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EVALUATION OF DISCRETE LOGARITHMS

IN A GROUP OF p-TORSION POINTS

OF AN ELLIPTIC CURVE IN CHARACTERISTIC p

I. A. SEMAEV

Abstract. We show that to solve the discrete log problem in a subgroup of
order p of an elliptic curve over the finite field of characteristic p one needs
O(ln p) operations in this field.

Let Fq be the finite field of q = pl elements. We define an elliptic curve E over
Fq to be an equation of the form

y2 = x3 +Ax+B.

We suppose p 6= 2, 3. Let E(Fq) be the set of points E rational over Fq. It is known

that |Nq − q − 1| ≤ 2q1/2 with Nq = |E(Fq)|. The set E(Fq) is a finite abelian
group with the “infinite point” P∞ as the identity element.

The discrete logarithm problem is to compute an integer n such that Q = nP ,
where Q,P ∈ E(Fq), if such an n exists. This problem is of great significance in
cryptology [1], [2]. Suppose that the point P generates a subgroup 〈P 〉 of order m.
If (m, p) = 1, then the subgroup 〈P 〉 is isomorphic to some multiplicative subgroup
of an extension Fqk where qk ≡ 1 (modm). The values of the isomorphism from 〈P 〉
to F ∗q can be evaluated in a very simple manner. The complexity of the algorithm is
no more than O(lnm) operations in Fqk [3], [4], [5]. Thus when k is small we have an
algorithm for the discrete log problem in 〈P 〉 more effective than the algorithms of
the kind shown in [6], [7]. However if (m, p) 6= 1 the reduction above is impossible.
We have m = psm1 where s > 0 and (m1, p) = 1. Consequently, the discrete log
problem in 〈P 〉 is reduced to a discrete log problem in subgroups of order m1 and
p. For the subgroup of order m1 one can apply the reduction to a multiplicative
subgroup of the extension Fqk with minimal k such that qk ≡ 1 (modm1).

In this paper we construct an isomorphism from the subgroup of order p to the
additive group of Fq. One can evaluate the values of this isomorphism with O(ln p)
operations in Fq. Thus the discrete log problem in a subgroup of order p of an
elliptic curve over the field of characteristic p is polynomial.

Assume that a point P ∈ E(Fq) generates a subgroup of order p. We let tR
denote a local parameter at a point R the coordinates of which are (xR, yR) if
R 6= P∞. If R is not of order 2 or P∞, then tR = x− xR. If R 6= P∞ is a point of
order 2, then tR = y. Finally tP∞ = x/y. It must be noted that a point R of order
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2 on E has the coordinates (xR, 0). Let us take up to the end of this article a point
R ∈ 〈P 〉 − P∞.

It is known that E is isomorphic to the quotient of the group of divisors of
degree 0 by the subgroup of principal divisors, a point Q corresponding to a divisor
Dq =

∑
nTT where Q is a sum on E of the points T taken with multiplicities nT .

For example, DQ = (Q) − (P∞). If Q ∈ 〈P 〉, then pDQ is a principal divisor that
is denoted (fQ) = pDQ for some function fQ on E.

Lemma 1. Let f be a function on E such that (f) = pD for some nonprincipal
divisor D. Let f ′ = df/dx be the derivative of f with respect to x. Then (f ′) =
(f)− (y).

Proof. Let vQ be the valuation at the point Q. Let D =
∑
nQQ. Set f = t

plQ
Q f1

where f1 is regular at Q and f1(Q) 6= 0. First we assume that Q is not in the
divisor of the function y; that is, Q is neither of order 2 nor P∞. Hence df/dx =

df/d(x − xQ) = t
plQ
Q df1/dtQ. The function df1/dtQ is regular at Q [8]. Then

vQ(f ′) = plQ + mQ where mQ = vQ(df1/dtQ) ≥ 0. Let Q be a point of order 2.
Then

df/dx = (df/dy)dy/dx = yplQ((3x2 +A)/2y)df1/dy,

where dy/dx = (3x2 +A)/2y. Since vQ((3x2 +A)/2y) = −1, in this case vQ(f ′) =
plQ +mQ − 1, with mQ = vQ(df1/dtQ) ≥ 0. Set Q = P∞. Then

df/dx = (df/d(x/y))d(x/y)/dx = (x/y)plQ((−x3 +Ax+B)/2y3)df1/d(x/y),

where d(x/y)/dx = (−x3 + Ax + B)/2y3. Hence we have vQ(f ′) = plQ + mQ + 3
because vP∞((−x3 + Ax + B)/2y3) = 3 and mQ = vQ(df1/dtQ) ≥ 0. Let D1 =∑
mQQ. As we have seen D1 is a positive divisor. On the other hand, since

(f ′) = (f) − (y) + D1, the divisor D1 is principal. So D1 = 0 and the lemma is
proved.

Consider the following map φ of points of the group 〈P 〉 to Fq:

φ(Q) = (f ′Q/fQ)(R), φ(P∞) = 0.

