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ARTICLE

Evaluation of DNA Methylation Episignatures for
Diagnosis and Phenotype Correlations in 42
Mendelian Neurodevelopmental Disorders
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Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can

confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique

genomic DNA methylation patterns (called ‘‘episignatures’’). Peripheral blood episignatures can be used for diagnostic testing as well as

for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes,

which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as

similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic hetero-

geneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for

accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to

classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and

identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and

congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and,

most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders.

Introduction

The past few years have seen the emergence of a critically

important development in the molecular diagnosis of

congenital disorders. DNA methylation episignatures,

defined as the cumulative DNA methylation patterns

occurring at multiple CpG dinucleotides across the

genome, have been recognized to be intricately associated

with many human traits, including age, sex, and disease

status.1–6 Specific patterns in the methylomes of individ-

uals with defined congenital syndromes have recently

received particular attention in clinical settings.7–9 The

elucidation of DNA methylation patterns in a range of

constitutional syndromes has led to the recognition that
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these episignatures represent an early event during embryo

development, and thus are present in numerous tissues of

the affected individuals, including peripheral blood, the

most common source of DNA specimens in diagnostic lab-

oratories.10,11 The stability of DNA methylation patterns

provides ground for their use in clinical diagnosis. The

conditions studied so far have demonstrated that the

observed episignatures are specific to the syndromes in

which they were discovered and that the observed patterns

occur consistently across all of the individuals affected

with the same syndrome;12 this promises that DNA

methylation episignatures have a great potential to unlock

the molecular diagnosis of congenital disorders, a feat

which frequently cannot be achieved by conventional

clinical and molecular assessments.13

We have previously been able to demonstrate that the

episignatures of genetic syndromes can be used to reliably

resolve ambiguous clinical cases associated with uncertain

sequence variant or clinical findings and to detect disease

through screening of cohorts of individuals with develop-

mental delay and congenital anomalies but without a

diagnosis.12–15,16,17 In April of 2019, the first clinical

genome-wide DNAmethylation assay, ‘‘EpiSign,’’ which uti-

lized genome-wide DNA methylation analysis for the

screening of 14 syndromes known to harbor such episigna-

tures, was launched. The computational assessment of DNA

methylation data for these syndromes relies on the concur-

rent assessment of all of the conditions through the use of

supervised and unsupervised classification algorithms; this

results in acceptable performance in the moderate number

of episignatures currently described.12,13 With an ongoing

study of new syndromes, however, the number of condi-

tions with episignatures to be included in the analysis will

rise significantly, and this will introduce challenges to our

current workflow. Specifically, the increased number of syn-

dromes will increase the chance of overlap across different

episignatures, and concurrent assessment of a large number

of episignatures requires the implementation of novel

computational approaches for disease classifications. To

date, these questions have not been addressed, and the chal-

lenges of concurrent assessment for a very large number of

DNA methylation episignatures are not known.

In the present study, we evaluate a large number of

congenital syndromes for DNA methylation patterns, and

we report 34 distinct and reliable episignatures. We demon-

strate the implementation of a uniform approach for map-

ping DNA methylation signatures in numerous syndromes

in order to enable their unbiased comparisons and assess-

ments. We discuss the overlap, similarity, and hierarchical

relationships across various episignatures, and we evaluate

the extent to which these parameters cause challenges in

episignature-based disease classification. Through the devel-

opment of a supervised classification algorithm capable of

simultaneous assessment of 34 episignatures, we demon-

strate that the classification of closely related episignatures

is feasible, and we show the power of this multiclass

approach in resolving undiagnosed individuals with various

forms of developmental delay and congenital anomalies.

Material and Methods

Subjects and Cohorts

The study cohort includes peripheral blood DNA samples from

individuals who each have a confirmed diagnosis of one of 42 ge-

netic syndromes (Table 1). These included samples collected from

the Greenwood Genetic Center (Greenwood, South Carolina,

USA), Amsterdam University Medical Center (Amsterdam,

Netherlands), Radboud University Medical Center (Nijmegen,

the Netherlands), Groupe DI France, Rouen University Hospital

(Rouen, France), Université Paris Diderot (Paris, France), McGill

University (Montreal, Canada), and Istituto di Ricovero e Cura a

Carattere Scientifico (Rome, Italy), as well as specimens described

in our previous publications.12,13,18–21 The a priori motive for the

selection of most of these syndromes was based on the involve-

ment of their associated genes in transcriptional and epigenetic

regulatory mechanisms and chromatin remodeling.22

Additional disease cohorts without established episignatures were

used to assess the specificity of the classificationmodels designed in

this study. These cohorts included individuals diagnosed with
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Table 1. Description of the Study Cohort

Syndrome/Episignature Abbreviation
Underlying
Genes

Phenotype
MIM Number

Training
Cohort

Testing
Cohort

Episignature
Detected?

ADNP syndrome—50 and 30 terminal ends ADNP_T ADNP (outside
c.2000-2340)

615873 14 5 yes

ADNP syndrome—central ADNP_C ADNP
(c.2000-2340)

615873 10 3 yes

alpha-thalassemia mental retardation syndrome ATRX ATRX 301040 13 5 yes

autism, susceptibility to, 18 AUTS18a CHD8 615032 5 0 yes

BAFopathies: Coffin-Siris 1–4 (CSS1–4) and
Nicolaides-Baraitser (NCBRS) syndromes

BAFopathya ARID1Aa, ARID1B,
SMARCB1,
SMARCA4,
SMARCA2

614607, 135900,
614609, 614608,
601358

50 19 yes

Börjeson-Forssman-Lehmann syndrome BFLSa PHF6 301900 4 0 yes

cerebellar ataxia, deafness, and narcolepsy,
autosomal dominant

ADCADN DNMT1 604121 5 0 yes

CHARGE syndrome CHARGE CHD7 214800 45 15 yes

Chr7q11.23 duplication syndrome Dup7 Chr7q11.23
duplication

609757 8 2 yes

mental retardation, X-linked, syndromic,
Claes-Jensen type (Claes-Jensen syndrome)

