
M. Giacobini et al. (Eds.): EvoWorkshops 2007, LNCS 4448, pp. 101–110, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Evaluation of Different Metaheuristics Solving
the RND Problem

Miguel A. Vega-Rodríguez1, Juan A. Gómez-Pulido1, Enrique Alba2,
David Vega-Pérez1, Silvio Priem-Mendes3, and Guillermo Molina2

1 Dep. of Computer Science, Univ. of Extremadura, Caceres, Spain
{mavega,jangomez}@unex.es, dvperez@indra.es

2 Dep. of Computer Science, Univ. of Malaga, Malaga, Spain
{eat,guillermo}@lcc.uma.es

3 Polytechnic Institute of Leiria, High School of Technology, Leiria, Portugal
smendes@estg.ipleiria.pt

Abstract. RND (Radio Network Design) is a Telecommunication problem
consisting in covering a certain geographical area by using the smallest number
of radio antennas achieving the biggest cover rate. This is an important
problem, for example, in mobile/cellular technology. RND can be solved by
bio-inspired algorithms. In this work we use different metaheuristics to tackle
this problem. PBIL (Population-Based Incremental Learning), based on genetic
algorithms and competitive learning (typical in neural networks), is a
population evolution model based on probabilistic models. DE (Differential
Evolution) is a very simple population-based stochastic function minimizer
used in a wide range of optimization problems, including multi-objective
optimization. SA (Simulated Annealing) is a classic trajectory descent
optimization technique. CHC is a particular class of evolutionary algorithm
which does not use mutation and relies instead on incest prevention and
disruptive crossover. Due to the complexity of such a large analysis including
so many techniques, we have used not only sequential algorithms, but grid
computing with BOINC in order to execute thousands of experiments in only
several days using around 100 computers. In this paper we present the most
interesting results from our work, indicating the pros and cons of the studied
solvers.

Keywords: RND, PBIL, DE, SA, CHC, Metaheuristics, Evolutionary Techniques.

1 Introduction

The Radio Network Design problem is a kind of telecommunication network design
problem. When a set of geographically-dispersed terminals needs to be covered by
transmission antennas (also called base station transmitters or base transceiver
stations -BTS-), a capital subject is to minimize the number and locations of those
antennas and to cover the largest area.

102 M.A. Vega-Rodríguez et al.

RND is an NP-hard problem; therefore its solution by means of bio-inspired
algorithms is appropriate. In this work we use several different metaheuristics in order
to solve this problem: PBIL, DE, SA and CHC.

Finally, since our interest is not only studying these techniques, but also to open
new research lines, we have applied grid computing for the realization of our
experiments (not in an exhaustive manner for space constraints in this conference
paper). In particular, we have used BOINC (Berkeley Open Infrastructure for
Network Computing), a very interesting proposal for volunteer computing and
desktop grid computing.

The rest of the paper is organized as follows: Section 2 briefly explains the RND
problem. After that, in the following sections we introduce the PBIL, DE, SA and
CHC algorithms. Then, in Section 7 we show the most interesting results of this work,
including comparisons among the different studied techniques, finally leading to the
conclusions and future work summarized in the last section.

2 The RND Problem

The RND problem [1,2] consists in covering a largest area with a minimal set of
transmitters. In order to mathematically define this problem, let us consider the set L of
all potentially covered locations and the set M of all potential transmitter locations. Let
G be the graph, (M ∪ L, E), where E is a set of edges such that each transmitter location
is linked to the locations it covers. As the geographical area needs to be discretized, the
potentially covered locations are taken from a grid, as shown in Figure 1a. In our case,
we focus on a 287×287 point grid representing an open-air flat area (a total of 82,369
different positions) and we will be able to use a maximum of 349 available locations for
placing antennas. The vector x will be a solution to the problem where xi ∈ {0,1}, and i
∈ [1, 349], indicates whether a transmitter is used (1) or not (0) in the corresponding
location.

Fig. 1. (a) Three potential transmitter locations and their associated covered cells on a grid.
(b) Base station transmitters with square coverage.

The objective of RND is to search for the minimum subset of transmitters that
covers a maximum surface of an area, therefore, we are searching for a subset
M’ ⊆ M such that |M’| is minimum and such that |Neighbours(M’, E)| is maximum,

 Evaluation of Different Metaheuristics Solving the RND Problem 103

where:

Neighbours(M’, E) = {u ∈ L | ∃ v ∈ M’, (u, v) ∈ E}

M’ = {t ∈ M | xt = 1}
(1)

The fitness function we have used in our experiments is shown in Equation 2 [3].

