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Abstract 

Estimation of muscle forces during motion involves solving an indeterminate problem 

(more unknown muscle forces than joint moment constraints), frequently via 

optimization methods. When the dynamics of muscle activation and contraction are 

modeled for consistency with muscle physiology, the resulting optimization problem is 

dynamic and challenging to solve. This study sought to identify a robust and 

computationally efficient formulation for solving these dynamic optimization problems 

using direct collocation optimal control methods. Four problem formulations were 

investigated for walking based on both a two and three dimensional model. 

Formulations differed in the use of either an explicit or implicit representation of 

contraction dynamics with either muscle length or tendon force as a state variable. 

The implicit representations introduced additional controls defined as the time 

derivatives of the states, allowing the nonlinear equations describing contraction 

dynamics to be imposed as algebraic path constraints, simplifying their evaluation. 

Problem formulation affected computational speed and robustness to the initial 

guess. The formulation that used explicit contraction dynamics with muscle length as 

a state failed to converge in most cases. In contrast, the two formulations that used 

implicit contraction dynamics converged to an optimal solution in all cases for all 

initial guesses, with tendon force as a state generally being the fastest. Future work 

should focus on comparing the present approach to other approaches for computing 

muscle forces. The present approach lacks some of the major limitations of 

established methods such as static optimization and computed muscle control, while 

remaining computationally efficient. 
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Introduction 

Knowledge of muscle forces during healthy and impaired movement could facilitate 

the development of improved treatments for disorders affecting walking ability or 

improved training programs to increase athlete performance. As a result, significant 

research effort has been dedicated to estimating muscle forces during normale.g.1,4,22 

and impaired recently e.g.14,28,33,36 movement. Since muscle forces are not directly 

measurable, these studies have been based on computational models. However, 

there are many more muscles than degrees of freedom in the human skeleton, and 

thus the muscle forces underlying a given motion cannot be uniquely calculated 

using rigid body dynamics. Consequently, optimization methods have been used to 

resolve this redundancy by assuming that human movement is produced by 

optimizing some performance criterion26.  

The numerical challenges arising from the use of optimization methods have led 

to a trade-off between computational efficiency and consistency with muscle 

physiology5. When the dynamics of muscle activation and contraction are modeled 

for consistency with muscle physiology, the resulting optimization problem is dynamic 

and challenging to solve due to the non-linearity and stiffness of the equations 

describing muscle dynamics (i.e. muscle activation and contraction dynamics)31. 

Commonly, the dynamic optimization problem is solved using direct 

shootinge.g.3,4,20,21,22,23. Direct shooting methods parametrize the controls, in this case 

muscle excitations, and solve for control parameters that optimize the cost function. 

The cost function is evaluated using time-marching (time frames are solved 

sequentially) to simulate the dynamic equations. The main disadvantage of time-

marching is the high sensitivity of the states to the controls due to the long time 

interval over which the time-marching method is applied, often resulting in long 
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computation times. Anderson and Pandy4, for example, reported a CPU time of 

10,000 hours to solve a dynamic optimization problem for half a cycle of walking. 

Except for simple problems, convergence of dynamic optimization problems is 

difficult to obtain and the solver is interrupted once an acceptable solution is 

founde.g.4,21. In addition, simple control parameterizations are often used e.g.22 that 

might not accurately describe the optimal solution. Note that in these examples, 

dynamic optimization was combined with a forward dynamics analysis of skeletal 

motion. However, others have combined dynamic optimization with an inverse 

dynamics analysis of skeletal motione.g.17. We will use the phrases “musculoskeletal 

dynamic optimization” and “muscle dynamic optimization” to distinguish between 

dynamic optimization approaches that account for muscle dynamics in combination 

with either a forward (musculoskeletal dynamic optimization) or inverse (muscle 

dynamic optimization) dynamics simulation to account for skeletal dynamics. Due to 

the use of an inverse dynamics approach, muscle dynamic optimization is only 

applicable if the motion is prescribed, which is the case considered in this 

manuscript, whereas musculoskeletal dynamic optimization can be used for both 

tracking and predicting motion. 

Due to the numerical challenges involved in solving dynamic optimization 

problems, many studies use simple optimization approachese.g.6 that neglect muscle 

activation and contraction dynamics. Neglecting activation and contraction dynamics 

eliminates coupling between time instants, making the resulting optimization problem 

static. Static optimization approaches result in a series of small optimization 

problems, with one problem solved at each time instant. When the sum of squared 

muscle activations is used as the performance criterion, these optimization problems 

are quadratic and can be solved very efficiently. These approaches are robust and 
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fast and allow a large community of researchers to estimate muscle forces with the 

downside of reduced consistency with muscle physiology7. 

Whether or not reduced consistency with muscle physiology is important is still 

controversial. Only a few modeling studies have investigated the influence of muscle 

activation and contraction dynamics on movement ability and performance. Some 

have argued that modeling muscle activation and contraction dynamics has only a 

small effect on the computed muscle forces during walking5 and even running16. 

Others, however, have demonstrated that dynamic muscle behavior has a large 

influence on predicted muscle forces during nu propulsion19 and on maximal sprinting 

performance18. Hence, some research questions might be addressed best by 

modeling muscle activation and contraction dynamics. A robust and efficient method 

to solve the dynamic muscle redundancy problem would therefore greatly benefit 

researchers seeking to understand normal and impaired movement better through 

assessment of individual muscle function. 

Direct collocation is a recent promising methodological improvement over direct 

shooting to increase the computational efficiency of dynamic optimization 

approaches1,2,7,8,31. In contrast to time-marching, direct collocation simulates the 

dynamic equations by solving all time frames simultaneously. Both the controls and 

the states are parameterized and the discretized state equations are solved while 

optimizing the performance criterion, resulting in a non-linear programming problem 

(NLP) with a large number of optimization variables as compared to direct shooting 

methods. The sparsity of these problems, however, makes them tractable, and 

therefore collocation methods are often more efficient computationally than are 

shooting methods. However, due to the stiffness of the dynamic equations, solving 

the NLP arising from a dynamic optimization problem is challenging, and only a few 
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studies have explored this approach. De Groote et al.8 presented a sequential 

approach to solve the muscle dynamic optimization problem. Their approach 

approximates non-smooth non-linear dynamic equations by a smooth linear 

discretization that is updated every iteration. Though computationally efficient, 

convergence of this approach to a local optimum of the original dynamic optimization 

problem could not be guaranteed. Van den Bogert et al. applied direct collocation to 

a non-linear musculoskeletal dynamic optimization problem for walking. They 

obtained fast convergence but did not verify the optimality of their numerical 

solution1,2,31, which would provide confidence that direct collocation is an appropriate 

method for solving the dynamic optimization problems. In both cases, convergence 

relied heavily on the availability of a good initial guess, making existing direct 

collocation formulations less suitable for use by non-experts31.  

This study sought to identify a formulation for solving the muscle dynamic 

optimization problem using direct collocation optimal control methods that is 

computationally efficient and robust to the initial guess. Since numerical optimization 

is sensitive to problem formulation, four optimal control problem formulations were 

investigated. Each formulation optimized the same performance criterion, modeled 

activation dynamics, and used either an explicit or implicit representation of 

contraction dynamics with either normalized muscle fiber length or normalized tendon 

force as a state variable. The implicit representations introduced additional controls 

defined as the time derivatives of the states, resulting in very simple dynamic 

equations and allowing the nonlinear equations describing muscle contraction 

dynamics to be imposed as algebraic path constraints, simplifying their evaluation. 

