utilizes stochastic gradient boosting (SGB) 
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to convert a sequence of weak learners into a complex 

predictor. The idea of SGB came from bagging procedure 

(Breiman, 1996), in which the author claimed that better 

results could be obtained by injecting randomness into a 

model (Friedman, 2002). Therefore, at each iteration (M), 

a subsample of the training set is selected randomly, and a 

tree partitions the pseudo residuals (ỹ) into J disjoint 

regions RJM (Eq. (2)), where I is an indicator function (it is 

1 if the condition is true and 0 otherwise). Consequently, 

the final model is composed of small trees ranging from 

hundreds to thousands, where each of them has brought an 

improvement to the overall model (Elish and Elish, 2009). 
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Considering least-squares loss function (L(y, F(x)) = (y – 

F(x))2/2), pseudo-residuals in Eq. (4) can simply be 

calculated as the difference between ground truth values 

and corresponding predicted ones. The initial value of FM–1 

in the first step of algorithm (F0) is defined as the average 

of the target variable in training dataset for the least-

squares loss function.  
 


1( )iM M iiMy y F x   (5) 

 

Following the modification proposed by Friedman and 

Meulman (2003) to conventional boosting, the current 

prediction, FM–1, is then separately updated by randomly 

selected subsamples (instead of whole sample), which can 

be written as: 
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For least-squares loss function, γjM is the mean of 

current residuals in Jth terminal node. Hastie et al. (2009) 

demonstrated that 4 ≤ J ≤ 8 works well for boosting. In this 

work, our trees have maximum of 6 terminal nodes. 

Considering the fact that slowing the learning stage leads 

to a model with better performance, the shrinkage factor, α 

(0 < α < 1), regularizes the process and allows more (and 

different) trees to fit into the residuals. The optimal 

learning rate can be estimated through cross validation or a 

testing sample. However, it was found that small values, 

such as α = 0.1, lead to the better results (Friedman and 

Meulman, 2003). Table 3 provides the details of our  

Table 3. MART set-up parameters. 

Parameter Value 

Number of trees (iteration, M) 1000 

Terminal nodes 6 

Learning rate (α) 0.1 

Loss function Squared error 

Number of predictors 79–151–295 

 

model. To forecast PM2.5 concentrations, our model gets 

PM2.5 concentration and meteorological data at current 

time (present) as well as forecasted meteorological data up 

to a desirable time as predictor variables (Table 1). 

 

Recurrent Neural Network 

Artificial neural networks are a class of machine learning 

methods in which collections of connected units (neurons) 

enable the machine to learn patterns of different complex 

circumstances (responses) for their future predictions. 

Through proposing different structures of networks (units 

and functions), there is a large class of ANN models. 

Feedforward neural networks are one of the widely used 

ANN patterns which are formed by fully connected layers 

of neurons (at least three layers). Moreover, these 

connections follow the same direction, and there is no 

cycle or loop in their connectivity graph (Fan et al., 2017). 

According to universal approximation theorem, an FNN 

with a single hidden layer can learn any function (Cybenko, 

1989; Hornik et al., 1989). However, to achieve this 

ability, the size of hidden layer may need to be unfeasibly 

large. Empirically, it was found that adding more layers to 

an FNN can improve the performance of the networks in 

different tasks (Goodfellow et al., 2016). Therefore, in 

comparison with a normal FNN, deep neural networks 

contain more hidden layers or have different structures 

(connectivity between neurons) and learning methods.  

Recurrent neural networks (RNN) are a class of DNN 

that, through applying cyclic (loop) connections, allow 

information to persist (a loop allows information to be 

passed from one step of the network to the next). Thus, 

they are specialized in time series processing. However, in 

practice, as the time sequence gets longer, the network 

forgets to train primary inputs. This issue is called 

“exploding” or “vanishing” gradients and arises due to the 

architecture of RNN (Bengio et al., 1994). Considering a 

loss function, L, and a linear activation function, the 

gradient of L for the first hidden state with respect to the 

weight of input wx can be written by chain rule as Eq. (8). 
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In the above, wx is the weight matrix that multiplies with 

input xt in different time steps. It can be inferred that the 

overall gradient of loss function in the RNN (sum of the 

error gradient at each time step) contains the exponents of 

transposed weight matrix wh, which is the weight multiplied 

against the hidden state. As a result, the gradient will explode 
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(if weights > 1.0) or shrink (if weights < 1.0) exponentially. 

This makes it difficult for RNN (i.e., it will diverge, be 

very slow or stop) to learn long dependencies. One solution to 

overcome this problem is to utilize the long short-term 

memory (LSTM) model architecture as a special class of 

RNN (Hochreiter and Schmidhuber, 1997).  

