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Abstract. RND (Radio Network Design) is a Telecommunication problem 
consisting in covering a certain geographical area by using the smallest number 
of radio antennas achieving the biggest cover rate. This is an important 
problem, for example, in mobile/cellular technology. RND can be solved by 
bio-inspired algorithms. In this work we use different metaheuristics to tackle 
this problem. PBIL (Population-Based Incremental Learning), based on genetic 
algorithms and competitive learning (typical in neural networks), is a 
population evolution model based on probabilistic models. DE (Differential 
Evolution) is a very simple population-based stochastic function minimizer 
used in a wide range of optimization problems, including multi-objective 
optimization. SA (Simulated Annealing) is a classic trajectory descent 
optimization technique. CHC is a particular class of evolutionary algorithm 
which does not use mutation and relies instead on incest prevention and 
disruptive crossover. Due to the complexity of such a large analysis including 
so many techniques, we have used not only sequential algorithms, but grid 
computing with BOINC in order to execute thousands of experiments in only 
several days using around 100 computers. In this paper we present the most 
interesting results from our work, indicating the pros and cons of the studied 
solvers. 
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1   Introduction 

The Radio Network Design problem is a kind of telecommunication network design 
problem. When a set of geographically-dispersed terminals needs to be covered by 
transmission antennas (also called base station transmitters or base transceiver 
stations -BTS-), a capital subject is to minimize the number and locations of those 
antennas and to cover the largest area. 
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RND is an NP-hard problem; therefore its solution by means of bio-inspired 
algorithms is appropriate. In this work we use several different metaheuristics in order 
to solve this problem: PBIL, DE, SA and CHC. 

Finally, since our interest is not only studying these techniques, but also to open 
new research lines, we have applied grid computing for the realization of our 
experiments (not in an exhaustive manner for space constraints in this conference 
paper). In particular, we have used BOINC (Berkeley Open Infrastructure for 
Network Computing), a very interesting proposal for volunteer computing and 
desktop grid computing. 

The rest of the paper is organized as follows: Section 2 briefly explains the RND 
problem. After that, in the following sections we introduce the PBIL, DE, SA and 
CHC algorithms. Then, in Section 7 we show the most interesting results of this work, 
including comparisons among the different studied techniques, finally leading to the 
conclusions and future work summarized in the last section. 

2   The RND Problem 

The RND problem [1,2] consists in covering a largest area with a minimal set of 
transmitters. In order to mathematically define this problem, let us consider the set L of 
all potentially covered locations and the set M of all potential transmitter locations. Let 
G be the graph, (M ∪ L, E), where E is a set of edges such that each transmitter location 
is linked to the locations it covers. As the geographical area needs to be discretized, the 
potentially covered locations are taken from a grid, as shown in Figure 1a. In our case, 
we focus on a 287×287 point grid representing an open-air flat area (a total of 82,369 
different positions) and we will be able to use a maximum of 349 available locations for 
placing antennas. The vector x will be a solution to the problem where xi ∈  {0,1}, and i 
∈  [1, 349], indicates whether a transmitter is used (1) or not (0) in the corresponding 
location. 

  

Fig. 1. (a) Three potential transmitter locations and their associated covered cells on a grid. 
(b) Base station transmitters with square coverage. 

The objective of RND is to search for the minimum subset of transmitters that 
covers a maximum surface of an area, therefore, we are searching for a subset 
M’ ⊆ M such that |M’| is minimum and such that |Neighbours(M’, E)| is maximum, 
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where: 

Neighbours(M’, E) = {u ∈  L | ∃ v ∈  M’, (u, v) ∈  E} 

M’ = {t ∈  M | xt = 1} 
(1) 

The fitness function we have used in our experiments is shown in Equation 2 [3]. 
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An important constraint in this problem consists in determining the list of available 
locations for the antennas, because there are some places where the antennas can not 
be placed (public recreation areas, etc.). In our case, for the predefined set of available 
locations we selected the one included in [4]. This will make easy the comparisons 
among the different evolutionary techniques. 

In our experiments we consider base station transmitters with square cells (see 
figure 1b), each transmitter has an associated 41×41 point cell (coverage radius size is 
20). Other cell shapes are possible (like circular cells for omnidirectional antennas) 
but deferred for future work. Let us now briefly present the used algorithms. 

3   Population-Based Incremental Learning 

Population-Based Incremental Learning (PBIL) is a method that combines a genetic 
algorithm with competitive learning for function optimization. Instead of applying 
operators, PBIL infers a probability distribution from the present population and 
samples the new population from the inferred distribution [5,6]. 