)(

)(
)(

2

xedsmittersUsNumberTran

xCoverRate
xf = (2)

An important constraint in this problem consists in determining the list of available
locations for the antennas, because there are some places where the antennas can not
be placed (public recreation areas, etc.). In our case, for the predefined set of available
locations we selected the one included in [4]. This will make easy the comparisons
among the different evolutionary techniques.

In our experiments we consider base station transmitters with square cells (see
figure 1b), each transmitter has an associated 41×41 point cell (coverage radius size is
20). Other cell shapes are possible (like circular cells for omnidirectional antennas)
but deferred for future work. Let us now briefly present the used algorithms.

3 Population-Based Incremental Learning

Population-Based Incremental Learning (PBIL) is a method that combines a genetic
algorithm with competitive learning for function optimization. Instead of applying
operators, PBIL infers a probability distribution from the present population and
samples the new population from the inferred distribution [5,6].

4 Differential Evolution

Differential Evolution (DE) is an algorithm used for continuous optimization
problems in the past with satisfactory results [7,8]. DE is a simple population-based
stochastic function minimizer/maximizer, used in a wide range of optimization
problems, including multi-objective optimization [9]. It has been modified in this
research to work with discrete representations [10].

5 Simulated Annealing

Simulated annealing (SA) is a generic probabilistic meta-algorithm for the global
optimization problem, namely locating a good approximation to the global optimum
of a given function in a large search space. It was independently invented by S.
Kirkpatrick, C. D. Gelatt and M. P. Vecchi in 1983 [11], and by V. Černý in 1985
[12]. SA is a trajectory based optimization technique (i.e., only one tentative solution
is manipulated in contrast with the rest of algorithms here, where a population of
solutions is used). It is commonly found in industry and provides good results;
therefore it constitutes an interesting method for comparison.

104 M.A. Vega-Rodríguez et al.

6 CHC

The fourth algorithm we propose for solving the RND problem is Eshelman's CHC
[13], which stands for Cross-generational elitist selection, Heterogeneous
recombination (by incest prevention), and Cataclysmic mutation. CHC is a kind of
Evolutionary Algorithm (EA), where mutation is not used. As a mechanism for
preventing convergence and maintaining diversity, CHC employs incest prevention
[14] plus a special recombination procedure known as HUX, combined with a special
restarting mechanism for adding diversity through mutation when stagnation is
detected (cataclysmic mutation).

7 Results

In this section we present the most interesting results coming from using each of the
evolutionary techniques we have proposed to solve the RND problem.

7.1 Results Using PBIL

In this work we have first evaluated different configuration parameters for our PBIL
algorithm in order to solve the RND problem since this application to this problem is
relatively new. In particular, the parameters we can adjust in PBIL are: used variant of
PBIL (we have 7 variants explained in the next paragraphs), number of samples (the
population size), mutation probability, mutation shift (intensity of the mutation that
affects the probability vector), learning rate, negative learning rate (only valid for the
variant PBIL-NegativeLR), number of M best individuals (only valid for the variants
PBIL-M-Equitable, PBIL-M-Relative and PBIL-M-Consensus), and whether an elitist
strategy is used or not (the best individual in the previous population is transferred to
the current generation unaltered).

The variants of PBIL we have thus studied are the following:

− PBIL-Standard.
− PBIL-Complement: The probability vector is moved towards the complement of

the lowest evaluation individual (the worst sample) in each generation.
− PBIL-Different: The probability vector is only moved towards the bits in the best

individual which are different than those in the worst individual, in each
generation.

− PBIL-M-Equitable: The probability vector is moved equally in the direction of
each of the M selected individuals (M best samples) in each generation.

− PBIL-M-Relative: The probability vector is moved on the relative evaluations
(fitness functions) of the M best individuals in each generation.

− PBIL-M-Consensus: The probability vector is moved only in the positions in
which there is a consensus (the same value) in all of the M best individuals in each
generation.

− PBIL-NegativeLR: The probability vector is moved towards the best individual
(using the learning rate) and also away from the worst individual (using the
negative learning rate) in each generation.

 Evaluation of Different Metaheuristics Solving the RND Problem 105

For the rest of configuration parameters we present a wide analysis including the
following values (most typical in literature):

− Number of generations: 1000, 2500, 5000, 7500 and 10000.
− Number of samples (the population size): 50, 75, 100, 135, 170 and 200.
− Mutation probability: 0.01, 0.02, 0.03, 0.05, 0.07, 0.09 and 0.10.
− Mutation shift: 0.01, 0.03, 0.04, 0.05, 0.07, 0.09 and 0.10.
− Learning rate:0.01, 0.05, 0.10, 0.20, 0.30 and 0.40
− Negative learning rate: 0.01, 0.02, 0.03, 0.05, 0.07, 0.09 and 0.10.
− Number of M best individuals: 2, 3, 4, 5, 6 and 7.
− Elitism: Yes or no.