The different problem formulations were evaluated by estimating muscle forces 

during normal walking using both a simple and a complex musculoskeletal model. 
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The optimality of the solutions obtained was confirmed using two different 

approaches following the suggestion of Hicks and al.13 to verify software used for 

musculoskeletal modeling and simulation. The robustness and efficiency of the 

proposed implicit formulations might enable the use of muscle dynamic optimization 

by non-experts seeking to investigate the effect of muscle dynamics on the efficiency 

and performance of human movement. 

 

Materials and Methods 

Musculoskeletal model 

To perform the proposed study, we started with a simple and a complex 

musculoskeletal model taken from the Models folder installed with OpenSim 3.29. 

The simple model (gait10dof18musc) contained three degrees of freedom (hip, 

knee, and ankle angle in the sagittal plane) and nine muscles per leg, while the 

complex model (gait2392) contained five degrees of freedom (three at the hip and 

one at the knee and ankle) and 43 muscles per leg. 

Each muscle in the model was represented as a Hill-type muscle-tendon unit37 

(Figure 1). Muscle dynamics was described by two nonlinear, first order 

differential equations — activation and contraction dynamics — that relate the 

control — muscle excitation — to the states — muscle activation and either 

normalized fiber length or normalized tendon force. Activation dynamics was 

modelled based on Winters30,35, using a tanh function to smoothly transition 

between activation and deactivation: 

 � = 0.5 tanh (�(� − �)), (1) 

 ��

��
=

1

� 0.5+ 1.5�
� + 0.5 +

0.5+ 1.5�

�
−� + 0.5 � − � , 

(2) 
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where � is muscle excitation, � is muscle activation, � = 0.015�  is the activation 

time constant, � = 0.060� is the deactivation time constant, and � = 0.1  is a 

parameter determining transition smoothness. Contraction dynamics was 

described based on Hill’s model37 (Figure 1). The muscle-tendon actuator 

consisted of a tendon with length �  in series with a muscle with fiber length � , 

where the pennation angle � defines the angle between the tendon and the 

muscle fibers. Properties of muscle and tendon were described by dimensionless 

characteristics (Figure 2). Five parameters scaled these generic characteristics for 

a specific muscle: optimal fiber length � , maximal muscle fiber velocity � , 

peak isometric muscle force � , tendon slack length � , and pennation angle at 

optimal fiber length � . Values for these five parameters were taken from the 

OpenSim models described above. Tendon was modeled by a nonlinear spring: 

 � = � � � , (3) 

where  �   is tendon force, � = � /�  is normalized tendon length and �  is the 

tendon force-length characteristic (see online supplement for mathematical 

expression). Muscle was modeled by a contractile element in parallel with a 

passive element:  

 � =  � ��act � � � +  �pas � , (4) 

where  �   is muscle force, � = � /�   is normalized fiber length, � = � /�  is 

normalized fiber velocity, and �act,  �pas, and  �  are the active muscle force-length, 

passive muscle force-length, and muscle force-velocity characteristics, 

respectively (see online supplement for mathematical expressions). The 

interaction between muscle and tendon was described by (Figure 1): 

 � = � + � cos�, (5) 
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 � sin� = � sin� , (6) 

 � = � cos�. (7) 

The five equations 3-7 determine the five unknowns � , � , � , � , �, given the 

input � and the muscle-tendon length � . The dynamic nature of the Hill model 

results from the fiber velocity dependence of equation 4. Note, however, that 

under the assumption of a rigid tendon and hence constant tendon length � = � , 

muscle fiber length and velocity are completely determined by muscle-tendon 

length �  and velocity �  (eq. 5, 6), which can be computed from skeletal 

kinematics, thereby allowing algebraic solution of equations 3-7. 

Given the algebraic relationship between muscle fiber length and tendon force, 

it is equally valid to choose muscle length or tendon force as the state variable 

when solving equations 3-727. All characteristics are at least second order 

continuous and �  is at least third order continuous (Figure 2). For numerical 

reasons, �  is allowed to be less than zero instead of equal to zero when the 

tendon is slack. Negative tendon forces are non-physiological but will never occur 

when muscle and tendon force are equilibrated (eq. 7), since muscle force cannot 

drop below zero (eq. 4). This modification of �  makes the solution of equations 3-

7 better conditioned when the muscle-tendon actuator is slack (zero tendon force 

corresponds to normalized tendon length of 1 rather than a whole range of tendon 

lengths). 

 

Experimental data and data processing 

Experimental data for one walking cycle were taken from the Models folder 

installed with OpenSim 3.2, since the availability of this dataset allows other 

researchers to compare their methods to the one presented in this paper. 
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Experimental marker trajectories were sampled at 60Hz. The exact same 

experimental data were used for the simple and complex model. The muscle force 

distribution underlying this walking motion was computed for the right limb of both 

models by combining dynamic optimization with an inverse dynamics analysis of 

skeletal motion where measured joint kinematics and external (ground reaction) 

forces were inputs and the joint reaction torques were outputs8,17. The inverse 

dynamics joint torques along with the muscle-tendon lengths and velocities and 

the muscle moment arms were calculated using the standard workflow in 

OpenSim 3.2 and used as inputs for the dynamic optimization problems described 

below (see Figure 3 for more details). These problems were solved for the 

controls and states (see below for a formulation-dependent definition) over the 

motion cycle. The initial and final states, however, are unknown. We found that 

the initial and final states only influenced the optimal controls and states over a 

period of about 50 ms at the beginning and end of the time interval over which the 

dynamic optimization problem was solved. Therefore, problems were solved for a 

time interval containing five additional data points at the beginning and end of the 

motion cycle to limit the influence of the unknown initial state and final states (the 

final state influences the optimal control at preceding time instants) on the solution 

for the motion cycle under consideration and results for these additional data 

points were not reported.  

 

Problem formulations and solution method 

The goal of each optimization problem was to find muscle excitations bounded 

between 0 and 1 that produced the specified inverse dynamics joint torques while 

minimizing the integral of the sum of squared excitations for all muscles over the 
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duration of the motion. The use of a quadratic cost functional was first proposed 

by Pedotti at al.26 and is a measure of muscular effort. Activation and contraction 

dynamics relate muscle excitations to muscle forces whereas the pre-computed 

muscle moment arms relate muscle forces to joint torques. For each degree of 

freedom, an ideal actuator that can produce torque instantaneously was added to 

the model to guarantee problem feasibility in the presence of modeling and 

measurement errors. The use of these non-physiological actuators was 

discouraged by weighting their contribution heavily in the cost function. This 

approach resulted in the following dynamic optimization problems. 

Cost functional. The cost functional consisted of two terms. The first term 

represented muscular effort modeled by the integral of the sum of squared muscle 

excitations, whereas the second term penalized the use of the non-physiological 

ideal torque actuators: 

 

� + � � �� 

(8) 

where � is time, �  and �  are the initial and final time, respectively, � = 1…� 

indicates the different muscles, �  are the inputs for the ideal actuators, � = 1…� 

indicates the different degrees of freedom, and � = 1000 is a weight penalizing 

the use of the non-physiological ideal actuators. This weight was chosen such that 

the contribution of the ideal torque actuators is below 1 Nm for walking, which we 

think is acceptable given measurement and modeling uncertainties.  

