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Abstract: DNA is a molecular target for the treatment of several diseases, including cancer, but
there are few docking methodologies exploring the interactions between nucleic acids with DNA
intercalating agents. Different docking methodologies, such as AutoDock Vina, DOCK 6, and
Consensus, implemented into Molecular Architect (MolAr), were evaluated for their ability to
analyze those interactions, considering visual inspection, redocking, and ROC curve. Ligands were
refined by Parametric Method 7 (PM7), and ligands and decoys were docked into the minor DNA
groove (PDB code: 1VZK). As a result, the area under the ROC curve (AUC-ROC) was 0.98, 0.88,
and 0.99 for AutoDock Vina, DOCK 6, and Consensus methodologies, respectively. In addition,
we proposed a machine learning model to determine the experimental ∆Tm value, which found a
0.84 R2 score. Finally, the selected ligands mono imidazole lexitropsin (42), netropsin (45), and N,N′-
(1H-pyrrole-2,5-diyldi-4,1-phenylene)dibenzenecarboximidamide (51) were submitted to Molecular
Dynamic Simulations (MD) through NAMD software to evaluate their equilibrium binding pose
into the groove. In conclusion, the use of MolAr improves the docking results obtained with other
methodologies, is a suitable methodology to use in the DNA system and was proven to be a valuable
tool to estimate the ∆Tm experimental values of DNA intercalating agents.

Keywords: computer drug design; molecular docking; molecular dynamic simulation; virtual screening;
MolAr; DNA intercalating agents

1. Introduction

Drugs interacting with DNA are among the most effective anticancer agents [1], but
their low selectivity makes them highly toxic, a major drawback that calls for new studies
and strategies to develop drugs selective towards DNA in cancerous cells [2].

One of the strategies for the development of new drugs is to identify small molecules
through a systematic analysis of large groups of compounds with drug-like properties.
An experimental approach commonly used is the high throughput screening (HTS), an
automated process using robots for a systematic search. It is a costly technique due to
the number of compounds to be acquired, the cost of purchase and operation of sophis-
ticated robots [3], and experimental considerations such as stability and solubility of
the compounds.

An alternative to HTS is the virtual high-throughput screening (vHTS or VS), an in
silico method to test large groups of compounds, including databases available online

Pharmaceuticals 2022, 15, 132. https://doi.org/10.3390/ph15020132 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph15020132
https://doi.org/10.3390/ph15020132
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-2541-9305
https://orcid.org/0000-0002-8251-9214
https://orcid.org/0000-0002-1023-6514
https://orcid.org/0000-0002-6086-1043
https://doi.org/10.3390/ph15020132
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph15020132?type=check_update&version=2


Pharmaceuticals 2022, 15, 132 2 of 15

containing millions of molecules. This technique also allows the design and virtual testing
of theoretical compounds prior to synthesis or acquisition, reducing the cost and time
required to find compounds with a high potential for further development [3,4]. VS
methods use molecular docking to study the interaction between small molecules and
their receptors [5], a method that has been evaluated for protein-ligand systems, and more
recently have been used to model DNA-ligand complexes [6–8]. However, most docking
programs use algorithms that are not suitable for modeling DNA due to its high charge
density [1], prompting the need for a more adequate in silico model for nucleic acids.

Several studies have been done trying to develop a molecular docking software
appropriate for DNA modeling. Ricci and Netz [9] developed a method to predict the
binding mode of small molecules to DNA using AutoDock 4.0 [10], which used distinct
DNA receptors in the most common conformations related to the most common binding
poses to suppress the importance of the receptor’s flexibility in the algorithm.