The total number of possible combinations is very high, for this reason we have
used the middleware system BOINC [15,16] (Berkeley Open Infrastructure for
Network Computing) in order to perform massive computations/experiments in a
parallel way for PBIL. BOINC is a system for volunteer computing and desktop grid
computing. Volunteer computing uses computers volunteered by the general public to
do distributed scientific computing.

In our case, we use BOINC in order to perform many different executions of our
evolutionary algorithm in parallel. In this way, we can do a deep survey about which
are the best parameter values for solving the RND problem with PBIL, which is
needed to guide future research after this first study. Researchers interested in
learning more about our platform RND-BOINC (RND@home), or wanting to join in
this project (volunteer donation of CPU cycles), can access it via the website
http://arcoboinc.unex.es/rnd. At present, around 100 computers are available in this
project, executing hundreds of experiments at the same time in parallel.

Table 1. The most important results with PBIL for solving the RND problem

 Config. best
result

Best result Average results

PBIL variant Standard Fitness function 204.082 204.082
Generations 2500 # Transmitters 49 49
Individuals 135 Coverage 100% 100%
Mutation probability 0.05
Mutation shift 0.07

Execution time
5 minutes,
34 seconds

5 minutes,
56 seconds

Learning rate 0.30 Execution on Pentium IV – 2.8 GHz
Negative learning rate ---
M best individuals ---

Normalized execution
time (P.IV-1.7 GHz)

9 minutes,
10 seconds

9 minutes,
46 seconds

Elitism YES # Evaluations 276,345 306,855

Table 1 shows the most important results using PBIL. In particular, for every
combination of parameters, 30 independent runs have been performed for statistical
purposes. In this table, the normalized execution time converts the obtained execution
time to a virtual standard Pentium IV-1.7 GHz. As we can see, PBIL solved the
problem with 100% accuracy, and presents low variability between the best
computational effort (276,345 evaluations) and the average (306,855 evaluations).
Furthermore, we can observe PBIL is quite fast.

106 M.A. Vega-Rodríguez et al.

7.2 Results Using DE

In order to compare the results we have obtained from DE with other optimization
methods and techniques, it is necessary to apply the experiments on the same
predefined set of BS available locations.

We have programmed two types of experiments:

− In the first type, we try to find the optimal set of locations (reaching the 100% of
coverage) for a fixed amount of BS transmitters (49). The parameters of DE to be
initially set are: population size, crossover function and maximum number of
generations to be performed.

− The second type of experiments consists in looking for the minimum number of
transmitters to be located in the target area in order to reach a predetermined cover
rate. A loop goes on starting from an initial amount of transmitters and increasing
it until the wanted coverage is obtained. For every number of BS in this loop, DE is
applied in the same manner as in the first type of experiments (see above).

Two crossover functions have been considered: FA and SA. Let be two set of
locations (individuals), named A and B (the parents). Let be the S individual (the
offspring) obtained from the application of the crossover function to A and B. FA
function chooses the first half of A to build the first half of the offspring. The second
half of the offspring is then built with the first half of B, but if a repeated location
appears, successive locations of the second halves of B and A are taken. SA function
chooses the second half of A to build the first half of the offspring, and the second
half of the offspring is then built with the second half of B, but if a repeated location
appears, successive locations of the first halves of B and A are taken.

With this background we have performed a series of tests for both types of
experiments. For every combination of parameters, 30 independent runs have been
performed for statistical purposes. We have observed than FA crossover produces
better results than SA crossover, and furthermore, these results are obtained in a lower
number of generations (conclusions obtained mainly from the second type of
experiment). Table 2 shows the most important results for the first type of experiment,
considering the same instance of the problem used by the other algorithms presented
in this paper. The main conclusion is that the desired optimal coverage (100%) has
not been reached. Perhaps this result could be improved with more evaluations. Also,
you can observe DE algorithm is fast.

Table 2. The most important results with DE for solving the RND problem

 Config. best
result

Best result Average results

Generations 4000 Fitness function 163.48 163.48
Individuals 2000 # Transmitters 49 49
Crossover FA Coverage 89.5% 89.5%

Execution time 3 minutes
3 minutes,
48 seconds

 Execution on Pentium IV –1.7 GHz
 # Evaluations 9,363 11,538

 Evaluation of Different Metaheuristics Solving the RND Problem 107

7.3 Results Using SA

SA has been used on the same instance as the previous algorithms, in order for the
obtained results to be comparable.