CJS KDM5C 300534 26 8 yes

Cornelia de Lange syndrome 1–4 CdLS NIPBL, RAD21,
SMC3, SMC1A

122470, 614701,
610759, 300590

31 10 yes

Down syndrome Down Chr21 trisomy 190685 29 10 yes

epileptic encephalopathy, childhood-onset EEOCa CHD2 615369 5 0 yes

Floating-Harbor syndrome FHS SRCAP 136140 15 5 yes

genitopatellar syndrome GTPTS KAT6B 606170 5 0 yes

Hunter McAlpine syndrome HMAa 17q23.1-q24.2
duplication
involving NSD1

601379 4 0 yes

immunodeficiency-centromeric instability-
facial anomalies syndrome 1

ICF1 DNMT3B 242860 8 0 yes

immunodeficiency-centromeric instability-
facial anomalies syndrome 2–4

ICF2_3_4 CDCA7, ZBTB24,
HELLS

614069, 616910,
616911

7 0 yes

Kabuki syndrome 1 and 2 Kabukia KMT2D, KDM6Aa 147920, 300867 66 21 yes

Kleefstra syndrome 1 Kleefstra1a EHMT1 610253 15 5 yes

Koolen de Vreis syndrome KDVSa KANSL1 610443 6 0 yes

mental retardation, autosomal dominant 51 MRD51a KMT5B 617788 5 0 yes

mental retardation, X-linked 93 MRX93a BRWD3 300659 5 0 yes

mental retardation, X-linked 97 MRX97a ZNF711 300803 13 4 yes

mental retardation, X-linked syndromic,
Nascimento-type

MRXSNa UBE2A 300860 3 0 yes

mental retardation, X-linked, Snyder-
Robinson type

MRXSSRa SMS 309583 8 2 yes

Rahman syndrome RMNSa HIST1H1E 617537 6 0 yes

Rubinstein-Taybi syndrome 1 and 2 RSTSa CREBBP, EP300 180849, 613684 30 9 yes

SBBYSS syndrome SBBYSSa KAT6B 603736 7 0 yes

SETD1B-related syndrome SETD1Ba SETD1B N/A 8 0 yes

Sotos syndrome Sotos NSD1 117550 47 15 yes

Tatton-Brown-Rahman syndrome TBRSa DNMT3A 615879 10 4 yes

(Continued on next page)
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Angelman syndrome (MIM: 105830), Prader-Willi syndrome (MIM:

176270), Beckwith-Wiedemann syndrome (MIM: 130650), Coffin-

Lowry syndrome (MIM: 303600), Saethre-Chotzen syndrome

(MIM: 101400), Fragile X syndrome (MIM: 300624), Silver-Russell

syndrome (MIM: 180860), autism spectrum disorders, and RASopa-

thies which have also been described previously.12,13,18

The underlying genetic variant from each subject used in the

study was reviewed according to the American College of Medical

Genetics (ACMG) guidelines for interpretation of genomic

sequence variants,23 and only individuals confirmed to harbor

pathogenic or likely pathogenic variants together with the clinical

diagnosis were used to represent a syndrome.

Control specimens were healthy individuals without any devel-

opmental delay, intellectual disability, or congenital anomalies.

The first set of controls used for mapping of the episignatures

and training of the classification models included control speci-

mens from the reference control cohort in the London Health Sci-

ences Centre (LHSC) laboratory, along with additional control

samples from the centers listed above. Controls that were used

to measure the specificity of the developed classifier were

compiled from five large databases of general population samples

with various age and racial backgrounds.24–28

Unsolved cases that were screened in this study for the detection

of potentially affected individuals were collected from all of the

above sources over a period of four years. These samples were sup-

plemented with a publicly available DNA methylation cohort of

unresolved subjects that demonstrated various congenital anoma-

lies and developmental delays.29

DNA Methylation Experiment

Peripheral whole-blood DNA was extracted using standard

techniques. Following bisulfite conversion, DNA methylation

analysis of the samples was performed using the Illumina Infinium

methylation 450k or EPIC bead chip arrays according to the

manufacturer’s protocol. These arrays cover between 450,000

and 860,000 human genomic methylation CpG sites, including

99% of RefSeq genes and 96% of CpG islands. The resulting meth-

ylated and unmethylated signal intensity data were imported into

R 3.5.2 for analysis. Normalizationwas performed according to the

Illumina normalization method with background correction done

using the minfi package.30 Probes with detection p value > 0.01,

those located on chromosomes X and Y, those known to contain

a SNP at the CpG interrogation or single-nucleotide extension,

and probes known to cross-react with chromosomal locations

other than their target regions were removed. Arrays with more

than 5% failure probe rates were excluded from the analysis. The

methylation level for each probe was measured as a beta value,

which was calculated from the ratio of the methylated signals

versus the total sum of unmethylated and methylated signals,

ranging between 0 (no methylation) and 1 (full methylation).

All of the samples were examined for genome-wide methylation

density, and those deviating from a bimodal distribution were

excluded. Because samples were assayed using two different plat-

forms (450k and EPIC), following normalization and quality con-

trols, the downstream analyses were restricted to the probes shared

across the two array types in order to maintain consistency in the

computational workflow.

Selection of Cases and Matched Controls

We selected a random 75% subset of the affected subjects as a

training cohort for the purpose of mapping of DNA methylation

signatures and training of the classification models. The remain-

ing 25% was used as a testing dataset for the assessment of the

performance of the classification models developed later. All syn-

dromes and their subtypes were equally represented in both of

the training and testing cohorts. No division of the training and

testing cohorts was performed for conditions with sample sizes

less than 10 (Table 1). For every syndrome in the training cohort,

Table 1. Continued

Syndrome/Episignature Abbreviation
Underlying
Genes

Phenotype
MIM Number

Training
Cohort

Testing
Cohort

Episignature
Detected?

Wiedemann-Steiner syndrome WDSTSa KMT2A 605130 12 4 yes

Williams syndrome Williams Chr7q11.23
deletion

194050 15 6 yes

Cornelia de Lange syndrome 5 (females only) CdLS5 HDAC8 300882 8 N/A no

FG syndrome 1 FG1a,b MED12 305450 9 N/A no

Glass syndrome Glassa,b SATB2 612313 9 N/A no

KMT2C-related syndrome» KMT2Ca,b,c KMT2C 617768 4 N/A no

neurodevelopmental disorder with coarse
facies and mild distal skeletal abnormalities

NEDCFSAa,b KDM6B 618505 5 N/A no

Rett syndrome Rett MECP2 312750 36 N/A no

Siderius-type X-linked syndromic mental
retardation

MRXSSDa,b PHF8 300263 9 N/A no

Smith-Magenis syndrome SMSa,b RAI1 309583 15 N/A no

aIndicates that these disorders (or some of their subtypes) were not evaluated in previous studies.
bIndicates cohorts with no evidence of a reproducible episignature; this is potentially due to small sample size. A possibility of an episignature is not completely
ruled out, and reanalysis using larger sample sizes is warranted.
cThe OMIM database, at the time of this study, has indicated that subjects with KMT2C mutations may be said to have ‘‘Kleefstra 2’’ syndrome. The DNA methyl-
ation signature found in Kleefstra 1 (caused by EHMT1), however, is completely absent in these subjects. It is acknowledged that these subjects have a distinct
phenotype from Kleefstra syndrome and a name change is currently in process with OMIM. The numbers in the testing and training cohort columns indicate
the sample counts available for each condition in each category. For cohorts with negative findings in the initial assessment, we did not further split the data
into testing and training, and thus, the values in the testing column are indicated with N/A (not applicable).
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a matched group of controls was selected through the use of the

MatchIt package. Matching was performed based on age, sex,

and the experimental batch. The sample size of the controls was

increased until both the matching quality and the sample size

were at their optimum and consistent across all diseases. This led

to the determination of a control sample size four times larger

than the case group in every comparison. Increasing the sample

size beyond this value impaired the matching quality. After each

matching trial, a principal component analysis (PCA) was per-

formed to detect outliers and examine the data structures. Outlier

samples and those with aberrant data structures were removed

before a second matching trial was conducted. The iteration was

repeated until no outlier sample was detected in the first two com-

ponents of the PCA.