Fig. 2 illustrates the schematic of an LSTM block at 

time step t, which we used in this study. It features four 

main elements, including the input gate (i), forget gate (f) 

and output gate (o). The fourth element, which is the key 

to an LSTM model, is the memory cell (cell state), which 

can be understood as a straight connection passing through 

a set of LSTM blocks with some minor linear interactions. 

Similar to the RNN structure, at each time step, the inputs 

of an LSTM block are input (xt) and the hidden state output 

(ht–1) from the prior time step block. In addition to that, the 

cell state (ct–1) is the third input of a block. It is worth 

mentioning that the output of each gate is a vector with 

similar size to the hidden vector (ht). The LSTM version 

implemented in this paper is similar to the one suggested 

by Graves (2013). However, to reduce the computational 

cost of network without malfunctioning (Greff et al., 

2017), peephole connections were removed.  

 

ft = σ(wxfxt + whfht–1 + bf) (9) 

 

it = σ(wxixt + whiht–1 + bi) (10) 

 

ot = σ(wxoxt + whoht–1 + bo) (11) 

 

pc = tanh(wxcxt + whcht–1 + bc) (12) 

 

ct = ft·ct–1 + it·pc (13) 

 

ht = ot·tanh(ct) (14) 

 

As can be seen in Eqs. (9)–(11), for the forget, input and 

output gates, the nonlinearity is brought through the 

sigmoid activation function (σ). The output values of these 

gates range between 0 and 1, which allow them to control 

the flow of data inside and between LSTM blocks. For 

example, by looking at current inputs and through pointwise 

multiplication (Eq. (13)), the forget gate decides the portion 

of the data that should be removed from the previous 

memory cell. For potential values of memory cell (pc) and 

hidden state (Eqs. (12) and (14)), the tangent activation 

function (tanh) is used; its outputs are between –1 and 1, 

and its derivative can sustain for a long range before 

vanishing. The values of current cell memory (ct) and hidden 

state (that are revealed outside a block) are calculated 

through element-wise multiplication. This multiplication is 

carried out against the output of forget gate (ft varies in 

different time steps) rather than the repetitive matrix 

multiplication of weights in RNN (Eq. (8)). This can be 

inferred as one of the advantages of LSTM, as it avoids 

extreme vanishing or exploding of the gradients. It is also 

recommended to initialize the bias of the forget gate to 1 

(Jozefowic et al., 2015). These make LSTM-based models 

feasible to learn dependencies in long sequences and prevent 

vanishing of the gradients. 

To forecast PM2.5 concentrations over desirable time 

spans, we propose two types of DNN: One is based on 

deep FNN with three hidden layers (DFNN), and the other 

is a hybrid model comprising two LSTM layers and a 

DFNN with three hidden layers (Fig. 3). For simplicity, we 

call this model “LSTM” hereinafter. Our LSTM model 

gets the meteorological data (current (t0) and hourly 

forecasted (t1–tn) as input for the two layer LSTM, in 

which the final output of the second layer is concatenated 

with current (t0) PM2.5 concentration and is treated as the 

input layer for the FNN. The final output of the FNN is 

forecasted PM2.5 concentration at tn. To train our models, 

mini batch root mean square prop (RMSprop) algorithm is 

employed. It is one of the optimization algorithms based on 

 

 

Fig. 2. Schematic of an LSTM block at time step t. 
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Fig. 3. Structure of the proposed LSTM model. 

 

gradient descent method. The main idea of this algorithm 

is to speed up the process of gradient descent (Hinton et 

al., 2012b). As a feature of most sophisticated models, 

overfitting, which refers to the acceptable performance of a 

model in training stage and failure over unobserved 

datasets, may occur. There are several techniques to avoid 

overfitting, which are known as regularization (Nielsen, 

2015). We used the dropout technique, in which the 

architecture of a network is modified in each iteration by 

randomly removing hidden units and connections from a 

network. Through the dropout procedure, since a neuron 

cannot rely on the presence of other neurons, it is expected to 

learn more robust features. This improves the performance 

of different neural networks remarkably (Hinton et al., 

2012a). Early stopping is another technique that prevents 

overfitting. It stops training stage if the performance of a 

model on validation dataset fails to improve after an 

optional number of epochs (here, 100). The details of our 

proposed DNN models are provided in Table 4. The values 

of hyper-parameters in this table were selected through 

trial and error.  

 

RESULTS AND DISCUSSIONS 

 

To evaluate the performances of our proposed models, 

root mean square error (RMSE) and mean absolute error 

(MAE) were computed, which measure the closeness of the 

forecasts (Fi) to the observed values (Oi) over the test dataset. 