4   Differential Evolution 

Differential Evolution (DE) is an algorithm used for continuous optimization 
problems in the past with satisfactory results [7,8]. DE is a simple population-based 
stochastic function minimizer/maximizer, used in a wide range of optimization 
problems, including multi-objective optimization [9]. It has been modified in this 
research to work with discrete representations [10]. 

5   Simulated Annealing 

Simulated annealing (SA) is a generic probabilistic meta-algorithm for the global 
optimization problem, namely locating a good approximation to the global optimum 
of a given function in a large search space. It was independently invented by S. 
Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [11], and by V. Černý in 1985 
[12]. SA is a trajectory based optimization technique (i.e., only one tentative solution 
is manipulated in contrast with the rest of algorithms here, where a population of 
solutions is used). It is commonly found in industry and provides good results; 
therefore it constitutes an interesting method for comparison. 
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6   CHC 

The fourth algorithm we propose for solving the RND problem is Eshelman's CHC 
[13], which stands for Cross-generational elitist selection, Heterogeneous 
recombination (by incest prevention), and Cataclysmic mutation. CHC is a kind of 
Evolutionary Algorithm (EA), where mutation is not used. As a mechanism for 
preventing convergence and maintaining diversity, CHC employs incest prevention 
[14] plus a special recombination procedure known as HUX, combined with a special 
restarting mechanism for adding diversity through mutation when stagnation is 
detected (cataclysmic mutation). 

7   Results 

In this section we present the most interesting results coming from using each of the 
evolutionary techniques we have proposed to solve the RND problem. 

7.1   Results Using PBIL 

In this work we have first evaluated different configuration parameters for our PBIL 
algorithm in order to solve the RND problem since this application to this problem is 
relatively new. In particular, the parameters we can adjust in PBIL are: used variant of 
PBIL (we have 7 variants explained in the next paragraphs), number of samples (the 
population size), mutation probability, mutation shift (intensity of the mutation that 
affects the probability vector), learning rate, negative learning rate (only valid for the 
variant PBIL-NegativeLR), number of M best individuals (only valid for the variants 
PBIL-M-Equitable, PBIL-M-Relative and PBIL-M-Consensus), and whether an elitist 
strategy is used or not (the best individual in the previous population is transferred to 
the current generation unaltered). 

The variants of PBIL we have thus studied are the following: 

− PBIL-Standard. 
− PBIL-Complement: The probability vector is moved towards the complement of 

the lowest evaluation individual (the worst sample) in each generation. 
− PBIL-Different: The probability vector is only moved towards the bits in the best 

individual which are different than those in the worst individual, in each 
generation. 

− PBIL-M-Equitable: The probability vector is moved equally in the direction of 
each of the M selected individuals (M best samples) in each generation. 

− PBIL-M-Relative: The probability vector is moved on the relative evaluations 
(fitness functions) of the M best individuals in each generation. 

− PBIL-M-Consensus: The probability vector is moved only in the positions in 
which there is a consensus (the same value) in all of the M best individuals in each 
generation. 

− PBIL-NegativeLR: The probability vector is moved towards the best individual 
(using the learning rate) and also away from the worst individual (using the 
negative learning rate) in each generation. 
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For the rest of configuration parameters we present a wide analysis including the 
following values (most typical in literature): 

− Number of generations: 1000, 2500, 5000, 7500 and 10000. 
− Number of samples (the population size): 50, 75, 100, 135, 170 and 200. 
− Mutation probability: 0.01, 0.02, 0.03, 0.05, 0.07, 0.09 and 0.10. 
− Mutation shift: 0.01, 0.03, 0.04, 0.05, 0.07, 0.09 and 0.10. 
− Learning rate:0.01, 0.05, 0.10, 0.20, 0.30 and 0.40 
− Negative learning rate: 0.01, 0.02, 0.03, 0.05, 0.07, 0.09 and 0.10. 
− Number of M best individuals: 2, 3, 4, 5, 6 and 7. 
− Elitism: Yes or no. 

The total number of possible combinations is very high, for this reason we have 
used the middleware system BOINC [15,16] (Berkeley Open Infrastructure for 
Network Computing) in order to perform massive computations/experiments in a 
parallel way for PBIL. BOINC is a system for volunteer computing and desktop grid 
computing. Volunteer computing uses computers volunteered by the general public to 
do distributed scientific computing. 