Lemma 2. The value φ(Q) is well defined. The map φ is an isomorphic embedding
of 〈P 〉 into the additive group of Fq.

Proof. Let D′
Q, DQ be linearly equivalent divisors. Hence there is the function

g such that (g) = DQ − D′
Q. So if (f) = pD′

Q, then gpf = fQ. It is easy to

see that f ′Q/fQ = f ′/f so that φ(Q) is well defined. One can always take DQ

rational over Fq. So f ′Q/fQ(R) ∈ Fq, since R is rational over Fq. Let us show

that φ is a homomorphism. Let Qi ∈ 〈P 〉 and (fQi) = pDQi , i = 1, 2. Define
DQ1+Q2 = DQ1 +DQ2 . Then

(fQ1+Q2) = pDQ1+Q2 = (fQ1fQ2).

So the functions fQ1+Q2 and fQ1fQ2 are equal up to a multiplicative constant.
Hence

f ′Q1+Q2
/fQ1+Q2 = f ′Q1

/fQ1 + f ′Q2
/fQ2 .

We have proved that φ is a homomorphism. Since φ is non-vanishing on 〈P 〉, then
φ is an isomorphism and the lemma is proved.
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The construction of this isomorphism can also be derived from a general result
of Serre [9, pp. 40–41].

Lemma 3. Let Q ∈ 〈P 〉. Then the value of the function f ′Q/fQ at R can be

evaluated with O(ln p) operations in Fq.

Proof. Let us take DQ = (Q + S) − (S) where S is of order 2 exactly. Denote by
ψk the function such that

(ψk) = k(Q+ S)− (kQ+ S)− (k − 1)(S).

Clearly ψp = fQ up to a multiplicative constant. Let k = k1 + k2, ki ≥ 0. Then
the following identity is valid [4]:

ψkλk1,k2 = ψk1ψk2 ,(1)

where λk1,k2 is a function such that

(λk1,k2) = (kQ+ S)− (k1Q+ S)− (k2Q+ S) + (S).

The identity (1) gives us a method for evaluation of the value f ′Q/fQ(R). Indeed,

from (1) we have

ψ′k/ψk = ψ′k1
/ψk1 + ψ′k2

/ψk2 − λ′k1,k2
/λk1,k2 .

Hence the function ψ′k/ψk is expressed by a linear combination of O(ln k) functions
of the form λ′k1,k2

/λk1,k2 . Let ηk1,k2 be

(ηk1,k2) = ((k1 + k2)Q+ S) + (−k1Q+ S) + (−k2Q+ S)− 3(S),

κk be

(κk) = (kQ+ S) + (−kQ+ S)− 2(S).

Let us note that ηk1,k2(X − S), κk1(X − S) are linear functions in x, y. The
coefficients of these functions are determined by the coordinates of the points
(k1 + k2)Q, k1Q, k2Q. We have the equality

λk1,k2 = ηk1,k2κ
−1
k1
κ−1
k2
.

Then it is easy to see that

λ′k1,k2
/λk1,k2 = η′k1,k2

/ηk1,k2 − κ′k1
/κk1 − κ′k2

/κk2 .

The functions on the right-hand side of this equality can be determined from the
following considerations. Let δ = ax + by + c be any linear function in x, y. Let
δ1 = δ(X + S). We have to find the value of the function δ′1/δ1 at some point R.
Express this function by the functions δ, δ′, where δ′ = dδ/dx = a+ b(3x2 +A)/2y.
We have dδ = (2yδ′)dx/2y. It is known [8] that dx/2y is an invariant differential on
E. In other words (dx/2y)(X+S) = (dx/2y)(X) for any point S ∈ E. So denoting
δ2 = 2yδ′ we have dδ(X+S) = δ2(X+S)dx/2y. Hence δ′1 = δ2(X+S)/2y. Finally,

δ′1/δ1 = δ2(X + S)/2yδ(X + S).(2)

Thus we have to evaluate the values of O(ln k) functions of type δ′/δ where the
coefficients are determined by the coordinates of the points (k1 + k2)Q, k1Q, k2Q.
Altogether we have to evaluate O(ln k) such points. Since the points of this set
are expressed by the same set, the complexity of this calculation is no more than
O(ln k) operations in Fq .

From (2) it follows that the functions η′k1,k2
/ηk1,k2 , κ

′
ki
/κki are regular at R.

Thus the total complexity of evaluation of the values of the functions ψ′k/ψk at R
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takes no more than O(ln k) operations in Fq. Note that the calculations above are
performed in the extension of Fq obtained by adjoining the point of order 2. Since
this extension has degree at most 3, the complexity of the operations in this field
is proportional to those in Fq . This proves the lemma.

From Lemma 3 it follows that the complexity of the discrete log problem in the
group 〈P 〉 is no more than O(ln p) operations in Fq. Actually, to get an integer n
such that Q = nP in E(Fq) one must evaluate the values φ(Q), ψ(P ) ∈ Fq, then
n = φ(Q)(φ(P ))−1.

In [10] H.-G. Ruck generalizes the results of the present paper to curves of arbi-
trary genus.
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