To analyze the prediction strength of different models, overall 

coefficient of determination (R2) was derived as well. Note 

that these time intervals were selected for evaluation 

purpose and models are able to make forecasts over any 

time intervals. 
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As can be seen in Table 5, the LSTM model showed 

better performance, with overall RMSE = 9.58 µg m–3, than 

other models (RMSE = 19.53 and 13.32 µg m–3 for DFNN 

and MART, respectively) for different time intervals and 

over all stations. In contrast to DFNN and MART (where 

inputs from different times are all fed together to the 

models), these results demonstrate the importance of  

 

Table 4. Features of our proposed DNN models. 

Parameter Value 

LSTM layer 2 

LSTM blocks 13–25–49 

LSTM hidden neurons 64 

Prediction length (hour) 12–24–48 

FNN hidden layers (FNN/LSTM-FNN) 3 

FNN hidden neurons 32 

Mini batch size 512 

Activation FNN (hidden-output) Rectified linear unit (ReLU) 

Loss function Squared error 

Number of iterations (epoch) 1000 

Stopping point (epoch) 100 

Dropout (%) 20 

Optimizer RMSprop 
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Table 5. Comparing the performance of three models in forecasting PM2.5 concentrations within different time spans (12, 

24 and 48 hours). 

Station 
RMSE (µg m–3) MAE (µg m–3) 

MART DFNN LSTM MART DFNN LSTM 

12 Hours       

Aghdasie 11.54 18.33 8.94 8.77 14.01 6.58 

Roz 12.47 17.57 9.03 9.21 12.82 6.77 

Golbarg 11.90 14.25 8.80 8.26 10.98 6.56 

Bohran 16.21 21.12 11.52 10.88 16.12 8.41 

Modares 12.09 16.55 9.83 8.59 12.34 6.65 

Sharif 13.03 20.074 10.98 9.34 14.51 7.71 

Man11 17.49 23.15 11.73 11.64 16.71 8.35 

Shad  14.43 19.44 11.40 9.94 14.49 7.82 

Rey 16.33 25.45 10.69 11.45 19.50 7.91 

Overall 13.94 19.54 10.32 9.78 14.61 7.41 

Overall R2 0.50 0.43 0.74    

24 Hours   

Aghdasie 12.30 18.27 8.23 9.04 14.00 5.80 

Roz 11.82 17.058 8.86 8.70 12.41 6.33 

Golbarg 10.15 14.83 7.82 7.26 11.28 5.69 

Bohran 13.41 21.13 9.75 9.58 16.02 6.70 

Modares 12.32 16.55 9.52 8.56 12.30 6.03 

Sharif 13.88 20.64 10.46 9.48 14.58 6.93 

Man11 16.18 23.15 10.85 11.08 16.71 7.49 

Shad  13.22 19.54 10.02 9.21 14.56 6.96 

Rey 15.45 25.45 9.30 10.68 19.50 6.76 

Overall 13.19 19.62 9.42 9.28 14.59 6.52 

Overall R2 0.53 0.43 0.78    

48 Hours   

Aghdasie 11.60 18.38 7.54 8.16 13.87 5.59 

Roz 12.06 17.37 7.69 8.50 12.60 5.68 

Golbarg 10.07 14.59 7.03 7.27 11.10 5.30 

Bohran 15.38 21.26 9.51 10.12 16.28 6.48 

Modares 10.83 16.55 8.52 7.71 12.30 5.78 

Sharif 13.06 20.05 10.14 9.38 14.60 6.48 

Man11 16.38 23.15 10.61 11.09 16.71 7.34 

Shad  12.34 19.49 10.52 8.78 14.47 7.02 

Rey 13.69 24.26 8.68 9.95 18.82 6.23 

Overall 12.83 19.45 8.91 8.99 14.52 6.21 

Overall R2 0.56 0.49 0.80    

 

sequential feeding in LSTM. As an advanced machine 

learning method, our proposed MART model performed 

better than DFNN, and overall, it can explain over 50% of 

variability in PM2.5 concentrations (R2 = 0.53). We have 

discussed in Section 2.5 that to attain better results with an 

FNN, the hidden layer might be unfeasibly large. From our 

results, it can be inferred that sophisticated machine learning 

models (without neurons) such as MART give better 

results than a DFNN in PM2.5 predictions. Increase in the 

length of forecasts leads to better performance of all three 

models studied here. This is especially seen in the case of 

our LSTM model (10.41 and 7.43 vs. 8.91 and 6.21 for 12- 

and 48-h predictions, respectively). Our understanding is 

that this improvement is caused by the fact that we also 

consider the meteorological conditions at the time of 

forecast. In general, models used historical data for training 

purposes; thus, accuracy of their predictions decreases as 

the length of prediction time gets longer (Qi et al., 2019). 