Mapping of DNA Methylation Episignatures

DNA methylation studies commonly consider two factors for the

prioritization of CpG sites (probes, features, or predictors) that

are important in various conditions. These factors are the level

of methylation difference (effect size) and the probability that

the observed difference is a false positive (p value). Because micro-

array technology is not sensitive enough to detect very small de-

grees of methylation change when measuring the methylation

levels, and the number of tested CpGs is large, strict cut-offs are

applied to both p value and methylation difference estimations

during probe selection. In the literature, a range of cut-offs has

been used for minimum methylation differences (5%–20%) and

p values. The p value, specifically, can be varied based on the sam-

ple size and the confounding factors. In the current study, we have

assessed 42 different syndromes which are expected to have vary-

ing levels and extents of methylation change. As examples, from

our previous studies, we have observed that Sotos syndrome can

be associated with robust changes in tens of thousands of probes,

whereas this figure in Aref-Eshghi et al’s BAFopathies study hardly

reaches 500.12,18 Therefore, the determination of a universal cutoff

for methylation change and p value for all of the syndromes in the

current study might not be a practical approach. In order to

accommodate this level of heterogeneity across multiple condi-

tions, instead, we determined a set of ~150 probes to be the

most representative of the DNA methylation episignature for

each condition, in line with what we had observed in our previous

studies regarding the minimum number of probes needed for the

classification of different syndromes.13

The following workflow was performed for each condition sepa-

rately. We initially performed a multivariate linear regression

modeling using the limma package.31 The methylation levels

(beta value) were logit transformed into M-values (log2(beta/

(1-beta))) in order to ensure homoscedasticity for linear modeling.

The analysis was adjusted for blood cell type variations. The estima-

tionofbloodcellmixturewasperformedaccording to thealgorithm

developed by Houseman et al.32 The estimated values for each cell

component were incorporated into themodel matrix of the regres-

sionanalysis as confoundingvariables. In situationswhere the sam-

ples were assayed in multiple batches or multiple arrays, we also

adjusted the analysis for the top 10 principal components of the

selecteddata. Thepvalues obtained in linearmodelingweremoder-

ated using the eBayes function. To prioritize the best set of probes

for each analysis, we used the interaction between the effect size

and p value bymultiplying the absolutemethylation difference be-

tween theaffected subjects andcontrolsby thenegative valueof the

log-transformed p value (-log(p value)). The top 1,000 probes with

the greatest obtained valueswere selected. Next, we performed a re-

ceiver’s operating curve characteristics analysis for every probe and

measured the pairwise correlation coefficient between them.

Selection of 100–150 probes from this list was conducted by first

filtering out the half of the probes with the lowest area under the

curve (AUC) and then removing another half from the remaining

probes, which were highly correlated with each other. This was

done by measuring the Pearson’s correlation coefficients and was

carried out separately in cases and controls. The correlation coeffi-

cient cut-offs used for each condition were not constant because

they yielded different levels of correlations across the selected

probes, and thus we experimented with R-squared cutoffs <0.6–

0.8 in order to reach the desired number of probes.

The final probes selected for each disorder contained those that

were most differentiating, non-redundant, and not influenced by

random data structures. To determine the robustness of the iden-

tified probes, before each analysis, 10%–20% of samples from the

training cohort, depending on the sample size, were set aside and

not used for feature selection. After each analysis, the patterns

generated by the selected probes were compared between the

samples used for the analysis with those that were not. Hierarchi-

cal clustering analysis with a heatmap and multidimensional

scaling were used for this purpose. A robust episignature was ex-

pected to generate a similar pattern in both groups. In addition,

we evaluated the methylation patterns of the other samples from

the same experimental batch as the cases to rule out the possibil-

ity that the observed profile was related to the experimental

batch structure. Furthermore, each condition was expected to

present a unique profile significantly different from what was

observed in controls. This entire process was repeated until all

of the samples were used at least once during probe selection.

Failure to adhere to any of these principles resulted in the conclu-

sion that the identified probes were not reliable, and when that

happened, that condition was excluded from further analysis.

When a syndrome was caused by variation in multiple genes,

each subtype was initially analyzed individually. If the probes

specific to each subtype were not able to distinguish that subtype

from the others, we concluded that they have indistinguishable

profiles and thus treated them as one episignature.

Assessment of the Relationship between Episignatures

Probes co-occurring between every two episignatures were visual-

ized using a circos plot.33 Further pairwise analysis for any two

episignatures was performed using hierarchical clustering analysis

with a heatmap as well as multidimensional scaling using the

probes specific to each of the two pairs. We performed systematic

analysis to determine the distance and similarities and the hierar-

chical order of the episignatures in order to visualize all episigna-

tures in one dendrogram. For this analysis, we used all of the sig-

nificant probes from all episignatures. For each syndrome, we

aggregated the methylation levels of each probe by their median

values across all of the samples with that condition in order to

generate a reference methylome for that syndrome. The aggre-

gated values were then used in a hierarchical clustering analysis

to generate a dendrogram (Ward’s method on Euclidean

distance). The episignatures clustering together in major branches

of the dendrogram were further analyzed using a t-distributed

stochastic neighbor embedding (t-SNE) analysis to visualize their

degree of overlap and distinction. The analysis was performed us-

ing the Rtsne package according to the default parameters in order

to reduce the dimensions of the data to two.34 The default
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perplexity parameter in the package (perplexity ¼ 30) was used.

For clusters with very small sample sizes, however, the perplexity

parameter was reduced to the smallest value possible.

Construction of a Classification Algorithm for All of the

Episignatures

Concurrent classification of individuals using multiple signatures

can become a challenging task, potentially yielding inaccurate re-

sults as the data heterogeneity and the number of classes increase.

We have previously demonstrated that support vector machines

(SVMs), a class of supervised large margin classifiers, can provide

enough power for differentiating disease groups from the healthy

controls through the use of DNA methylation data, and that its

performance remains acceptable given the small number of sam-

ples in rare syndromes (as few as five in some instances) and the

relatively large number of predictors.12,13 Inherently, however,

SVMs are binary classifiers, and their use for multiclass classifica-

tion requires several modifications. The most common solutions

for multiclass SVMs include one-against-one and one-against-all

methods. In our previous studies, we have successfully imple-

mented the one-against-one method for up to 16 classes13 in

which every class is compared one by one with all other classes.

Therefore, for n classes, this method will construct n3 (n�1)/2 in-

dividual binary classifiers, and the final classification is made

through a consensus reached by all of them. This approach can

become challenging and impractical when the number of classes

and predictors increases. For example, for 40 classes, 780 individ-

ual classifiers are needed, and this demands a great computational

power. In addition, classes with a smaller number of samples or a

milder DNA methylation change will yield less confident classifi-

cations. As the cumulative number of the predictors (probes) in-

creases, the signal provided by such samples becomes diluted,

and the classifications become less accurate. In these scenarios,

the confidence scores generated for various disorders will be high-

ly variable, making the one-against-one SVM less optimal for use

in the clinical setting and diagnostic decision making. Therefore,

in this study, we attempted to use the one-against-all SVM. For n

classes, this method generates n�1 individual binary classifiers,

each trained to distinguish the members of one class from the

combined members of all of the remaining diseases and controls.