Bounds. Muscle excitations were bounded between 0 and 1 whereas the ideal 

torque actuators could generate both positive and negative torques: 

 0 ≤ � ≤ 1 (9) 
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 −1 ≤ � ≤ 1  (10) 

for  � = 1…� and � = 1…�, respectively. 

Path constraints. The pre-computed muscle moment arms related the muscle 

forces to the inverse dynamics joint reaction torques: 

 
�ID =   � � + � �max 

(11) 

for � = 1…�, where  �IDk is the inverse dynamics joint torque, �  is the moment 

arm of muscle � with respect to the �th degree of freedom, and �max = 150 �� is 

the maximal torque output of the ideal actuators. �max was chosen to have the 

same order of magnitude as the maximal joint torques exerted during the motion 

to guarantee feasibility of the dynamic optimization problem. 

Constraints imposing muscle dynamics. Activation dynamics was imposed 

using equations 1-2. Contraction dynamics was imposed using four different 

formulations as described below: 

1. Using normalized tendon force � =  as a state: 

 
= � (�,� ). (12) 

2. Using normalized muscle fiber length as a state:  

 
= � (�, � ). (13) 

This formulation of contraction dynamics was typically used in previous methods 

e.g. 9, 31. 

3. Using normalized tendon force as a state and introducing � , the scaled time 

derivative of the normalized tendon force, as a new control simplifying the 

contraction dynamic equations: 
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 ��

��
= � � , 

(14) 

where � = 10 is a scaling factor. The scaling factor was chosen such that the 

controls �  had the same order of magnitude as the other controls and the states. 

The Hill model was then imposed as a path constraint: 

 � �,� ,� = 0. (15) 

4. Using normalized muscle fiber length as a state and introducing � , the scaled 

time derivative of the normalized muscle length, as a new control simplifying the 

contraction dynamic equations: 

 
=

max

� . (16) 

where v
M

max/l
M

0  is a scaling factor that converts �  into normalized muscle fiber 

velocity � =
max

. Note that normalized muscle fiber velocity is not the first time 

derivative of normalized muscle length unless normalized time is being used. The 

Hill model was then imposed as a path constraint: 

 � �, � ,� = 0. (17) 

All functions � , � = 1… 4, were derived from the Hill model described by eqs. 3-7 

(see online supplement for full-form expressions). In formulation 2 and 4, which 

use normalized muscle fiber length as a state, �  was computed from �  based on 

eqs. 5, 6, and 3 to evaluate joint torques (eq. 11). Evaluating �  and �  required 

dividing by muscle activation. Muscle activation was bounded between 0.01 and 1 

for all formulations to allow comparison of the solutions obtained with the different 

formulations. The optimal controls and cost function are only expected to be 

identical if the optimization problems are equivalent, which would not be the case 

if the states were bounded differently. Normalized muscle forces were bounded 

between 0 and 3, normalized muscle fiber lengths were bounded between 0.4 and 
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1.6, controls �  were bounded between -50 and 50, and controls �   were 

bounded between -1 and 1. At the optimal solution, only the bounds on muscle 

excitations and muscle activations were active. The feasible set of formulations 3 

and 4 differs from the feasible set of formulations 1 and 2 due to the bounds on 

the additional controls. However, unless these bounds are active at the optimal 

solution, all formulations have the same globally optimal muscle excitations. Initial 

and final states were constrained to be within the bounds specified for the states 

but were not prescribed. 

The four muscle dynamic optimization problems were solved numerically 

through direct collocation using GPOPS-II optimal control software24. GPOPS-II is 

a MATLAB program that transcribes the dynamic optimization problem to a NLP 

using a Legendre-Guass-Radau (LGR) quadrature collocation method. All 

problems were solved on a mesh with 100 equally spaced intervals using third 

order LGR collocation. Analysis of the mesh accuracy (see below) showed that a 

further increase in the number of mesh intervals had only a small influence on the 

optimal solution. The interior point solver IPOPT32 was used to solve the resulting 

large-scale NLPs using second derivative information with a NLP relative error 

tolerance of 1e-6 and a maximum of 2000 iterations. The open-source automatic 

differentiation software ADiGator25 was used to generate derivative source code 

for use by IPOPT. Automatic differentiation generates analytic derivatives of 

general functions defined by computer code by applying differentiation rules (e.g. 

product, quotient, and chain rules) on the elementary function operations that 

underlie the code25. All computations were performed on an Intel Core i7-4600U 

2.1GHz processor with 16 GB RAM. This computation process is illustrated by the 

block diagram in Figure 3.  
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Analysis of results 

The four problem formulations were evaluated by estimating muscle forces over 

one walking cycle using both the simple and complex musculoskeletal model. 

Convergence, optimal cost function values, mesh accuracy, and CPU times for the 

different formulations were compared. Mesh accuracy was studied by calculating 

the root mean square (RMS) difference between the excitations calculated using 

100 and 200 mesh intervals, respectively. Solution robustness against changes in 

the initial guess for the controls and the states was also investigated. Robustness 

was defined as the RMS difference between excitations calculated using a hot 

start and an arbitrary initial guess. The hot start was obtained from muscle 

activations calculated using a previously proposed approach that accounted for 

activation dynamics but not contraction dynamics7. These activations were used 

as the initial guess for both the muscle excitations and activations. Dynamically 

consistent muscle fiber lengths and muscle forces as well as muscle velocities 

and time derivatives of muscle forces were computed based on contraction 

dynamics using the initial guess for the activations as an input. These quantities 

were used as the initial guess for the other controls and states. The arbitrary initial 

guess consisted of constant values for all controls and states (initial guess of 0.2 for 

excitations, activations, and normalized tendon force; initial guess of 1 for normalized 

fiber lengths, initial guess of 0 for all other controls and states). In addition, the effect 

of bounding muscle activations between 0 and 1 instead of between 0.01 and 1 on 

the CPU time and mesh accuracy for the third and fourth formulations, which do not 

require division by muscle activation, was investigated. 
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Optimality of the results was verified two ways. First, a post-optimality analysis 

as described in detail by Graham and Rao12 was performed to investigate the 

proximity of the numerical solution to the true optimal solution of the dynamic 

optimization problem. To this end, the first-order optimality condition that the 

costate is the sensitivity of the cost with respect to the state along the optimal 

solution was verified based on the equivalence between the NLP and calculus of 

variations optimality conditions for LRG collocation methods. A discrete 

approximation of the costate of the dynamic optimization problem was obtained by 

a linear transformation of the Lagrange multipliers of the NLP arising from LGR 

collocation11, and this computation is automatically performed by GPOPS-II when 

solving an optimization problem. To perform this post-optimality analysis, the 

dynamic optimization problem was resolved over the walking cycle imposing the 

previously obtained solution at the beginning of the walking cycle as the initial 

state. The sensitivity of the cost with respect to the initial state was approximated 

by resolving the dynamic optimization problem using a perturbed initial state and 

computing the ratio of the change in cost to the change in initial state. By 

comparing the costate approximations at the initial time with the sensitivity of the 

cost to changes of 0.001 in the initial activation of each muscle, we evaluated the 

optimality of the obtained solutions. For this analysis, GPOPS-II’s mesh 

refinement algorithm was used. Since contraction dynamics was imposed as a 

path constraint in formulations 3 and 4 and GPOPS-II’s mesh refinement algorithm 

does not account for path constraints, the mesh was refined based on activation 

dynamics accuracy only. This post-optimality analysis was performed for 

formulations 3 and 4 only, since formulations 1 and 2 did not always converge, 

and only for the simple model, since problem formulation and solution methods 
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are not model-specific and computation times were much lower for the simple 

model. 