Srivastava et al. [11] described a systematic computational analysis of 57 DNA ligands
through four docking protocols, with the following root-mean-square deviation (RMSD)
for the best ligands: GOLD [12] (1.24 Å), Glide [13] (1.23 Å), CDOCKER [14] (1.44 Å), and
AutoDock [10] (1.57 Å). GOLD and GLIDE, with similar values, were shown to have a
better performance and being the most suitable for modeling nucleic acid-ligand complexes.
Molecular dynamics simulations showed that the DNA duplex skeleton underwent minor
deviations in the complex, supporting docking protocols even though the receptor is kept
rigid. However, the area under the ROC curve (AUC) of these methodologies was not
evaluated. ROC curve is an important metric to check the capacity of methodology to
distinguish false positive results. Fong and Wong [15] evaluated four scoring functions
(AutoDock [10], ASP@GOLD [16], ChemScore@GOLD [17], and GoldScore@GOLD [12])
for DNA-ligand complexes, and the scoring functions reproduced the experimental crystal-
lographic structure complexes. It is noteworthy that these previous studies improved their
results by combining more than one scoring function.

Good RMSD results were obtained in previous studies, but the ranking capacity of
these docking methods was not evaluated. Our study used Molecular Architecture (Mo-
lAr) [18] software to predict DNA-ligand poses. MolAr is a docking workflow that allows
an integrated and automated virtual screening (VS) process, from protein preparation
(homology modeling and protonation state) to virtual screening with different methods.
MolAr is open access and free of charge (available at http://www.drugdiscovery.com.br,
accessed on 20 May 2020), allowing users to perform all the docking steps in a unique
interface with a simple and intuitive operation. It uses AutoDock Vina [19], DOCK 6 [20],
and Consensus Virtual Screening (CVS) docking protocols. AutoDock Vina uses a hybrid
scoring function that combines knowledge-based and empiric scoring function features.
DOCK 6 offers physics-based energy score functions based on force fields and score func-
tions (GRID and AMBER scores). CVS is a ranking normalized combination of the results
of AutoDock Vina and DOCK 6, reducing the chance of false positive results [18]. Our
results were evaluated for DNA-ligand model systems [11] through visual inspection of
the RMSD and ROC curves. In addition, docking binding energy and descriptor values
of ligands were used as a predictor to calculate the ∆Tm experimental values of 11 DNA
ligands previously reported. Dynamic molecular simulations were also used to clarify their
intermolecular interactions with DNA.

2. Results

A visual inspection was performed on the 1VZK structure to identify the principal
forces for molecular recognition. Figure 1 shows the 3D structure of the target 1VZK and a
2D diagram with its crystallographic ligand (D1B). The ligand is complexed into the minor
groove of DNA (Figure 1a) through hydrogen bonds between amidinic moieties and the
carbonyl oxygen of nitrogenous bases. Hydrophobic interactions can also be observed
between the benzimidazole and aromatic and with nitrogenous bases (Figure 1b).

http://www.drugdiscovery.com.br
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Figure 1. (a) The crystallographic structure of molecular target under PDB code 1VZK; (b) a close
view of the intermolecular interactions between ligand (D1B) in the minor DNA groove of the 1VZK.
The red circles and ellipses in each plot indicate protein residues. Hydrogen bonds are shown as
green dotted lines, while the spoked arcs represent residues making van der Waals interactions with
the ligand generated with LigPlot+.
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In general, redocking is the first evaluation method to be used in the docking process.
This process shows (i) the correct elaboration of grid box parameters; (ii) the capacity of
the docking method of reproducing the crystallographic binding pose; (iii) the acquisition
of binding energies that can be used to rank the compounds. Usually, the redocking is
evaluated by the RMSD value between the crystallographic binding pose and redocking
results. The RMSD value between 1VZK and D1B ligand was 0.65 Å by AutoDock Vina,
while the threshold value is 2.0 Å [20]. This result was better than previous docking
methodologies, GOLD, GLIDE, CDOCKER, and AUTODOCK, which had values ranging
from 1.23 Å to 1.57 Å [11].

2.1. Molecular Docking

The docking performance was evaluated by calculating the AUC-ROC, EF values, and
BedROC. AUC-ROC has been used to check if the docking method can distinguish false
positives from true positives [21]. The AUC-ROC values for our test compounds were 0.98,
0.88, and 0.99 for AutoDock Vina, DOCK 6 (Amber Score), and CVS, respectively. Moreover,
the enrichment factor (EF) value [22] reflects the ability of the docking calculations to find
true positives throughout the background database compared to random selection. Thus, it
indicates how good the set formed by the top x% ranked compounds is compared to a set
of equal size selected randomly from the entire collection of compounds. EFs values are
calculated utilizing a percentage of the data set. For example, EF5% represents the value
obtained when 5% of the database was screened. The EF value is defined by:

EF % =
actives %

compounds %
× total compounds

total actives
(1)

Previous reports show CVS having the best EF values, compared to DOCK 6 and
AutoDock Vina, which can be explained by the use of AutoDock Vina output as the input
for DOCK 6. Consequently, AUC-ROC had values corroborated by the EF values; in other
words, the EF validates AUC-ROC results, especially with the performance at EF 1%,
showing the CVS method could distinguish 100% of molecules [18].