This method significantly reduced the computational time and

made it feasible to scale it up to a large number of classes.

The training of each SVM classifier was performed with a linear

kernel using the e1071 R package. The training was only per-

formed on the training data subset. To determine the best hyper-

parameter to be used in linear SVM (cost), and to measure the ac-

curacy of the models, 10-fold cross-validation was performed

during the training of each classifier. In this process, the training

set was randomly divided into ten folds. Nine folds were used

for training the model and one fold was used for testing. After

we repeated this iteration for all of the ten folds, we calculated

the mean accuracy and selected the hyperparameters with the

most optimal performance. For every sample, the models were

set to generate a score ranging between 0 and 1, representing

the confidence of prediction for the specific class the SVM was

trained to detect. Conversion of SVM decision values to these

scores was carried out according to the Platt’s scaling method.35

A classification as one of the disorders was made when a sample

received the greatest score for that class, a score that also needed

to be greater than 0.5. The final models were applied to the

training dataset in order to ensure the success of the training.

We ensured that the constructed models were not sensitive to

the experimental batch structure of the methylation data by

applying this structure to all of the samples assayed on the same

batch that cases in the training dataset were drawn from. To

confirm that the classifiers were not sensitive to the blood cell

type compositions, we used methylation data from isolated blood

cell populations of healthy individuals36 and supplied them to our

models for prediction in order to examine the degree to which the

resulting scores were varied across different blood cell types. Next,

the models were applied to the testing cohort (25% subset of the

affected cases not used for feature selection or training) in order

to evaluate the predictive ability of the models on affected sub-

jects. To determine the specificity of the models, we supplied a

large number of DNA methylation arrays from healthy subjects.

To understandwhether themodels were sensitive to other congen-

ital disorders, we tested a large number of subjects with clinical

and molecular diagnoses of such syndromes confirmed by the

models.

Screening of Undiagnosed Subjects and Classification of

Uncertain Cases

The final algorithm was used to classify subjects suspected of hav-

ing any of the conditions used in the training, including those

with no sequence variant information available, with inconclusive

clinical assessment, or with DNA sequence variants of unknown

significance (VUS). In addition, we used the algorithm to screen

among a large group of individuals with various presentations of

developmental delays and congenital anomalies but who had no

established diagnosis despite routine clinical andmolecular assess-

ments including microarray copy-number variant (CNV) testing

or exome sequencing. The subjects who were predicted to have

the syndromes above were evaluated based on the available clin-

ical and molecular information.

Data Availability

Some of the datasets used in this study are available publically

and may be obtained from gene expression omnibus (GEO)

using the following accession numbers. GEO: GSE116992,

GSE66552, GSE74432, GSE97362, GSE116300, GSE95040, GSE

104451, GSE125367, GSE55491, GSE108423, GSE116300, GSE

89353, GSE52588, GSE42861, GSE85210, GSE87571, GSE87648,

GSE99863, and GSE35069. These include DNA methylation data

from patients with Kabuki syndrome, Sotos syndrome, CHARGE

syndrome, immunodeficiency-centromeric instability-facial anom-

alies (ICF) syndrome, Williams syndrome, Chr7q11.23 duplication

syndrome, Silver Russell syndrome, BAFopathies, Down syndrome,

a large cohort of unresolved subjects with developmental delays

and congenital abnormalities, and also several large cohorts of

DNA methylation data from the general population. The rest of

the data are not available due to the restrictions of the ethics

approval.

Ethics Statement

The study protocol has been approved by the Western University

Research Ethics Board (REB 106302) and the McMaster University

Hamilton Integrated Research Ethics Boards (REB 13-653-T).

Where applicable, participants provided informed consent prior

to sample collection. All of the samples and records were de-iden-

tified before any experimental or analytical procedures were

performed. The research was conducted in accordance with all

relevant ethical regulations.
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Results

Assessment of DNA Methylation Signatures in 42

Congenital Disorders

This study included peripheral blood DNA samples from a

total of 787 subjects affected by 42 syndromes and their

various subtypes. The syndrome names, their abbrevia-

tions, associated genes, OMIM identifiers, and the sample

sizes are summarized in Table 1. Following genome-wide

DNAmethylation analysis using Infinium arrays and qual-

ity controls, ~400,000 probes passed detection quality fil-

ters in at least 95% of the samples, and these probes were

used for subsequent analysis. Through the comparison of

the training subset (Table 1 and Table S1) with age- and

sex-matched samples selected from a pool of healthy con-

trols (n ¼ 749) for every condition, we prioritized between

100 and150 probes for each of their respective DNA

methylation signatures. Of the conditions tested, eight

did not have evidence of a reliable and replicable DNA

methylation signature and were excluded from further

assessment (Table 1), reducing the total training and

testing cohort sample sizes to 540 and 152, respectively

(Table 1 and Table S1), and limiting the total number of
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Figure 1. Relationships across Various
Syndromes and Their Subtypes
The plot shows clustering analysis with
heatmap using probes specific to the
DNA methylation of one syndrome (or its
subtype) as compared with another. Rows
indicate probes and columns indicate sam-
ples. The top pane colors indicate the clas-
ses. The heatmap color scale from gold to
red represents the level of methylation
from 0–1.
(A) Probes differentially methylated in
Kabuki 1 (KMT2D) and controls do not
provide distinction between subjects with
Kabuki 1 and Kabuki 2 (KDM6A), although
they differentiate both of them from the
controls.
(B) The same pattern is observed when
Kabuki-2-specific probes are used.
(C) Probes differentially methylated be-
tween individuals with Hunter McAlpine
syndrome (HMA) (harboring duplication
ofNSD1) and controls generate a hyperme-
thylation pattern in the HMA individuals.
The same probes generate a mirror hypo-
methylation pattern in individuals with
Sotos syndrome (loss of function ofNSD1).
(D) The same mirror effect is observed
when probes selected for Sotos syndrome
are used.

selected probes to 3,643 (Tables S2

and S3). The extent of DNA methyl-

ation changes varied across different

conditions; Sotos syndrome; ICF syn-

drome; Tatton-Brown-Rahman syn-

drome (TBRS); mental retardation,

X-linked syndromic, nascimento-

type (MRXSN) syndrome; and autosomal dominant cere-

bellar ataxia, deafness, and narcolepsy (ADCADN) showed

the most robust methylation changes (methylation differ-

ences of up to 60% between the cases and controls). BAFo-

pathies, Cornelia de Lange syndrome (CdLS), Rubinstein-

Taybi syndrome (RSTS), and mental retardation X-linked

97 (MRX97) presented some of the mildest DNA methyl-

ation patterns (with maximum DNA methylation differ-

ence between the cases and controls not greater than 20%).