Second, a less formal verification was performed by using the equivalence 

between static and dynamic optimization in the limit of zero activation and 

deactivation time constants and infinite tendon stiffness. Since the static 

optimization problem is quadratic, the global optimality of its solution can be 

guaranteed. Close proximity of the solution of the dynamic optimization problem 

with small activation and deactivation time constants and high tendon stiffness to 

the solution of the static optimization problem is therefore an indication of the 

optimality of the dynamic optimization solution. It is important to note here that 

optimality of the dynamic optimization solution of the problem with modified 

parameters does not guarantee optimality of the solution of the problem with 

original parameters. We resolved the dynamic optimization problem with activation 

and deactivation time constants of 5 ms instead of 15 and 60 ms, respectively, 

and by increasing the value of parameter �  determining the steepness of the 

tendon force length characteristic from 35 to 1,000 (see also online supplement). 

We then compared the solution of this limit problem to the solution of a 

corresponding static optimization problem. The static optimization problem was 

configured to match the dynamic optimization problem as closely as possible. The 

cost function was the integrand of the cost functional of the dynamic optimization 

problem evaluated at each time instant �, where muscle excitation was replaced 

by muscle activation. Muscle activations were bounded between 0 and 1 whereas 

the inputs for the ideal torque actuators - �  - were bounded between -1 and 1. 

Pre-computed muscle moment arms were used to relate the tendon forces and 

ideal torques to the inverse dynamics joint reaction torques (eq. 11). Muscle 
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activation and tendon force were linearly related through equations 4 and 7 using 

a rigid tendon with length � . The static optimization problem was solved using 

MATLAB’s lsqlin. 

 

Results 

Optimal control problem formulation influenced convergence (Table 1-2). Only 

formulations 3 and 4, which used extra controls and an implicit formulation of 

contraction dynamics, converged for all conditions evaluated in this study. 

Convergence of formulation 2, which used normalized fiber length as a state, was 

poorest. The different formulations converged to nearly identical optimal muscle 

excitations for both the simple (Figure 4) and complex model (Figure 5). In all cases, 

only the lower bounds on muscle excitations and muscle activations were active. The 

contributions of the ideal torque actuators to the inverse dynamics torques were 

always smaller than 0.7 Nm. These ideal torques do not exceed what is expected 

given measurement and modeling uncertainty. The reader is referred to the online 

supplement for figures of ideal torques and muscle activations and tendon forces of 

all muscles of the complex model. 

For the simple model, all formulations except formulation 2 converged from both 

the hot start and the arbitrary initial guess. Formulation 2 converged when given the 

optimal solution of formulation 4 as an initial guess. Optimal solutions of the different 

formulations and for different initial guesses were nearly identical as can be seen 

from the cost function values and robustness against initial guess in Table 1 and from 

the optimal muscle excitation patterns in Figure 4. Mesh accuracy was similar for 

formulations 1, 3, and 4. CPU times were between 7 and 47 s with formulation 3 

having the lowest CPU times. 
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For the complex model, only formulations 3 and 4 converged from both the hot 

start and the arbitrary initial guess. Formulation 1 converged only from the hot start 

and formulation 2 did not converge from either the hot start or the arbitrary initial 

guess (Table 2). Optimal solutions of the different formulations and for different initial 

guesses were nearly identical, as can be seen from the cost function values and 

robustness against initial guess in Table 2 and from the optimal muscle excitation 

patterns in Figure 5. Mesh accuracy was similar for formulations 1, 3, and 4. CPU 

times were between 988 and 2723 s with formulation 3 having the lowest CPU times. 

Allowing activations to drop to zero for formulations 3 and 4, which did not require 

dividing by muscle activation to evaluate contraction dynamics, had a small but 

positive effect on mesh accuracy and almost always reduced computation time 

(Table 3-4). 

Both optimality tests confirmed the close proximity of the numerical solutions to 

the optimal solution of the dynamic optimization problems. First, the costate 

approximations at the initial time matched the finite difference approximation of the 

sensitivity of the cost with respect to the initial state (Table 5). Second, the RMS 

difference between the optimal activations obtained by static and dynamic 

optimization decreased by a factor ten from 0.0223 to 0.0027 when activation and 

deactivation time constants were decreased and tendon stiffness was increased 

(formulation 3, activations bounded between 0 and 1, 100 mesh intervals), showing 

that the dynamic optimization solution approximated the static optimization solution 

when the two approaches were made similar. With a further decrease in time 

constants and increase in tendon stiffness, no accurate solution was obtained on a 

mesh with 100 intervals due to the increased stiffness of muscle activation and 

contraction dynamics. 
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Discussion 

This study evaluated four possible optimal control problem formulations for solving 

the muscle redundancy problem while taking muscle activation and contraction 

dynamics into account. Although all formulations converged from at least one initial 

guess for the simple model, the formulations that used explicit contraction dynamics 

failed to converge for all cases that were evaluated in this study (Tables 1-2). The 

formulation with explicit contraction dynamics and normalized fiber length as the state 

variable was especially sensitive to the initial guess. In contrast, the two formulations 

that used implicit contraction dynamics converged to an optimal solution in all cases 

for all initial guesses. These findings suggest that use of implicit contraction dynamics 

may result in the most robust formulation of the dynamic optimization problem when 

using direct collocation. 

Introducing additional controls that are proportional to the time derivative of the 

states resulted in very simple dynamic equations. The nonlinear equations describing 

contraction dynamics were then imposed as algebraic path constraints in their implicit 

form. By using the implicit form of the Hill model, evaluation of contraction dynamics 

did not require inversion of normalized force-velocity curves. In combination with the 

bounds on the controls and states, this formulation always resulted in well-bounded 

values for all variables in the Hill model (equations 3-7), which may have helped 

convergence. This well-bounded nature could not be guaranteed for formulations that 

used explicit contraction dynamics and required inversion of the force-velocity 

characteristic in combination with unbounded values for the state (tendon force or 

muscle fiber length) derivatives. Furthermore, formulations that used tendon force 

as a state generally converged faster due to fewer NLP iterations. This result 
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might be explained by the more linear relationship between muscle activation and 

tendon force than between muscle activation and muscle fiber length.  

An additional advantage of these implicit formulations is that muscle 

activations are allowed to drop to zero, since no division by muscle activation is 

required to evaluate contraction dynamics. When muscle activation is small, the 

equilibrium between muscle force and tendon force (substitute eqs. 3-4 into eq. 7) 

defines muscle fiber velocity poorly since the fiber velocity dependent term is 

multiplied by a small value for activation. When muscle activation is zero, 

however, muscle length is fully determined by the equilibrium between passive 

muscle force and tendon force. This observation may explain why imposing lower 

bounds of 0 instead of 0.01 on muscle activations had a positive effect on 

computation times. 