The BedROC [23] value was calculated to confirm these AUC-ROC and EF results.
BedROC uses exponential weighting to give early rankings more weight than the latest
rankings of active compounds. The BedROC values were 0.60, 0.52, and 0.83 for AutoDock
Vina, DOCK 6 (Amber Score), and CVS, respectively. As in AUC-ROC and EF the values of
CVS are better than AutoDock Vina and DOCK6 (Amber Score).

Finally, Machine Learning was used to develop a model to predict ∆Tm experimental
values. ∆Tm represents the change in the melting temperature of DNA upon drug binding,
being directly correlated with the binding energy, and is a valuable tool to evaluate the
docking results. Six algorithms of linear regression were implemented as follows: (i) Gradi-
ent Boosting Regressor [24]; (ii) Random Forest Regressor [25]; (iii) Linear Regressor [26];
(iv) Voting Regressor [27] between algorithms (i), (ii) and (iii), (v) Lasso [28] and (vi) Elastic
Net [29]. The results are summarized in Table 1, with Mean Squared Error (MSE) and R2

score information. The Gradient Boosting Regressor shows the best result, with an R2 score
of 0.84, and the worst is the Random Forest Regressor with an R2 score of 0.33.

Table 1. Regression Linear values calculated for the Prediction of ∆Tm values.

Algorithm MSE R2 Score

Gradient Boosting Regressor 3.06 0.84
Random Forest Regressor 13.05 0.33

Linear Regressor 6.18 0.68
Voting Regressor 4.48 0.77

Lasso 7.88 0.59
Elastic Net 7.18 0.63
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2.2. Molecular Dynamics

The five best CVS results and the original ligand were chosen for simulation and
presented in Figure 2, where the conformation changes of each of these ligands during the
MD simulation were analyzed.
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Figure 2. Ligands chosen for MD simulations after docking simulation.

The average energy for the total system, in Kcal/mol was −55,067.1, −55,473.3,
−55,507.2, −55,137.1, −54,524.8, and −54,988.1 to ligands 51, 42, 45, 15, 43, and 44, re-
spectively. The total energy graph shown in Figure 3 demonstrates an example of how
the energy has a minimal variation. All energy graphs (available in the Supplementary
Material, Figure S3) remained in equilibrium throughout the entire MD simulation.
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Figure 3. Example of Total Energy (Kcal/mol) calculated in Dynamic Molecular Simulation for
interactions with DNA and ligand 51.

The simulations were carried out in 50 ns to observe if there were significant confor-
mational changes during the trajectory, with the results summarized in Figure 4. As can be
observed, the ligands 42, 45, and 51 have the best results with an RMSD variation below
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1Å. The original ligand and ligands 43 and 44 showed a major variation of approximately
2, 5, and 4 Å, respectively.
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during 50 ns.

The intermolecular interactions of structures in equilibrium can be observed in Figure 5.
As can be observed, the ligands 45 (5a), 51 (5b), 42 (5c), 15 (5d) were able to form hydrogen
bonds and van der Waals interactions; whereas the ligands 44 (5e) and 43 (5f) carried out
van der Waals interactions with nucleic acids.
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Figure 5. 2D interaction diagram obtained by LigPlot+ in Dynamic Molecular Simulation for inter-
actions with DNA and ligand: (a) 45; (b) 51; (c) 42; (d) 15; (e) 44; (f) 43. The red circles and ellipses
in each plot indicate protein residues. Hydrogen bonds are shown as green dotted lines, while the
spoked arcs represent residues making van der Waals interactions with the ligand.