As a general trend, we observed that different subtypes of

the syndromes that result from multiple gene defects have

highly similar DNA methylation profiles. This was found

in Kabuki syndrome (Kabuki 1 and Kabuki 2), BAFopathies

(CSS1, CSS2, CSS3, CSS4, and NCBRS), Cornelia de Lange

syndrome (CdLS1, CdLS2, CdLS3, and CdLS4), and RSTS

(RSTS1 and RSTS2), in which probes selected in each sub-

type generated a similar pattern in the other subtypes

(Figure 1). Therefore, multiple subtypes of each of these

syndromes were treated as a single entity in further ana-

lyses. The only exception to this rule was found for ICF

syndrome. Despite a very robust shared DNA methylation

pattern in the four ICF subtypes, it was observed that ICF1

could be fully distinguished from the other three ICF
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subtypes (ICF2, ICF 3, and ICF 4),19 and thus ICF syndrome

type 1 and types 2–4 were treated as two separate episigna-

ture entities for the remainder of the study. One other

exception was noted in CdLS5, resulting from mutations

in HDAC8 for which no DNA methylation changes were

observed, likely due to skewed inactivation of the mutated

chromosome X in the peripheral blood of these individuals

(all were females in our cohort).37

Each of the genes studied here was found to be associ-

ated with a single DNA methylation signature with the

exceptions of ADNP and KAT6B. KAT6B mutations result

in two syndromes, genitopatellar syndrome (GTPTS) and

Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS),

each harboring a distinct DNA methylation signature.

The patterns in GTPTS were found to be more robust

than, and independent from, what was found in SBBYSS.

ADNP was the only example of a syndrome caused by mu-

tations in one gene but with two distinct DNAmethylation

signatures. The two signatures were distinguished by the

mutation coordinates within ADNP: subjects who

harbored variants within the central domain of c.2000–

2340 (ADNP central–ADNP_C) showed a distinct pattern

from those whose mutations resided in the regions outside

c.2000–2340 (ADNP terminal–ADNP_T). These two groups

were also treated as separate categories throughout

the study, yielding a total of 34 episignatures in this

manuscript.

In addition to the affected subjects, this study also in-

cludes apparently healthy individuals carrying pathogenic

mutations in four genes: KDM5C (X-linked recessive, 14

obligate female carriers), KMT5B (autosomal dominant

ATRX
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C D
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Sotos-specific probes ATRX-specific probes

Kabuki-specific probes BAFopathy-specific probes

Figure 2. DNA Methylation Episignature
of One Syndrome in Others
The top two dimensions of multidimen-
sional scaling plots (x axis ¼ dim1,
y axis ¼ dim2) representing the pairwise
distance across the samples with various
episignatures:
(A) Sotos-syndrome-specific probes distin-
guish Sotos syndrome samples from con-
trols, but they do not differentiate alpha-
thalassemia mental retardation syndrome
(ATRX) samples from the controls.
(B) ATRX-specific probes differentiate both
Sotos syndrome and ATRX samples both
from controls and from each other.
(C) Kabuki-syndrome-specific probes differ-
entiate Kabuki syndrome samples from
controls, but they do not distinguish the
BAFopathy samples from controls.
(D) BAFopathy-specific probes generate an
intermediate pattern for the Kabuki syn-
drome subjects between the BAFopathies
and controls.

with incomplete penetrance, two

healthy carriers), BRWD3 (X-linked

recessive, one obligate female carrier),

and UBE2A (X-linked recessive, six

obligate female carriers). The key

observation here was that healthy carriers may also present

episignatures. The female KDM5C mutation carriers

showed an intermediate pattern between the affected

males and controls. Half of the KDM5C protein in the car-

rier females originates from the wild-type allele (KDM5C is

not subject to X-linked inactivation). The single female

carrier of a BRWD3 mutation also showed an intermediate

methylation pattern between the affected males and con-

trols. Despite an incomplete penetrance, the two healthy

individuals with heterozygous KMT5B mutations demon-

strated a methylation pattern similar to those of the

affected cases (also heterozygous). The obligate female

carriers of UBE2A, however, did not show any methyl-

ation changes, possibly due to skewed X chromosome

inactivation.38

Relationship between Different DNA Methylation

Signatures

The number of probes co-occurring at the episignatures of

any two conditions was very small (<5%, Figure S1). How-

ever, pairwise analysis of the methylation patterns showed

evidence of a relationship between some of them. We first

evaluated syndromes arising from alternative dosage in

shared genetic loci (i.e., loss of function versus gain of

function). Two examples of such conditions in our cohort

were Sotos syndrome versus Hunter McAlpine (HMA) syn-

drome (NSD1 loss of function versus NSD1 duplication,

respectively) and Williams syndrome versus Chr7q11.23

duplication syndrome (Chr7q11.23 deletion versus dupli-

cation). In both sets of these pairs, symmetrical DNA

methylation patterns were observed. This phenomenon
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was particularly striking in Sotos syndrome versus HMA

syndrome; the former is drastically hypomethylated

while the latter is distinctly hypermethylated (Figure 1).

Another such example was noted in a single subject with

duplication of ARID1A, which showed a mirrored DNA

methylation pattern of all other BAFopathies resulting

from loss-of-function mutations in the BAF complex genes

including ARID1A. A common observation that was found

in the pairwise comparisons of all syndromes was that in

syndromes with extensive methylation changes, the pat-

terns do not remain restricted to the probes selected for

those conditions, and they also occur in probes specific

to others. However, in any pairwise comparison, the

probes from one syndrome alone may or may not fully

distinguish the two syndromes from each other. Two ex-

amples of this phenomenon, one for a fully distinguish-

able pair (alpha-thalassemia mental retardation syndrome

[ATRX] and Sotos syndrome) and one for a poorly distin-

guishable pair (Kabuki syndrome and BAFopathies) are

illustrated in Figure 2. To systematically evaluate the rela-

tionship across all of the episignatures, we combined all

of the identified probes and performed a clustering analysis

to demonstrate the hierarchical order, as well as the simi-

larities among various conditions, based on their DNA

methylation profiles (Figure 3). The analysis generated

two main clusters. The first was composed of syndromes

with hypomethylation as the main pattern, including

Sotos syndrome, ICF syndrome, Rahman syndrome

(RMNS), Borjeson-Forssman-Lehmann syndrome (BFLS),

and TBRS, which are also clinically related to each other

in that growth abnormalities are major features they share.

The other branch was subdivided into three subclusters.

The smallest of these subclusters was composed of three

syndromes: HMA syndrome, MRXSN syndrome, and

SETD1B-related disorder, all with predominantly hyperme-

thylated profiles, clustering together in the greatest dis-

tance from the hypomethylated episignatures. The other

two clusters were composed of syndromes with mild-to-

moderate DNA methylation patterns. Some of these,

such as ATRX/ADNP_T or RSTS/CdLS generated pairs at

the terminal branches of the dendrogram, indicating their

high level of similarity. Of interest, the pair of Kabuki/

BAFopathy, which was discussed earlier, clustered very

close to each other. BAFopathies, specifically, had the

most similar DNA methylation pattern to controls, clus-

tering with them in a single branch.We projected the com-

bined DNAmethylation data of all of the probes from sam-

ples belonging to the major clusters identified here into

three two-dimensional plots (Figure 4). This analysis indi-

cated that despite similarities across some of these epis-

ignatures, they remain relatively distinct from each other

when all of the selected probes are taken into account.