Although direct collocation methods for solving the muscle redundancy problem 

have been explored in previous studies1,2,7,8,31, this study is the first to investigate the 

influence of different problem formulations on the accuracy and robustness of the 

numerical solution. The results of this study are especially important since optimality 

of the obtained solutions was never checked previously confirming the statement of 

Hicks et al. that verification of numerical methods used to solve for the unknowns in a 

simulation is often overlooked13. In addition, robustness as well as numerical 

challenges related to the convergence of gradient-based solvers have been identified 

as an important limitation to the use of dynamic optimization by non-experts16,31. The 

close proximity of the numerical solutions to the optimal solution of the dynamic 

optimization problems was confirmed two ways. In addition, the direct collocation 

solutions of the formulations that used implicit contraction dynamics have low 

dependence on the initial guess and hence these formulations can be considered to 
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be robust. Results from two really different initial guesses were reported - a hot start 

that can be obtained in a few CPU seconds7 and arbitrary constant values in time for 

all controls and states. We did not explore the use of a completely random initial 

guess, since better than random initial guesses are readily available.  

Direct collocation is a computationally efficient alternative to direct shooting 

methods, which are commonly used. In contrast to shooting methods that typically 

require large computation times and often do not converge to an optimal solution, we 

obtained convergence in 7 to 47 seconds of CPU time for a simple model and 16 to 

45 minutes of CPU time for a complex model. Using automatic differentiation reduced 

CPU times by about a factor of ten compared to using finite difference derivatives. 

Automatic differentiation is an alternative for numerical or symbolic differentiation. 

Numerical differentiation by finite differences requires multiple function 

evaluations and is less accurate due to the finite approximation. Symbolic 

differentiation also results in analytic derivatives but has the disadvantage of 

being sensitive to the complexity of the function25. The increase in computational 

efficiency when using automatic differentiation followed from the reduced CPU 

time in NLP function evaluations and for the formulations with fiber length as a 

state also from the reduced number of NLP iterations. The reduced number of 

NLP iterations might be explained by the higher gain in accuracy for the 

formulations with fiber length as a state that rely on the highly non-linear relation 

between muscle activity and fiber length. Additional advantages of our method over 

direct shooting methods are that we do not need to use a simple parametrization of 

the controls (e.g. block patterns22) to keep the problem tractable, and we can easily 

assess the accuracy of the numerical solution. 
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Direct comparison of CPU times with results from the literature is difficult, since in 

contrast to the majority of reported studies, we used an inverse dynamics instead of 

forward dynamics approach for skeletal dynamics. Since skeletal dynamics was 

solved by an inverse dynamics analysis preceding our optimizations, only muscle 

dynamics instead of muscle plus skeletal dynamics was evaluated during the 

optimization. As a result, computational efficiency was increased. In addition, CPU 

times are influenced by problem formulation and the specific motion being tracked. 

Nevertheless, Menegaldo et al.17 needed about 55 minutes of CPU time to solve a 

similar dynamic optimization problem preceded by an inverse dynamics analysis of 

skeletal motion for a simple three degree-of-freedom planar model with ten muscles 

based on direct shooting, whereas we required less than a minute of CPU time for a 

model of comparable complexity. 

Van den Bogert et al.31 have previously used direct collocation in combination 

with an implicit formulation of muscle contraction dynamics, and although their 

findings about computational efficiency were similar to ours, they found that 

convergence depended critically on the availability of a good initial guess. There are 

several possible reasons for this difference in robustness. First, van den Bogert et al. 

use a forward instead of inverse dynamics approach to solve for skeletal motion, 

resulting in a harder dynamic optimization problem. Second, we not only used an 

implicit formulation of contraction dynamics but also introduced additional controls 

defined as the state derivatives, which were bounded. The well-bounded nature of 

the optimization problem might have improved the robustness to the initial guess. 

Third, a more accurate collocation method - Legendre-Guass-Radau quadrature 

instead of midpoint Euler - was used in this study. 
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The proposed muscle dynamic optimization approach is a robust alternative for 

computed muscle control (CMC), a popular approach to compute dynamically 

consistent muscle controls that track a given motion29. Instead of solving a dynamic 

optimization problem, CMC uses static optimization along with feedforward and 

feedback control to drive a musculoskeletal model towards the experimentally 

measured kinematics. However, due to the combination of static optimization and a 

forward simulation of muscle and skeleton dynamics based on time-marching, 

muscle forces computed with CMC are extremely sensitive to model parameter 

values (e.g., segment mass and inertia) and the instant in time at which the 

simulation is started34. In contrast, our approach is robust against small changes in 

model parameter values because of the low sensitivity of inverse dynamics 

simulations to mass and inertia parameters34 and the absence of time-marching. In 

addition, the muscle force solution does not depend on the initial and final time 

except for a short time interval of about 50ms at the beginning and end of the motion 

due to the unknown initial and final state. The computational efficiency of the direct 

collocation method proposed in this paper is comparable to CMC and hence the use 

of a robust, dynamic optimization method instead of CMC comes at no additional 

cost. 

Computation times are still considerably higher for dynamic than for static 

optimization and hence modeling of muscle dynamics should be motivated by the 

research question. Some have argued that static and dynamic optimization yield 

similar muscle forces during walking5 and even running16. To illustrate that this 

similarity should be assessed in light of the research question, we compared static 

and dynamic optimization solutions for walking and running. Solutions for running 

were obtained by applying the same models and methods on one cycle of treadmill 
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running data collected at 9.5 km/h from a male test subject (64.8kg, 1.76m). The 

subject provided written informed consent in accordance with the ethical committee 

of UZ Leuven. Static and dynamic optimization yielded different muscle activations 

during walking for muscles with long, compliant tendons such as the gastrocnemii 

and soleus, where the rigid tendon assumption of static optimization is less valid 

(Figure 6). The corresponding muscle forces, however, were very similar for the two 

optimization approaches. Hence, a compliant tendon allows generating the same 

amount of force with lower muscle activation by allowing the muscle to operate closer 

to its optimal fiber length and hence augments the efficiency of the muscle. These 

results suggest that modeling of muscle dynamics may be important to study muscle 

efficiency during walking but may not have a large influence on the computation of 

joint contact forces, which are mainly determined by muscle forces. Modeling muscle 

dynamics is more important to study faster motions such as running where the 

neglect of muscle dynamics limits the performance of the model, resulting in maximal 

muscle activity for some muscles (Figure 7) and different muscle force predictions for 

static and dynamic optimization. This finding is in accordance with Miller et al.18, who 

found that sprinting performance significantly decreases in the absence of tendon 

compliance. Hence, we conclude that modeling muscle dynamics may be important 

to assess efficiency and performance, even in slow motions, and to assess muscle 

forces in faster motions. In addition, the use of muscle dynamic optimization instead 

of static optimization enables using time-dependent cost functions such as metabolic 

energy consumption; studying the effect of tendon stiffness, which is especially 

relevant in elderly and athletes; including history dependent muscle dynamics; and 

accounting for muscle state feedback.  
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An important limitation of our study is that we used inverse dynamics to solve 

skeletal dynamics, which is applicable only if skeletal motion is known a priori. 