This shows that our methodology is crucial for getting 

more accurate predictions. We will investigate this further 

with higher number of parameters involved. As shown in 

Table 5, the performances of models varied spatially. This 

may have been caused by data (PM2.5) availability, which 

differs among stations. It highlights the role of other 

factors (e.g., emissions or land cover), which should be 

considered in future studies. Our LSTM model exhibited 

better performance than other studies, e.g., by Memarianfard 

and Hatami (2017) and Shamsoddini et al. (2017), which 

achieved R2 = 0.30 for observed and daily predicted PM2.5 

and RMSE = 18.13 µg m–3 for daily averaged PM2.5 

predictions, respectively.  

Fig. 4 shows the scatter plots of observed and the 

LSTM-forecasted PM2.5 concentrations over 12-, 24- and 

48-h intervals. There is a reasonable agreement between 
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ground truth and predicted values, and our LSTM model is 

able to explain 80% (R2 = 0.8) of the variability in observed 

PM2.5 concentrations. For different time intervals, the 

slopes of linear regression are less than 1, and intercepts are 

positive. This depicts the tendency of model to underestimate 

and overestimate high and low concentrations, respectively.  

Since the ultimate goal of PM2.5 forecasts in urban areas 

is to improve air quality and health, we validated the 

feasibility of our LSTM model (the most predictive model 

in this study) in air pollution level (APL) estimations. For 

this purpose, we sampled the data from 21 December 2014 

to 27 December 2014. Note that this period was selected 

randomly and was not included in training or test datasets. 

The air quality index (AQI) and air pollution levels are 

reported based on the highest AQI derived from six major 

air pollutant concentrations. Table 6 illustrates the air quality 

and air pollution subindex level based on daily averaged 

PM2.5 concentrations (Tamura and Tateishi, 1997). Fig. 5 

illustrates the averaged surface distribution of 48-h predicted 

and observed PM2.5 concentrations for the sample period 

using the inverse distance weighted interpolation as well as 

corresponding air pollution levels. It is worth mentioning 

that the PM2.5 data for Modares station was missing for this 

period. Thus, this station is not shown in the figure. 

Generally speaking, the predicted distribution pattern follows 

the observed one, with RMSE = 10.32 µg m–3 and R2 = 

0.76. However, similar to the trend seen with the test dataset, 

for the stations with high concentrations, our predicted 

surface shows underestimation tendency. Except for two 

stations (Aghdasie and Sharif) with air pollution level 

unhealthy for sensitive groups, our model has the ability to 

estimate true APL. Consideration of more explanatory 

variables may give better results, especially for the stations 

where PM2.5 concentrations exceed 140 (µg m–3) in some 

of the hours during sample period (e.g., Sharif). 

 

CONCLUSIONS 

 

In recent years, researchers have been proposing advanced 

models for forecasting air pollutant concentrations. In this 

study, we evaluated three methods employed in PM2.5 

forecasting by implementing models based on machine 

learning (MART) and deep neural network (DFNN and 

LSTM) concepts. The results showed that the LSTM 

model, which obtained the lowest RMSE (8.91 µg m–3) and 

MAE (6.21 µg m–3) values in combination with the highest 

R2 (0.8) value for 48-h predictions over the entire study 

area, outperformed the other two models. Additionally, the 

LSTM model accurately forecasted 75% of the air pollution 

levels based on the PM2.5 concentrations, demonstrating the 

importance of sequential feeding in time series modeling. 

We also found that the advanced machine learning models, 

such as MART, produced better PM2.5 estimates than the 

DFNN model. 

In summary, the LSTM model was able to capture 

temporal dependencies in time series data, which increased 

the accuracy of its PM2.5 forecasting. Therefore, this 

methodology can be used to predict the concentrations of 

different air pollutants. Furthermore, adding explanatory 

variables in the future will enhance this model’s performance, 

opening the door to investigating new variables and 

methods. 
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Fig. 4. Scatter plots of the observed and forecasted PM2.5 concentrations by the LSTM model for 12-h (left), 24-h (middle) 

and 48-h (right) intervals. 

 

Table 6. AQI and air pollution levels with corresponding daily averaged PM2.5 concentrations. 

AQI Air pollution level Max PM2.5 concentration (µg m–3) 

50 Good 15.4 

100 Moderate 35 

150 Lightly polluted (unhealthy for sensitive groups) 65.4 

200 Moderately polluted (unhealthy) 150.4 

300 Heavily polluted (very unhealthy) 250.4 
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Fig. 5. Comparison between the forecasted (upper) and the observed (lower) surface distribution of PM2.5. The 

correspondent air pollution levels are shown on the right. 
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