SA has only three parameters the programmer needs to tune:

- The mutation probability. The values employed range from 0.005 to 0.97.
- The length of the Markov chain.
- The temperature decay, α. The values employed range from 0.99 to 0.99999.

The length of the Markov chain and the temperature decay have been proven to
work in the same manner, thus to be equivalent. Therefore, we decided to keep the
first at a constant value of 50, and allow the tuning of the latter.

For every combination of parameters, 50 independent runs have been performed in
order to assure its statistical relevance. Table 3 shows the results. The tests have been
performed in a 16 machine cluster named in dedicated mode, and the code has been
developed using the MALLBA library [17]. This resource code is available at the web
page http://neo.lcc.uma.es/mallba/easy-mallba/index.html.

SA has been able to solve the problem with 100% accuracy, but presents a high
degree of variability between the best computational effort (441,141 evaluations) and
the average (810,755 evaluations).

Table 3. The most important results with SA for solving the RND problem

 Config. best
result Best result Average results

Evaluations 5,000,000 Fitness function 204.082 204.082
Mutation probability 0.005 # Transmitters 49 49
Markov chain length 50 Coverage 100% 100%
Temperature decay 0.999
Initial temperature 1

Execution time 7 minutes
12 minutes,
10 seconds

 Execution on Pentium IV – 2.4 GHz

Normalized execution
time (P.IV-1.7 GHz)

9 minutes,
53 seconds

17 minutes,
11 seconds

 # Evaluations 441,141 810,755

7.4 Results Using CHC

When using the CHC algorithm on the same instance that the previous methods, we
have considered two parameters that can be tuned:

- The population size. The values employed range from 50 to 10,000 individuals.
- The cataclysmic mutation probability. Ranging from 0.01 to 0.35.

50 independent runs are performed for every combination of parameters. Table 4
shows the best configuration, and the results obtained. The tests have been performed
in a 16 machine cluster named in dedicated mode, and the code has been developed
using the MALLBA library [17]. This resource code is available at the web page
http://neo.lcc.uma.es/mallba/easy-mallba/index.html.

108 M.A. Vega-Rodríguez et al.

During the tests we have concluded that the mutation probability (second
parameter tuned) has little effect on the algorithm’s performance, and can be kept at a
value of 35% without any significant loss of efficiency.

CHC solved the problem with 100% accuracy, and presents low variability in the
computational effort: there is little difference between the best effort (291,200
evaluations) and the average (380,183 evaluations).

Table 4. The most important results with CHC for solving the RND problem

 Config. best
result Best result Average results

Evaluations 5,000,000 Fitness function 204.082 204.082
Individuals 2,800 # Transmitters 49 49
Mutation probability 0.35 Coverage 100% 100%
Incest distance 25% vector

length Execution time
5 minutes,
58 seconds

7 minutes,
8 seconds

Crossover probability 0.8 Execution on Pentium IV – 2.4 GHz
Elitism YES

Normalized execution
time (P.IV-1.7 GHz)

8 minutes,
25 seconds

10 minutes,
4 seconds

 # Evaluations 291,200 380,183

8 Conclusions

In this paper we have solved the RND (Radio Network Design) problem with
different metaheuristic techniques. Our aim was to solve the problem efficiently and
at the same time research in the results of a wide spectrum of modern techniques.
Most of these techniques (PBIL, SA and CHC) have obtained the optimal solution for
this problem with square BTS of radius 20 (100% of coverage is attained placing 49
antennas, getting a fitness value of 204.082) except for the DE. However, DE is the
evolutionary approach that needs lower times and number of evaluations in order to
obtain a reasonable result. The difficulties in DE’s accuracy may be originated by its
intrinsic continuous nature.

If we look for the optimal solution, the best normalized execution times (around 9
minutes) and the best number of evaluations (below 300,000) is simultaneously
attained by PBIL and CHC. Figure 2 shows the best result for each technique, both in
normalized execution time (left) and in number of evaluations (right).

Figure 3 presents the same data but using the average results for each technique. In
this case, the results are very similar to the previous ones: PBIL and CHC obtain a
similar normalized execution time (around 10 minutes), but PBIL needs slightly less
evaluations (306,855 vs. 380,183 -statistically similar). On the other hand, SA also
reaches the optimal fitness value (204.082) but needs huge computational resources
(time and evaluations) to obtain that result.