Previously, forward dynamic approaches have been used to assess muscle 

contributions to a measured motione.g.22. This approach was possibly motivated by 

the lack of inverse dynamic methods that accounted for muscle dynamics at that 

time.  Our method provides a computationally efficient alternative for forward dynamic 

approaches that track a known motion, but it cannot replace forward dynamic 

approaches that are used to predict optimal motion patterns. Note that under the 

assumption of zero tracking errors and equal contribution of the ideal torque 

actuators, the use of an inverse and forward dynamic analysis of skeletal motion to 

estimate muscle forces for a given motion are equivalent, i.e., they result in the same 

muscle excitation patterns. Our inverse dynamic approach, however, does not allow 

non-zero tracking errors. We plan to extend the proposed direct collocation method to 

include skeletal dynamics, enabling predictive simulations in the future. Another 

limitation of this study is that results for only two motion cycles were reported. 

However, the method worked equally well when applied to additional data (walking, 

running, and perturbed standing of different subjects). 

The use of gradient-based optimization methods requires that objective and 

constraint functions are twice continuously differentiable. Therefore we had to use a 

smooth approximation of the activation dynamics model proposed by Winters et al.35 

We investigated the influence of the parameter b defining the smoothness of the 

transition between activation and deactivation dynamics on the optimal solution and 

found that it was small. Similarly, all normalized muscle force-length and force-

velocity characteristics need to be smooth and twice continuously differentiable. 

Characteristics proposed in the literature vary widely. In our problems, use of a 
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steeper normalized muscle force-velocity curve and of smaller activation and 

deactivation time constants required a finer mesh to obtain the same accuracy and 

resulted in higher computation times. 

In conclusion, we evaluated different optimal control problem formulations for 

computing dynamically consistent muscle controls that reproduce inverse dynamics 

joint torques during walking. Optimal control problem formulation mainly influenced 

convergence and CPU time. The formulations that used implicit muscle dynamics in 

combination with additional controls allowed for a robust solution of the muscle 

redundancy problem for a 3D musculoskeletal model with 43 muscles per leg in 

about 20 minutes of CPU time. The close proximity of the numerical solutions to the 

optimal solution of the dynamic optimization problem was confirmed in two ways. Our 

approach, which is based on direct collocation, is orders of magnitude faster than 

direct shooting approaches that have been used previously to compute muscle inputs 

that track a measured motion. Hence, direct collocation in combination with the 

proposed implicit formulation of contraction dynamics is a computationally efficient 

and robust alternative to direct shooting methods for solving dynamic optimization 

problems with motion tracking. Therefore, this approach might enable the use of 

dynamic optimization by non-experts seeking to investigate the effect of muscle 

dynamics on efficiency and optimal performance. Future work should focus on 

comparing the present approach to other approaches for computing muscle forces. 

The present approach lacks some of the major limitations of established methods 

such as static optimization and CMC while remaining computationally efficient. 
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Table 1 Comparison of different problem formulations for the simple model. 

*Formulation 2 did not converge from the hot start but converged from the optimal 

solution of formulation 4. 

 Hot start Arbitrary initial guess 

Formulation 1 2* 3 4 1 2 3 4 

Convergence YES YES YES YES YES NO YES YES 

Optimal value 0.3339 0.3378 0.3336 0.3385 0.3339 - 0.3339 0.3385 

Accuracy 0.0024 0.0044 0.0024 0.0026 0.0024 - 0.0024 0.0026 

CPU time [s] 15 193 13 22 27 - 7 45 

Robustness 3.59e-6 - 1.17e-4 1.75e-7 3.59e-6 - 1.17e-4 1.75e-7 
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Table 2 Comparison of different problem formulations for the complex 

model. Robustness could not be computed for formulation 1, since convergence 

was not obtained for the arbitrary initial guess. 

 Hot start Arbitrary initial guess 

Formulation 1 2 3 4 1 2 3 4 

Convergence YES NO YES YES NO NO YES YES 

Optimal value 0.9600 - 0.9590 0.957 - - 0.9591 0.9589 

Accuracy 0.0021 - 0.020 0.0020 - - 0.0020 0.0020 

CPU time [s] 1727 - 1937 1389 - - 988 2723 

Robustness  - - 8.90e-5 1.89e-4 - - 8.90e-5 1.89e-4 
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Table 3 Comparison of formulations 3 and 4 with muscle activation bound 

between 0 and 1 for the simple model.  

 Hot start Arbitrary initial 

guess 

Formulation 3 4 3 4 

Convergence YES YES YES YES 

Optimal value 0.2970 0.3013 0.2969 0.3013 

Accuracy 0.0023 0.0024 0.0023 0.0024 

CPU time [s] 11 11 6 36 

Robustness 1.15e-4 1.61e-7 1.15e-4 1.61e-7 
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Table 4 Comparison of formulations 3 and 4 with muscle activation bound 

between 0 and 1 for the complex model.  

 Hot start Arbitrary initial 

guess 

Formulation 3 4 3 4 

Convergence YES YES YES YES 

Optimal value 0.8647 0.8643 0.8646 0.8643 

Accuracy 0.0019 0.0019 0.0019 0.0019 

CPU time [s] 1520 1037 1170 2025 

Robustness 9.46e-5 8.91e-6 9.46e-5 8.91e-6 

  



38 
 

Table 5 Post-optimality results for formulations 3 and 4. Analysis was performed 

for formulations 3 and 4 with muscle activation bound between 0 and 1 for the 

simple model. �∗ (� ) is the optimal costate of muscle activation at the initial time, 

and Δ�/Δ� is the ratio of the change in cost to the change in initial activation. 

Muscle names are abbreviated: HAM for hamstrings, BFsh for biceps femoris 

short head, GM for gluteus maximus, IP for iliopsoas, VA for vasti, GA for 

gastrocnemii, SOL for soleus, and TA for tibialis anterior. *Computed with a Δ� of 

0.0005 instead of 0.001. 

Formulation 3 – Simple model 

 

HAM BFsh GM IP RF VA GA SOL TA 

�
∗ (� ) -0.0059 -0.0014 0.0021 -0.0027 0.0026 0.0069 -0.0030 0.0049 -0.0052 

Δ�/Δ� -0.0058 -0.0013 0.0021 -0.0027 0.0030 0.0075 -0.0030 0.0048 -0.0051 

 

Formulation 4 – Simple model 

 HAM BFsh GM IP RF VA GA SOL TA 

�
∗ (� ) -0.0059 -0.0014 0.0021 -0.0027 0.0026 0.0069 -0.0030 0.0049 -0.0052 

Δ�/Δ� -0.0058 -0.0015 0.0022* -0.0025 0.0031 0.0076 -0.0030 0.0050 -0.0051 
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Figure 2 Characteristics describing normalized muscle-tendon properties. Tendon 

force-length relationship � (� ) with �  normalized tendon length (left), active (solid 

line) and passive (dashed line) muscle force-length relationships � (� ) and 

� (� ) with �  normalized muscle length (middle), and muscle force-velocity 

relationship � (� ) with �  normalized muscle velocity (right). Negative tendon 

forces are non-physiological but will never occur when muscle and tendon force 

are equilibrated (eq. 7), since muscle force cannot drop below zero (eq. 4). This 

modification of �  makes the solution of equations 3-7 better conditioned when the 

muscle-tendon actuator is slack (zero tendon force corresponds to normalized 

tendon length of 1 rather than a whole range of tendon lengths). 
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Figure 4 Optimal muscle excitations for the nine muscles of the simple model 

computed using formulation 1 (black), formulation 2 (orange), formulation 3 (gray), 

and formulation 4 (red). The different solutions nearly coincide. 
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Figure 5 Optimal muscle excitations for a subset of the muscles of the complex 

model computed using formulation 1 (black), formulation 3 (gray), and formulation 4 