Challenge of Disease Classification Using 34

Episignatures

Binary classification of disease versus control using one

episignature at a time is the most commonly used

approach for determining if an individual is affected by a

syndrome. Recognizing the considerable similarities

among some of the 34 episignatures described in this

study, we attempted to establish the accuracy of this

approach. We examined the syndromes that are most

closely related to each other as determined by using the

dendrogram in Figure 3. Among these, we found several

pairs, including RMNS/BFLS, MRXSN/SETD1B, Kabuki/

BAFopathy, and RSTS/CdLS, for which an effort at classifi-

cation using the episignature of only one pair was not al-

ways successful. An example of the workflow and the chal-

lenge is illustrated in Figure 5. The probes specific to RSTS

generate a clear separation between the RSTS subjects and

controls as demonstrated through the use of multidimen-

sional scaling (Figure 5A). We added three subjects with

uncertain diagnoses to this plot, one with a clinical diag-

nosis of RSTS but negative sequence finding in the RSTS-

related genes, one with a de novo VUS in the RSTS2-related

gene, EP300 (RefSeq accession number NM_001429.3,

c.4232C>T; RefSeq NP_001420.2, p.Thr1411Ile), and the

last subject with a rare variant in a CdLS-related

gene, SMC1A (RefSeq NM_006306.2, c.92T>C; RefSeq

NP_006297.2(LRG_773p2), p.Ile31Thr). Among the two

RSTS-suspected subjects, the first one clustered with all

confirmed RSTS cases, whereas the subject with EP300

VUS showed a pattern most similar to that of the controls

(Figure 5A); this result indicates that the first individual

was affected by RSTS, while the second was not. However,

it was also noted that the subject with the SMC1A variant is

situated closer to the RSTS subjects than to controls

(Figure 5A). This raised the question of whether this latter
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Figure 3. Distance and Hierarchical Orders across 34 Episigna-
tures
The dendrogram shows the distance and hierarchical orders of
34 episignatures. The y axis is the measure of distance or dissim-
ilarity of either individual data points or clusters. The vertical
position of the split in the dendrogram indicates the distance be-
tween every two points or clusters. The major splits are shown in
different colors. Syndromes with very strong hypomethylation
patterns are clustered together on the right, whereas those with
hypermethylation episignatures are placed in a great distance
to those in the left. As seen, BAFopathies are the most similar
episignature to the controls, being consistent with their very
mild DNA methylation changes.
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subject was affected by RSTS or this classification was

incorrect due to the overlapping nature of the RSTS and

CdLS episignatures. To investigate this, we first added the

known cases of CdLS to this analysis, which variably clus-

tered with both controls and RSTS subjects (Figure 5B),

confirming that the episignature of RSTS partially overlap-

ped with that of CdLS. Repeating this analysis using probes

from both episignatures, however, completely separated

the two disorders from each other as well as from controls

(Figure 5C). This analysis now clusters the subject with the

SMC1A variant with other CdLS cases, indicating that the

initial classification was not correct. This example indi-

cates how attempts to classify disease by assessing one dis-

order at a timewithout the consideration of other episigna-

tures can be error-prone.

Development of a Classification Algorithm for the

Concurrent Detection of 34 Episignatures

Concurrent assessment of multiple syndromes through

the use of unsupervised analysis can become challenging

and inaccurate when the number of classes increases to

the scale presented in this manuscript. A supervised anal-

ysis may provide a more robust solution in these situa-

tions. We developed 34 individual SVM classifiers for the

episignatures in this study, each trained to distinguish

one disease class from the controls and also from the other

33 episignatures. The models were set to generate 34 scores

ranging from 0–1, with higher scores representing a greater

chance for any given subject of having a DNAmethylation

profile similar to each of the episignatures, respectively.

The training was performed on the training cohort, during

which 10-fold cross-validation was performed, resulting in

an average accuracy of 99.9%. To control for the success of

the procedure, the entire training cohort was supplied to

the final models, which assigned correct classifications to

all of the cases and controls used for training. Every sample

was correctly classified into the category it belonged to, ob-

taining scores significantly greater from the other classes

(Figure 6). We also confirmed that the classifiers were not

sensitive to the batch structure of the data. To do this, we

applied the classifiers to other samples processed in the

same batch as the cases. All of these other samples received

very low scores for all of the 34 classes. Additionally, we

evaluated the extent to which the variation in blood cell

type compositions influenced the scores. We did this by

applying the classifiers to a total of 60 methylation array

data files from six healthy individuals, each being assayed

separately for whole blood, peripheral blood mononuclear

cells, and granulocytes, as well as for seven isolated cell

populations (CD4þ T, CD8þ T, CD56þ NK, CD19þ B,
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Figure 4. Dimensionality Reduction of DNA Methylation Data
from 34 Peripheral Blood DNA Methylation Episignatures
The members of the three major clusters identified in the dendro-
gram in Figure 3 were projected in three separate two-dimensional
plots (A–C) using a t-distributed stochastic neighbor embedding
(t-SNE). Despite similarities observed across some, the use of all
of the probes from all episignatures together provides enough dis-

tinctions between them. A small subgrouping is observed for
BAFopathies and CHARGE syndrome. This observation is not ex-
plained by the genes involved, mutation coordinates, mutation
type, clinical presentations, age, or sex. It is also not replicated
when probes specific to each of these conditions are used for
this analysis.
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and CD14þ monocytes, neutrophils, and eosinophils). All

of these samples received very low scores (<0.05) for all of

the 34 classes and showed <5% average inter-cell-type

variability in the scores.

We next applied the model to the entire testing cohort,

which was composed of 152 samples that were not used

for feature selection or model training. All of these samples

were assigned the expected class with scores similar to

those of the training dataset; these results confirm that

the models were robust in disease classification (Figure 6).

To measure the specificity of our classifier, we tested whole

blood methylation data from a total of 2,315 healthy sub-

jects of various ethnic backgrounds (aged 0–94); all of this

data received very low scores for all of the 34 episignatures

(Figure 6). We also questioned whether the model could

differentiate the above syndromes from other congenital

or Mendelian disorders not included in the training

cohort. The DNAmethylation profiles of a total of 442 sub-

jects, diagnosed with these types of syndromic conditions,

were supplied to the algorithm for classification; and all

of these profiles scored very low for all of the 34 categories

(Figure 6), further confirming the specificity of our

algorithm.

Screening of Unresolved Cohort and Classification of

Uncertain Cases

We have previously demonstrated that individuals with

neurodevelopmental syndromes lacking a diagnosis may

be identified and diagnosed through screening of their

DNA methylation profiles. Here, we tested two previously

described cohorts of such individuals13 who have various

developmental disorders and who have remained unre-

solved following the routine clinical assessments. This

included 965 subjects, the majority of whom had under-

gone CNVmicroarray testing as part of the standard clinical

workup, along with additional genetic testing in some

cases, including targeted gene/panel or exome sequencing.

These individuals had various forms of neurodevelopmen-

tal delays and congenital anomalies, including facial

dysmorphism, developmental delay and/or intellectual

disability, degenerative neural disease, autism, and various

congenital organ defects, though none were suspected to

have any of the syndromes described in this study.