Future work includes the study of other bio-inspired algorithms, such as genetic
algorithms, parallel genetic algorithms... in our quest for more efficient and accurate
solvers for this problem. In this line, we will continue using grid computing with

 Evaluation of Different Metaheuristics Solving the RND Problem 109

Normalized execution time (seconds)

0

100

200

300

400

500

600

700

PBIL DE SA CHC

Number of evaluations

0

100000

200000

300000

400000

500000

PBIL DE SA CHC

Fig. 2. Best result for each algorithm: (left) Normalized execution time (supposing a Pentium
IV-1.7 GHz). (right) Number of evaluations.

Normalized execution time (seconds)

0

200

400

600

800

1000

1200

PBIL DE SA CHC

Number of evaluations

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

PBIL DE SA CHC

Fig. 3. Average results for each algorithm: (left) Normalized execution time (supposing a
Pentium IV-1.7 GHz). (right) Number of evaluations.

BOINC and cluster computing in order to speedup all our experiments and to create
more sophisticated algorithms by communicating information among component
parallel agents.

Acknowledgments. This work has been partially funded by the Ministry of Education
and Science and FEDER under contract TIN2005-08818-C04-01 and TIN2005-
08818-C04-03 (the OPLINK project). Guillermo Molina is supported by grant
AP2005-0914 from the Spanish government.

References

1. P. Calégari, F. Guidec, P. Kuonen, D. Kobler. Parallel Island-Based Genetic Algorithm for
Radio Network Design. Journal of Parallel and Distributed Computing, 47(1): 86-90,
November 1997.

2. P. Calégari, F. Guidec, P. Kuonen, F. Nielsen. Combinatorial Optimization Algorithms for
Radio Network Planning. Theoretical Computer Science, 263(1): 235-265, July 2001.

110 M.A. Vega-Rodríguez et al.

3. E. Alba. Evolutionary Algorithms for Optimal Placement of Antennae in Radio Network
Design. NIDISC'2004 Sixth International Workshop on Nature Inspired Distributed
Computing, IEEE IPDPS, Santa Fe, USA, pp. 168-175, April 2004.

4. OPLINK: http://oplink.lcc.uma.es/problems/rnd.html, November 2006.
5. S. Baluja. Population-based Incremental Learning: A Method for Integrating Genetic

Search based Function Optimization and Competitive Learning. Technical Report CMU-
CS-94-163, Carnegie Mellon University, June 1994.

6. S. Baluja, R. Caruana. Removing the Genetics from the Standard Genetic Algorithm.
Twelfth International Conference on Machine Learning, San Mateo, CA, USA, pp. 38-46,
May 1995.

7. K. Price, R. Storn. Differential Evolution – A Simple Evolution Strategy for Fast
Optimization. Dr. Dobb’s Journal, 22(4): 18–24, April 1997.

8. K. Price, R. Storn. Web site of DE. http://www.ICSI.Berkeley.edu/~storn/code.html,
November 2006.

9. H.A. Abbass, R. Sarker. The Pareto Differential Evolution Algorithm. Int. Journal on
Artificial Intelligence Tools, 11(4): 531-552, 2002.

10. S. Mendes, J.A. Gómez, M.A. Vega, J.M. Sánchez. The Optimal Number and Locations of
Base Station Transmitters in a Radio Network. 3rd Int. Workshop on Mathematical
Techniques and Problems in Telecommunications, Leiria, Portugal, pp.17-20, September
2006.

11. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi. Optimization by Simulated Annealing. Science,
220(4598): 671-680, May 1983.

12. V. Cerny. A Thermodynamical Approach to the Travelling Salesman Problem: an
Efficient Simulation Algorithm. Journal of Optimization Theory and Applications, 45: 41-
51, 1985.

13. L.J. Eshelman. The CHC Adaptive Search Algorithm: How to Have Safe Search when
Engaging in Nontraditional Genetic Recombination. Foundations of Genetic Algorithms,
Morgan Kaufmann, pp. 265-283, 1991.

14. L.J. Eshelman, J.D. Schaffer. Preventing Premature Convergence in Genetic Algorithms
by Preventing Incest. Fourth Int. Conf. on Genetic Algorithms, San Mateo, CA, USA, pp.
115-122, 1991.

15. BOINC: http://boinc.berkeley.edu, November 2006.
16. D.P. Anderson. BOINC: A System for Public-Resource Computing and Storage. 5th

IEEE/ACM International Workshop on Grid Computing, Pittsburgh, USA, pp. 365-372,
November 2004.

17. E. Alba, F. Almeida, M. Blesa, C. Cotta, M. Díaz, I. Dorta, J. Gabarró, C. León, G. Luque,
J. Petit, C. Rodríguez, A. Rojas, F. Xhafa. Efficient Parallel LAN/WAN Algorithms for
Optimization: The MALLBA Project. Parallel Computing, 32 (5-6): 415-440, June 2006.