(red). The different solutions nearly coincide. 
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Figure 6 Comparison of muscle activations during walking computed based on static 

optimization (purple) and formulation 4 of the muscle dynamic optimization problem 

(red) for a subset of the muscles of the complex model.  
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Figure 7 Comparison of muscle activations during running computed based on static 

optimization (purple) and formulation 4 of the muscle dynamic optimization problem 

(red) for a subset of the muscles of the complex model. 
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1 Mathematical expressions for muscle-tendon characteristics

Properties of muscle and tendon were described by dimensionless characteristics. All charac-
teristics are at least second order continuous and the tendon force-length characteristic ft is
third order continuous for compatibility with the interior point numerical optimization solver
that uses second order derivative information. Third order continuity of ft is required, since
the first derivative of the tendon-force length curve is used in formulations 1 and 3 (see below).
ft is described by an exponential function:

ft(l̃T ) = c1exp[kT (l̃T − c2)]− c3, (S1)

with l̃T normalized tendon length, kT = 35 tendon stiffness at 4% strain, and coefficients
c1, c2, and c3. The active force-length characteristic fact is described by the sum of three
Gaussian functions:

fact(l̃M ) =
3

∑

i=1

b1iexp

[

−0.5(l̃M − b2i)
2

b3i + b4i l̃M

]

, (S2)

with l̃M normalized fiber length and coefficients b1i, b2i, b3i, and b4i for i = 1 . . . 3. The
passive force-length characteristic fpas is described as in OpenSim’s Thelen2003Muscle by an
exponential function:

fpas(l̃M ) =
exp

(

kpe(l̃M−1)
e0

)

− 1

exp(kpe)− 1
. (S3)

The force-velocity characteristic fv is described by a logarithmic function:

fv(ṽM ) = d1 log[(d2ṽM + d3) +
√

((d2ṽM + d3)2 + 1)] + d4, (S4)

with ṽM normalized fiber velocity and coefficients d1, d2, d3, and d4. Numerical values for all
coefficients are reported in Table 1.

1



Tendon force-length kT 35
c1 0.200
c2 0.995
c3 0.250

Active muscle force-length b11 0.815
b21 1.055
b31 0.162
b41 0.063
b12 0.433
b22 0.717
b32 -0.030
b42 0.200
b13 0.100
b23 1.000
b33 0.354
b43 0.000

Passive muscle force-length kpe 4.0
e0 0.6

Muscle force-velocity d1 -0.318
d2 -8.149
d3 -0.374
d4 0.886

Table 1: Parameters of the Hill model characteristics.
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2 Full-form expressions of constraints imposing muscle dy-

namics

Contraction dynamics was imposed using four different formulations. To this aim, four differ-
ent functions were derived from the Hill-model described by equations 3-7 (see manuscript).
Full-form expressions for these functions are given below.

Formulation 1

In formulation 1, contraction dynamics is imposed using normalized tendon force F̃T = FT

F 0
M

as a state:
dF̃T

dt
= f1(a, F̃T ) (S5)

f1 can be found by taking the first time derivative of eq. 3:

dF̃T

dt
=

df̃t
dt

(l̃T ) = c1kT exp
[

kT (l̃T − c2)
] dl̃T

dt
. (S6)

Evaluating eq. S6 requires normalized tendon length l̃T and normalized tendon velocity

ṽT = dl̃T
dt . l̃T can be solved from eq. 3 using F̃T , which is an input to function f1:

l̃T = f−1
t (F̃T ) =

1

kT
log

[

1

c1
(F̃T + c3)

]

+ c2. (S7)

Tendon velocity vT can be related to muscle-tendon velocity vMT and fiber velocity vM by
differentiating eq. 5 with respect to time:

vMT = vT + vMcosα− lM sinα
dα

dt
. (S8)

Differentiating eq. 6 with respect to time yields:

vM sinα+ lMcosα
dα

dt
= 0, (S9)

from which we can obtain an expression for dα
dt :

dα

dt
= −

vM sinα

lMcosα
. (S10)

Eq. S10 can then be substituted in eq. S8, which simplifies to the following expression:

vMT = vT +
vM

cosα
. (S11)

Hence, we find tendon velocity from:

vT = vMT −

vM

cosα
, (S12)
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requiring fiber velocity vM and the cosine of the pennation angle cosα. Normalized fiber
velocity can be solved from eq. 4:

ṽM = f−1
v (F̃ v

M ) =
1

d2

(

sinh

[

1

d1
(F̃ v

M − d4)

])

, (S13)

with

F̃ v
M =

F̃M − fpas(l̃M )

afact(l̃M )
. (S14)

lM can be solved from eq. 5 and 6. These two equations can be rewritten as:

lM sinα = l0M sinα0, (S15)

lMcosα = lMT − lT . (S16)

Squaring both sides and adding the resulting equations together eliminates α and results in
the following equation for lM :

lM =
√

(l0M sinα0)2 + (lMT − lT )2, (S17)

which can be evaluated using lT (eq. S7). The cosine of the pennation angle cosα can be
solved from eq. 6:

cosα =
lMT − lT

lM
. (S18)

FM can be solved from eq. 7:

FM =
FT

cosα
(S19)

Summarized, f1 is computed by subsequently evaluating eq. S7, denormalizing l̃T (lT = l̃T l
S
T ),

evaluating eq. S17, normalizing lM (l̃M = lM
l0
M

), evaluating eqs. S18 and S19, normalizing FM

(F̃M = FM

F 0
M

), evaluating eqs. S14 and S13, denormalizing ṽM (vM = ṽMvmax
M ), evaluating eq.

S12, normalizing vT (ṽT = vT
lS
T

) and evaluating S6 using normalized tendon force F̃T and muscle

activation a as inputs. Note that muscle-tendon length lMT and muscle-tendon velocity vMT

are determined by the motion and are computed prior to solving the optimization problem.
lMT is computed using OpenSim’s Muscle Analysis and vMT is obtained by differentiating
the cubic spline interpolation of lMT in MATLAB.

Formulation 2

In formulation 2, contraction dynamics is imposed using normalized fiber length l̃M as a
state:

dl̃M
dt

= f2(a, l̃M ) (S20)

f2 can be found by taking the time derivative of normalized fiber length:

dl̃M
dt

=
1

l0M

dlM
dt

=
1

l0M
vM =

vmax
M

l0M
ṽM (S21)
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Normalized fiber velocity can be solved from eq. 4 (see eqs. S13 and S14). Normalized fiber
length l̃M is an input to f2. Computing muscle force FM from eq. S19 requires FT and cosα.
To compute tendon force FT from eq. 2, tendon length lT is required. Tendon length lT can
be solved from eqs. 5 and 6. Squaring both sides of eq. 6 and substituting 1− cos2α for sin2α
yields:

l2M (1− cos2α) = (l0M sinα0)
2. (S22)

Solving this equation for lMcosα and substituting the result in eq. 5 yields:

lT = lMT −

√

[

l2M − (l0M sinα0)2
]

. (S23)

cosα is then obtained from eq. S18.