In our case, we use BOINC in order to perform many different executions of our 
evolutionary algorithm in parallel. In this way, we can do a deep survey about which 
are the best parameter values for solving the RND problem with PBIL, which is 
needed to guide future research after this first study. Researchers interested in 
learning more about our platform RND-BOINC (RND@home), or wanting to join in 
this project (volunteer donation of CPU cycles), can access it via the website 
http://arcoboinc.unex.es/rnd. At present, around 100 computers are available in this 
project, executing hundreds of experiments at the same time in parallel. 

Table 1. The most important results with PBIL for solving the RND problem 

 Config. best 
result

Best result Average results 

PBIL variant Standard  Fitness function 204.082 204.082 
# Generations 2500  # Transmitters 49 49 
# Individuals 135  Coverage 100% 100% 
Mutation probability 0.05  
Mutation shift 0.07  

Execution time 
5 minutes, 
34 seconds 

5 minutes, 
56 seconds 

Learning rate 0.30  Execution on Pentium IV – 2.8 GHz 
Negative learning rate ---  
M best individuals ---  

Normalized execution 
time (P.IV-1.7 GHz) 

9 minutes, 
10 seconds 

9 minutes, 
46 seconds 

Elitism YES  # Evaluations 276,345 306,855  

Table 1 shows the most important results using PBIL. In particular, for every 
combination of parameters, 30 independent runs have been performed for statistical 
purposes. In this table, the normalized execution time converts the obtained execution 
time to a virtual standard Pentium IV-1.7 GHz. As we can see, PBIL solved the 
problem with 100% accuracy, and presents low variability between the best 
computational effort (276,345 evaluations) and the average (306,855 evaluations). 
Furthermore, we can observe PBIL is quite fast. 
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7.2   Results Using DE 

In order to compare the results we have obtained from DE with other optimization 
methods and techniques, it is necessary to apply the experiments on the same 
predefined set of BS available locations. 

We have programmed two types of experiments: 

− In the first type, we try to find the optimal set of locations (reaching the 100% of 
coverage) for a fixed amount of BS transmitters (49). The parameters of DE to be 
initially set are: population size, crossover function and maximum number of 
generations to be performed. 

− The second type of experiments consists in looking for the minimum number of 
transmitters to be located in the target area in order to reach a predetermined cover 
rate. A loop goes on starting from an initial amount of transmitters and increasing 
it until the wanted coverage is obtained. For every number of BS in this loop, DE is 
applied in the same manner as in the first type of experiments (see above). 

Two crossover functions have been considered: FA and SA. Let be two set of 
locations (individuals), named A and B (the parents). Let be the S individual (the 
offspring) obtained from the application of the crossover function to A and B. FA 
function chooses the first half of A to build the first half of the offspring. The second 
half of the offspring is then built with the first half of B, but if a repeated location 
appears, successive locations of the second halves of B and A are taken. SA function 
chooses the second half of A to build the first half of the offspring, and the second 
half of the offspring is then built with the second half of B, but if a repeated location 
appears, successive locations of the first halves of B and A are taken. 

With this background we have performed a series of tests for both types of 
experiments. For every combination of parameters, 30 independent runs have been 
performed for statistical purposes. We have observed than FA crossover produces 
better results than SA crossover, and furthermore, these results are obtained in a lower 
number of generations (conclusions obtained mainly from the second type of 
experiment). Table 2 shows the most important results for the first type of experiment, 
considering the same instance of the problem used by the other algorithms presented 
in this paper. The main conclusion is that the desired optimal coverage (100%) has 
not been reached. Perhaps this result could be improved with more evaluations. Also, 
you can observe DE algorithm is fast. 

Table 2. The most important results with DE for solving the RND problem 

 Config. best 
result 

  
Best result Average results 

# Generations 4000  Fitness function 163.48 163.48 
# Individuals 2000  # Transmitters 49 49 
Crossover FA  Coverage 89.5% 89.5% 
   
   

Execution time 3 minutes 
3 minutes, 
48 seconds 

   Execution on Pentium IV –1.7 GHz 
   # Evaluations 9,363 11,538 
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7.3   Results Using SA 

SA has been used on the same instance as the previous algorithms, in order for the 
obtained results to be comparable. 

SA has only three parameters the programmer needs to tune: 

- The mutation probability. The values employed range from 0.005 to 0.97. 
- The length of the Markov chain. 
- The temperature decay, α. The values employed range from 0.99 to 0.99999. 

The length of the Markov chain and the temperature decay have been proven to 
work in the same manner, thus to be equivalent. Therefore, we decided to keep the 
first at a constant value of 50, and allow the tuning of the latter. 

For every combination of parameters, 50 independent runs have been performed in 
order to assure its statistical relevance. Table 3 shows the results. The tests have been 
performed in a 16 machine cluster named in dedicated mode, and the code has been 
developed using the MALLBA library [17]. This resource code is available at the web 
page http://neo.lcc.uma.es/mallba/easy-mallba/index.html. 