Finally, to improve the analysis of RMSD values fluctuation, the heat map was plotted
with the best ligands using VMD software. Figure 6 shows the heat map for ligands 45, 51,
45, and 15, Figure 6a–d, respectively. In general, the DNA structure is kept rigid during the
MD trajectory with low variation. However, the highest fluctuation can be observed for all
ligands reaching values ranging from 1.2 to 8.27.
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3. Discussion
3.1. The Best Docking Methodologies to Study the DNA System

In this study, we use AUC-ROC, EF, and BedROC to evaluate the best docking
methodology for DNA intercalating agents, comparing AutoDock Vina, DOCK6, and
CVS. AutoDock Vina is an important tool to find the correct pose of ligand into the binding
site [19]; however, the ranking among the ligands has not been carried out properly. In
addition, the score function of AutoDock Vina does not consider the charges. On the other
hand, the score function of DOCK 6 [20], Amber score, includes the AM1-BCC charges of
the system. Consequently, the AM1-BCC charges have been determined for a start pose
obtained from AutoDock Vina output, improving the accuracy of charge calculations.

AUC-ROC was used to check if the docking method can distinguish false positives
from true positives. AUC values close to 1 suggest good discrimination between false and
true positives, whereas values closer to 0.5 show a random process, and values higher than
0.7 represent a good distinguishing power [21].

EF indicates how good the set formed by the top x% ranked compounds is when com-
pared to a set of equal size selected randomly from the entire collection of compounds. EF
corroborates AUC-ROC [18], yielding even better results with CVS methodology. BedROC
calculated values were 0.60, 0.52, and 0.83 for AutoDock Vina, DOCK 6 (Amber Score), and
CVS, respectively, confirming that CVS is the best methodology.

The model of linear regression summarized in Table 1 shows the results of the imple-
mentation of six linear regressors. The Gradient Boosting Regressor shows the best result,
with an R2 score of 0.84, and the worst is the Random Forest Regressor with an R2 score
of 0.33. Gradient Boosting Regressor (GBR) is a generalization of boosting to arbitrary
differentiable loss functions. GBR is an accurate and effective off-the-shelf procedure that
can be used for both regression and classification problems in a variety of areas. Our GBR’s
result is better than Srivastava’s studies [11], which used docking information from GOLD,
GLIDE, CDOCKER, AUTODOCK 4, Average Information Content level 2, and chemical
hardness. Thus, our Machine Learning model was able to estimate ∆Tm value with more
accuracy than previous reports.

3.2. Molecular Dynamics Simulations

MD simulations were performed to obtain information about the ligands’ interaction
and stability into the DNA groove. According to the results of total energy, ligand 51
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obtained the lower energy; whereas ligand 44 obtained the highest energy value. Figure 3
demonstrates the lower variation of the system in simulation.

Figure 4 shows the RMSD results of MS simulations. Ligands 15, 42, 45, and 51 showed
a RMSD average variation below 1 Å. Both ligands 42 and 45 achieved the equilibrium
state in the beginning of the process (Figure 4a,c). Noteworthy that ligand 51 (Figure 4b)
showed a RMSD average value of 0.5 Å, indicating an absence of conformational changes
for this inhibitor, suggesting a better molecular recognition between DNA and ligand in
the DNA groove. In addition, 15 showed an RMSD average variation of 1 Å and stabilized
in the DNA groove after 20 ns of simulation, as shown in Figure 4d. Visual inspection of
the MD simulation path of 15 showed a decrease in the intermolecular interaction forces
until 20 ns, followed by complete filling of the binding site during the rest of the process.
43 and 44 showed RMSD values higher than 2 Å, and it was observed that the 2-thienyl-1H-
benzimidazole portion of 43 was more exposed to the solvent, resulting in a higher degree
of freedom and consequent adoption of various conformations. 43 presented an RMSD
value of 5.0 Å (Figure 4f), but reached equilibrium after 20 ns. 44 behaved similarly to 43,
reaching equilibrium at 35 ns (Figure 4e). 44 had the quinolinium group outside the major
DNA groove, obtaining an RMSD value of 3.5 Å.