Summarized, f2 is computed by subsequently denormalizing l̃M , evaluating eq. S23, nor-
malizing lT , evaluating eqs. S18, 3 and S19, normalizing FM , evaluating eqs. S14, S13 and
S21.

Formulation 3

In formulation 3, contraction dynamics is imposed using normalized tendon force F̃T as a
state and introducing uF , the scaled time derivative of the normalized tendon force, as a new
control simplifying the contraction dynamic equations:

dF̃T

dt
= sFuF . (S24)

The Hill model was then imposed as a path constraint:

f3(a, F̃T , uF ) = 0. (S25)

f4 is obtained by substituting eq. 4 in eq. 7:

F 0
M

[

afact(l̃M )fv(ṽM )− fpas(l̃M )
]

cosα− F 0
M F̃T = 0. (S26)

Evaluating eq. S26 requires l̃M , cosα and ṽM in addition to inputs a and F̃T . Fiber length
l̃M can be computed by subsequently evaluating eq. S7, denormalizing l̃T and evaluating eq.
S17. The cosine of the pennation angle cosα can then be computed from eq. S18. Normalized
fiber velocity ṽM can be computed from the relation between tendon, fiber, and muscle-tendon
velocity (eq. S11):

vM = (vMT − vT )cosα. (S27)

To obtain tendon velocity vT , eq. S6 is solved for ṽT = dl̃T
dt :

ṽT =
dF̃T

dt

c1kT exp
[

kT (l̃T − c2)
] . (S28)

Evaluating this equation requires dF̃T

dt and l̃T .
dF̃T

dt can be solved from eq. S24 and input uF
and l̃T was computed in the process of obtaining l̃M .

Summarized, f3 is computed by subsequently evaluating eq. S7, denormalizing l̃T , evaluating
eq. S17, normalizing lM , evaluating eqs. S18 and S28, denormalizing ṽT , evaluating eq. S27,
normalizing vM , and evaluating eq. S26.
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General settings

derivatives.derivativelevel second
ipoptoptions.tolerance 1e-6
ipoptoptions.maxiterations 2000
ipoptoptions.linear solver ma57
method RPM-integration

Mesh refinement

mesh.method hp-PattersonRao
mesh.tolerance 1e-6
mesh.maxiteration 10
mesh.colpointsmin 3
mesh.colpointsmax 10

Table 2: GPOPS-II settings. Settings that are not specified here were kept at their default
value. The mesh refinement settings only affect the post-optimality analysis, since all other
problems were only solved on the initial mesh.

Formulation 4

In formulation 4, contraction dynamics is imposed using normalized muscle fiber length l̃M
as a state and introducing uv, the scaled time derivative of normalized muscle length, as a
new control simplifying the contraction dynamic equations:

dl̃M
dt

=
vmax
M

l0M
uv. (S29)

The Hill model was then imposed as a path constraint:

f4(a, l̃M , uv) = 0. (S30)

f4 is obtained by substituting eqs. 3 and 4 in eq. 7:

F 0
M

[

afact(l̃M )fv(ṽM )− fpas(l̃M )
]

cosα− F 0
Mft(l̃T ) = 0. (S31)

with ṽm = uv, a and l̃M inputs. l̃T = lT
lS
T

can be computed from eq. S23 and lM = l0M l̃M and

cosα can subsequently be computed from eq. S18.

3 Algorithm settings

All non-default GPOPS-II settings are specified in Table 2.

4 Additional results

Computed muscle activations and tendon forces for all muscles of the complex model during
walking and running are reported in Figures 1-12. Muscle activations and tendon forces
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computed with static optimization and muscle dynamic optimization are shown. Only the
results obtained with formulation 4 are reported, since all formulations gave very similar
results when they converged to a locally optimal solution. Muscle activations computed using
static and dynamic optimization during walking only differ for muscles with long tendons
(Figures 1-3), whereas tendon forces computed using static and dynamic optimization during
walking are very similar (Figures 4-6). However, both muscle activations and tendon forces
computed using static and dynamic optimization during running differ considerably for some
muscles (Figures 7-12). Note that we chose to report absolute muscle forces to represent the
relative importance of the different muscles.

Ideal joint torques during walking and running for the complex model are reported in Figures
13 and 14. Ideal torques during walking are small, i.e. around zero for static optimization
and below 0.7Nm for dynamic optimization. Ideal torques during running are larger, i.e. up
to about 15Nm, and very similar for static and dynamic optimization.
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Figure 1: Comparison of muscle activations during walking computed based on static opti-
mization (purple) and formulation 4 of the muscle dynamic optimization problem (red) - part
1.
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Figure 2: Comparison of muscle activations during walking computed based on static opti-
mization (purple) and formulation 4 of the muscle dynamic optimization problem (red) - part
2.
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Figure 3: Comparison of muscle activations during walking computed based on static opti-
mization (purple) and formulation 4 of the muscle dynamic optimization problem (red) - part
3.
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Figure 4: Comparison of tendon forces during walking computed based on static optimization
(purple) and formulation 4 of the muscle dynamic optimization problem (red) - part 1. Note
that units of force are kN.
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Figure 5: Comparison of tendon forces during walking computed based on static optimization
(purple) and formulation 4 of the muscle dynamic optimization problem (red) - part 2. Note
that units of force are kN.
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Figure 6: Comparison of tendon forces during walking computed based on static optimization
(purple) and formulation 4 of the muscle dynamic optimization problem (red) - part 3. Note
that units of force are kN.
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Figure 7: Comparison of muscle activations during running computed based on static opti-
mization (purple) and formulation 4 of the muscle dynamic optimization problem (red) - part
1.
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Figure 8: Comparison of muscle activations during running computed based on static opti-
mization (purple) and formulation 4 of the muscle dynamic optimization problem (red) - part
2.
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Figure 9: Comparison of muscle activations during running computed based on static opti-
mization (purple) and formulation 4 of the muscle dynamic optimization problem (red) - part
3.
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Figure 10: Comparison of tendon forces during running computed based on static optimization
(purple) and formulation 4 of the muscle dynamic optimization problem (red) - part 1. Note
that units of force are kN.
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Figure 11: Comparison of tendon forces during running computed based on static optimization
(purple) and formulation 4 of the muscle dynamic optimization problem (red) - part 2. Note
that units of force are kN.
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Figure 12: Comparison of tendon forces during running computed based on static optimization
(purple) and formulation 4 of the muscle dynamic optimization problem (red) - part 3. Note
that units of force are kN.
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Figure 13: Ideal torques during walking computed using static optimization (purple) and
formulation 4 of the muscle dynamic optimization problem (red). Internal ankle dorsiflexion,
knee extension, hip flexion, hip adduction, and hip endorotation are positive.
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Figure 14: Ideal torques during running computed using static optimization (purple) and
formulation 4 of the muscle dynamic optimization problem (red). Internal ankle dorsiflexion,
knee extension, hip flexion, hip adduction, and hip endorotation are positive.
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