SA has been able to solve the problem with 100% accuracy, but presents a high 
degree of variability between the best computational effort (441,141 evaluations) and 
the average (810,755 evaluations). 

Table 3. The most important results with SA for solving the RND problem 

 Config. best 
result Best result Average results 

# Evaluations 5,000,000  Fitness function 204.082 204.082 
Mutation probability 0.005  # Transmitters 49 49 
Markov chain length 50  Coverage 100% 100% 
Temperature decay 0.999  
Initial temperature 1  

Execution time 7 minutes 
12 minutes, 
10 seconds 

   Execution on Pentium IV – 2.4 GHz 
   
   

Normalized execution 
time (P.IV-1.7 GHz) 

9 minutes, 
53 seconds 

17 minutes, 
11 seconds 

   # Evaluations 441,141 810,755  

7.4   Results Using CHC 

When using the CHC algorithm on the same instance that the previous methods, we 
have considered two parameters that can be tuned: 

- The population size. The values employed range from 50 to 10,000 individuals. 
- The cataclysmic mutation probability. Ranging from 0.01 to 0.35. 

50 independent runs are performed for every combination of parameters. Table 4 
shows the best configuration, and the results obtained. The tests have been performed 
in a 16 machine cluster named in dedicated mode, and the code has been developed 
using the MALLBA library [17]. This resource code is available at the web page 
http://neo.lcc.uma.es/mallba/easy-mallba/index.html. 
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During the tests we have concluded that the mutation probability (second 
parameter tuned) has little effect on the algorithm’s performance, and can be kept at a 
value of 35% without any significant loss of efficiency. 

CHC solved the problem with 100% accuracy, and presents low variability in the 
computational effort: there is little difference between the best effort (291,200 
evaluations) and the average (380,183 evaluations). 

Table 4. The most important results with CHC for solving the RND problem 

 Config. best 
result Best result Average results 

# Evaluations 5,000,000  Fitness function 204.082 204.082 
# Individuals 2,800  # Transmitters 49 49 
Mutation probability 0.35  Coverage 100% 100% 
Incest distance 25% vector 

length Execution time 
5 minutes, 
58 seconds 

7 minutes, 
8 seconds 

Crossover probability 0.8  Execution on Pentium IV – 2.4 GHz 
Elitism YES  
   

Normalized execution 
time (P.IV-1.7 GHz) 

8 minutes, 
25 seconds 

10 minutes, 
4 seconds 

   # Evaluations 291,200 380,183  

8   Conclusions 

In this paper we have solved the RND (Radio Network Design) problem with 
different metaheuristic techniques. Our aim was to solve the problem efficiently and 
at the same time research in the results of a wide spectrum of modern techniques. 
Most of these techniques (PBIL, SA and CHC) have obtained the optimal solution for 
this problem with square BTS of radius 20 (100% of coverage is attained placing 49 
antennas, getting a fitness value of 204.082) except for the DE. However, DE is the 
evolutionary approach that needs lower times and number of evaluations in order to 
obtain a reasonable result. The difficulties in DE’s accuracy may be originated by its 
intrinsic continuous nature. 

If we look for the optimal solution, the best normalized execution times (around 9 
minutes) and the best number of evaluations (below 300,000) is simultaneously 
attained by PBIL and CHC. Figure 2 shows the best result for each technique, both in 
normalized execution time (left) and in number of evaluations (right). 

Figure 3 presents the same data but using the average results for each technique. In 
this case, the results are very similar to the previous ones: PBIL and CHC obtain a 
similar normalized execution time (around 10 minutes), but PBIL needs slightly less 
evaluations (306,855 vs. 380,183 -statistically similar). On the other hand, SA also 
reaches the optimal fitness value (204.082) but needs huge computational resources 
(time and evaluations) to obtain that result. 

Future work includes the study of other bio-inspired algorithms, such as genetic 
algorithms, parallel genetic algorithms... in our quest for more efficient and accurate 
solvers for this problem. In this line, we will continue using grid computing with 
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Fig. 2. Best result for each algorithm: (left) Normalized execution time (supposing a Pentium 
IV-1.7 GHz). (right) Number of evaluations. 
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Fig. 3. Average results for each algorithm: (left) Normalized execution time (supposing a 
Pentium IV-1.7 GHz). (right) Number of evaluations. 

BOINC and cluster computing in order to speedup all our experiments and to create 
more sophisticated algorithms by communicating information among component 
parallel agents. 
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