Applying our classifier to this cohort allowed the identifica-

tion of nine subjects matching some of the newly described

episignatures. This included the detection of three subjects

with Wiedemann-Steiner syndrome (WDSTS), two subjects

with TBRS, and four others with Kleefstra syndrome, RMNS,

Koolen-de Vries syndrome (KDVS), and Epileptic encepha-

lopathy, childhood-onset (EEOC), respectively (Figure 6

and Table S4). Most of these individuals were not available

for further assessment; however, their reported clinical

Figure 5. The Challenge of Disease Classification Using Closely
Related Episignatures
The plot shows an attempt at disease classification of three
subjects using DNA methylation data through unsupervised
analysis.
(A) Multidimensional scaling of DNA methylation data from
probes specific to RSTS episignature provides enough distinction
between the Rubinstein-Taybi syndrome (RSTS) subjects and
controls. The addition of two samples from individuals sus-
pected to have RSTS (purple) clusters one of them with controls
and the other with RSTS subjects. Another sample from an indi-
vidual suspected to have Cornelia de Lange syndrome (CdLS;
orange), however, is also situated closer to RSTS subjects than
to controls.
(B) The addition of the CdLS samples to the analysis using the
RSTS-specific probes demonstrates that these samples show an in-
termediate pattern between RSTS and controls.

(C) Incorporation of probes specific to CdLS in the analysis dem-
onstrates that CdLS subjects are indeed distinct from RSTS cases.
The uncertain sample from the individual suspected of having
CdLS now clearly clusters with the other confirmed CdLS subjects.
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features were consistent with their predicted syndromes

(Table S4). These features included macrosomia and macro-

cephaly in a TBRS-predicted individual, myoclonic seizures

and behavioral problems in an EEOC-predicted individual,

and speech problem with a bicuspid aortic valve in a KDVS-

predicted individual. The subject presenting with the

methylation profile of Kleefstra syndrome was initially re-

ported to have an Angelman-like phenotype. An ultimate

diagnosis for many such cases is Kleefstra syndrome.39

Of interest, the subsequent DNA sequencing identified

a heterozygous splice site variant in EHMT1 (RefSeq

NM_024757.4, c.3540þ1G>C; RefSeq NP_079033.4, p.?),

confirming our prediction. Another subject in this study

who had amethylation profile similar to RMNSwas the sec-

ond case whose prediction was confirmed through

sequencing. He was a two-year-old male presenting with

developmental delay, hypotonia, abnormal brain MRI

findings (ventriculomegaly), and cryptorchidism. The

RMNS phenotype is highly variable and these findings

can be observed in numerous syndromes. The genome

sequencing, however, identified a de novo frameshift variant

in HIST1H1E (RefSeq NM_005321.2, c.436_458del, RefSeq

NP_005312.1, p.Thr146AspfsTer42), confirming the diag-

nosis of RMNS and the sensitivity of DNA methylation

testing for screening of unresolved subjects.

In addition to these cases, we ascertained nine subjects

with sequence variants of uncertain significance in six

genes (CHD2, CREBBP, EHMT1, KDM6A, KMT2A, and

PHF6). With the exception of one individual who had a

missense variant in KDM6A (RefSeq NM_021140.2,

c.871G>A, RefSeq NP_066963.2, p.Gly291Arg) and who

represented the DNA methylation profile of Kabuki syn-

drome, all of the others were deemed to be negative for

all of the episignatures described in this study (Table S5),

providing strong functional evidence to rule out these pro-

visional diagnoses (Table S5).

Discussion

Over the past decade, efforts have been made to improve

the diagnostic yield of genetic disorders through means

other than traditional sequence variant assessments.

DNA methylation signatures have gained special interest

through these endeavors, and their assessment in many

syndromes has led to positive and reliable findings.11,40

Compared to the last year, the current study has nearly

doubled the number of conditions that can effectively be

diagnosed through DNA methylation testing.13 Mean-

while, besides improvements in screening and diagnosis,

several repeating patterns are beginning to emerge with re-

gards to DNA methylation signatures in these genetic

syndromes.

After the analysis of 42 syndromes, it can be concluded

that specific peripheral blood episignatures are to be found

in the majority of individuals with congenital syndromes.

The small portion of syndromes with negative findings

may have very mild DNA methylation changes, or they

Figure 6. A Multiclass Classification Al-
gorithm for Concurrent Classification of
34 Episignatures
Concurrent classification of the 34 epis-
ignatures is performed using 34 individual
support vector machine (SVM) classifiers
trained to distinguish each episignature
from all others and from the methylation
profile of the controls. For any given sub-
ject, each of which is represented with a
point here, 34 models will generate 34
scores between 0 and 1 (y axis) representing
the chance that the subject has a methyl-
ation profile similar to each of the 34 epis-
ignatures (x axis). The default cutoff of 0.5
is used for determining the class. However,
most samples received scores close to 0 or
1, and thus for visualization, the points are
jittered. Gray represents samples used in
the training, and blue indicates those that
were not used for training. The top two
panels illustrate samples from the training
and testing dataset with Cornelia de Lange
syndrome (CdLS) and Rubinstein-Taybi
syndrome (RSTS). These two categories
were selectedas examples among the34 cat-
egories due to the challenge presented
earlier in their unsupervised classification

(Figure 5). As seen, each sample has received high scores only for the episignature it is supposed to have, and very low scores for all
others. Samples with RSTS and CdLS have not been classified as one another. The third panel shows a trial performed for a large
cohort of individuals from the general population (n ¼ 2,315) as well as those with other developmental disorders not in the list of our
episignatures (n¼442), all ofwhichare scoredclose to zero.Thefinalpanel illustrates a cohort ofunresolvedsubjects (n¼965)withvarious
congenital anomalies among which a total of nine have been classified as potential cases of some of the syndromes in the study.
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may only represent episignatures in certain specific tissues,

or in genetic loci not covered by the Infinium arrays. Some

such syndromes with mild changes will likely eventually

lead to positive findings through reassessment of larger

cohorts, as has occurred for BAFopathies in which our

primary analysis was negative.12 Yet which genetic syn-

dromes are associated with DNA methylation changes re-

mains unpredictable. We do not see a conclusive and

consistent relationship between the gene function or clin-

ical features and the presence of an episignature. There are

several observations that might be worth consideration.

Whenever the gene function involves a direct regulation

of the methylation marks, an extensive level of changes

in the methylome may be expected. Examples include

DNMT1, DNMT3A, and DNMT3B, which encode various

DNA methyltransferases41 and which are associated with

very strong DNA methylation patterns. The observed pat-

terns in these cases are also consistent with their immedi-

ate functionality, including a strong hypomethylation

seen in our study in those with DNMT3A and DNMT3B de-

fects. In other conditions, the changes most likely result

from downstream pathways.10,13,42 The evidence for this

comes from the general trend observed among multiple

genetically heterogeneous conditions in which various

gene defects result in similar episignatures. Most encoded

genes of interest are part of a multi-protein complex or

are key members of a single regulatory pathway. DNMT3B

(ICF1), the only exception to this rule (distinguishable

from ICF2–4), is involved in de novomethylation,43 a func-

tionality that is absent in other ICF-related genes. Other

interesting observations noted on several occasions

throughout the analysis of these syndromes include a

linear relationship between the defective protein dosage

and the intensity of methylation changes, as well as the

symmetrical patterns seen in protein loss versus gain. In

all of these scenarios, the presence of one defective allele

in the absence of clinical presentations was enough for

the detection of DNA methylation changes. Similarly, it

was noted that among X-linked disorders, a skewed X-inac-

tivation may be the cause for concealing an episignature,

as noted in CdLS5, which did not show any methylation

profile. Of note, multiple reports have documented a

skewed inactivation of the X chromosome harboring the

mutated HDAC8 allele in the peripheral blood (but not

some other tissues) of individuals with CdLS5.37 All of

our CdLS5 subjects were females. Due to lack of X inactiva-

tion, male CdLS5 subjects might present a methylation

pattern similar to those of subjects with other CdLS sub-

types; this remains to be studied. These findings will un-

doubtedly pose more questions than answers regarding

the underlying mechanisms of incomplete penetrance in

Mendelian disorders. However, they do provide great po-

tential for carrier screening and confirmation of DNA

sequence variant pathogenicity in healthy carrier individ-

uals with affected offspring.

While the biological interpretation of peripheral blood

episgnatures in congenital disorders remains a daunting

task requiring further experiments and study, their clinical

diagnostic utility is obvious. We have previously demon-

strated the use of episignatures for the classification of sub-

jects with uncertain diagnoses, as well as for screening of

unresolved cohorts using a smaller number of condi-

tions.13 The current study demonstrates that these utilities

can be accurately implemented using the newly mapped

episignatures, although new challenges were introduced

during the process which were not present in the analysis

of a single syndrome or a smaller number of syndromes. As

a general trend, consistent with our previous observations,

we have found that the episignatures remain independent

of each other. In cases where the patterns were mild,

however, there is a chance ofmisclassification of other syn-

dromes with stronger signatures as the first episignature.

This challenge will not be resolved unless the episignatures

of both syndromes are evaluated together, or a supervised

algorithm is trained to distinguish the second episignature.

This is an important observation in this study; it indicates

that the overlap can be a basis for uncertain or incorrect

classifications and that using DNA methylation for disease

classifications should be performed with simultaneous

consideration of all of the mapped episignatures. Through

the development of a supervised algorithm that considers

the methylation patterns of all of the syndromes during

classification, we have shown here that one can avoid

the chance of misclassification due to the closeness of

some of the episignatures. This approach will ensure that

the addition of new episignatures for disease classification

will remain a practical and evolving topic.

Clinical episignature analysis could prove to be an effi-

cient and effective diagnostic tool as part of a typical

first-visit assessment for complex cases presenting with

ambiguous phenotypes. Combined with CNV microarray

and sequence analysis, clinical episignature analysis may

provide higher diagnostic yield in a more efficient manner

than do current standards of care.44 In the last year, our

assessment of a cohort of 965 unresolved individuals

with congenital anomalies and developmental delays

identified 15 individuals with potential diagnoses of 14

syndromes along with more than a dozen individuals

with other locus-specific methylation defects such as

imprinting disorders and trinucleotide repeat expan-

sions.13 Assessment of the same cohort through the use

of the newly discovered episignatures in the current study

has added another nine individuals to this list, represent-

ing an increased diagnostic yield. The success in applying

epigenomics to screening and disease classification in

congenital syndromes is highly contingent upon the map-

ping of DNA methylation episignatures from a large data-

base of syndromes. This growing field will likely tackle

many of the challenges being faced today in medical ge-

netics practice with regards to the diagnosis of congenital

disorders.

These findings demonstrate that the field of clinical and

genetic diagnosis of hereditary disorders is rapidly entering

a new era, i.e., clinical epigenomics. With the growing
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scientific knowledge and expanding clinical utility of DNA

methylation episignatures, it becomes more necessary to

engage expert groups, medical and laboratory regulatory

bodies, and professional colleges in the development of

clinical and laboratory guidelines and recommendations

for an appropriate use of this new post-genomics clinical

testing modality.
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Supplemental Data can be found online at https://doi.org/10.
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worth, P., Paré, G., Rodenhiser, D., Schwartz, C., and Sadi-

kovic, B. (2017). The defining DNA methylation signature of

Kabuki syndrome enables functional assessment of genetic

variants of unknown clinical significance. Epigenetics 12,

923–933.

18. Aref-Eshghi, E., Bend, E.G., Hood, R.L., Schenkel, L.C., Carere,

D.A., Chakrabarti, R., Nagamani, S.C.S., Cheung, S.W., Cam-

peau, P.M., Prasad, C., et al. (2018). BAFopathies’ DNAmethyl-

ation epi-signatures demonstrate diagnostic utility and func-

tional continuum of Coffin–Siris and Nicolaides–Baraitser

syndromes. Nat. Commun. 9, 4885.

19. Krzyzewska, I.M., Maas, S.M., Henneman, P., Lip, K.V.D., Ven-

ema, A., Baranano, K., Chassevent, A., Aref-Eshghi, E., van Es-

sen, A.J., Fukuda, T., et al. (2019). A genome-wide DNA

methylation signature for SETD1B-related syndrome. Clin.

Epigenetics 11, 156.

20. Ciolfi, A., and Aref-Eshghi, E. (2020). Frameshift mutations at

the C-terminus of HIST1H1E result in a specific DNA hypome-

thylation signature. Clin. Epigenetics 12, 7.

21. Velasco, G., Grillo, G., Touleimat, N., Ferry, L., Ivkovic, I., Ri-

bierre, F., Deleuze, J.F., Chantalat, S., Picard, C., and Francastel,

C. (2018). Comparative methylome analysis of ICF patients

identifies heterochromatin loci that require ZBTB24, CDCA7

and HELLS for their methylated state. Hum. Mol. Genet. 27,

2409–2424.

22. Bjornsson, H.T. (2015). The Mendelian disorders of the epige-

netic machinery. Genome Res. 25, 1473–1481.

23. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster,

J., Grody, W.W., Hegde, M., Lyon, E., Spector, E., et al.; ACMG

Laboratory Quality Assurance Committee (2015). Standards

and guidelines for the interpretation of sequence variants: a

joint consensus recommendation of the American College

of Medical Genetics and Genomics and the Association for

Molecular Pathology. Genet. Med. 17, 405–424.

24. Kular, L., Liu, Y., Ruhrmann, S., Zheleznyakova, G., Marabita,

F., Gomez-Cabrero, D., James, T., Ewing, E., Lindén, M., Górni-

kiewicz, B., et al. (2018). DNA methylation as a mediator of

HLA-DRB1*15:01 and a protective variant in multiple scle-

rosis. Nat. Commun. 9, 2397.

25. Su, D., Wang, X., Campbell, M.R., Porter, D.K., Pittman, G.S.,

Bennett, B.D., Wan, M., Englert, N.A., Crowl, C.L., Gimple,

R.N., et al. (2016). Distinct epigenetic effects of tobacco smok-

ing in whole blood and among leukocyte subtypes. PLoS ONE

11, e0166486.

26. Johansson, A., Enroth, S., and Gyllensten, U. (2013). Contin-

uous aging of the human DNA methylome throughout the

human lifespan. PLoS ONE 8, e67378.

27. Van Baak, T.E., Coarfa, C., Dugué, P.A., Fiorito, G., Laritsky, E.,
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