Summarizing, all ligands achieved equilibrium within 50 ns of simulation, charac-
terizing molecular recognition. Although compounds ligand 43 and ligand 44 presented
good docking results at 15 and 28 nanoseconds of dynamic simulation, respectively, the
structures presented conformational changes, resulting from parts of the ligands leaving
the DNA groove suggesting hydrogen bonding with the solvent.

MD results corroborate the molecular docking results, with compounds 42, 45, and 51
interacting and accommodating themselves better in the smaller groove of DNA, presenting
themselves as promising compounds for further studies as anticancer drugs. Compounds
43 and 44 can be considered weak DNA intercalators because, despite good docking results,
they had a higher variation of RMSD values during MD.

The molecular interactions are depicted on Figure 5. 45, 51, 42, and 15 have hy-
drogen bonding acceptors and donors and were recognized by DNA through hydrogen
bonds and van der Waals interactions (Figure 5a–d). For instance, Figure 4a shows the
intermolecular interactions between compound 45 with DNA. This compound carried
out hydrogen bonding with CytA:7, ThyA:9, AdeB:22 and hydrophobic interactions with
ThyA:8, AdeA:10, and ThyB:20. Compound 51 (Figure 5b) was better recognized by the
DNA minor groove by performing a higher number of intermolecular interactions, such as
hydrogen bonding with AdeA:10, GuaA:11, and ThyB:20; and van der Waals interactions
with ThyA:8, ThyA:9, AdeA:12, GuaB:17, CytB:19, and AdeB:22. Compound 42 (Figure 5c)
is able to perform hydrogen bonding with CytA:6, CytA:7, ThyA:9, and AdeB:22; and
hydrophobic interactions with ThyA:8, AdeA:10, CytB:19, and ThyB:20. It is noteworthy
that the guanidinium groups of the 15 performed hydrogen bonds with CytA:6, CytA:7,
CytB:18, AdeB:22, GuaB:23, beyond several hydrophobic interactions, such as GuaA:11,
ThyB:20, and ThyB:21 (Figure 5d). These interactions with these nitrogenous bases are
essential components for intercalation within the minor DNA groove, which indicates that
this inhibitor remained well accommodated in the DNA during the dynamic’s simulation.

In contrast, both compounds 44 and 43 were not able to perform hydrogen bond-
ing with DNA. 44 (Figure 5e) carried out hydrophobic interactions, for instance, with
ThyA:9, AdeA:10, GuaA:11, AdeA:12, GuaA:13, GuaB:17, CytB:18, CytB:19, ThyB:20
and ThyB:21. Similarly, 43 performed hydrophobic interactions with ThyA:9, AdeA:10,
GuaA:11, AdeA:12, GuaB:17, CytB:18, CytB:19 and ThyB:20, as shown in Figure 4f. These
missing hydrogen bonding interactions can explain the higher RMSD fluctuations value
during MD simulations, once this interaction has an important hole in the molecular
recognition and stabilization of the ligand within the DNA groove. These findings high-
light the structure-activity relationship of guanidinium groups in the development of
antineoplastic compounds.
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Through the analysis of RMSD plots using heat map graphs (Figure 6) it is possible to
confirm the results generated by RMSD and interactions maps. 51 presented the smallest
RMSD variation (max of 2.22 Å), best RMSD graphics and total energy. 42, 45, and 15
demonstrated RMSD variation of 2.52 Å, 3.31 Å, and 8.27 Å, respectively.

4. Materials and Methods
4.1. Molecular Docking

The three-dimensional structures of 57 ligands were constructed using Marvin Sketch [30]
and 150 decoys were generated by the DUD-E platform [31]. The DNA molecular target was
obtained from the Protein Data Bank (PDB-1VZK). These ligands and targets were described
in a previous report [11] and are available in the Supplementary Material, Figure S1 [31]. The
ligands were refined by Run_Mopac [32] software using Parametric Method 7 (PM7) [33] and
Eigenvector Following routine [34].

The target was prepared by Chimera [35] by:

• removing water molecules and magnesium ions;
• adjusting the protonation state at pH 7.4;
• assigning charges using AMBERff14SB and AM1-BBC;
• minimizing the structure using 100 steps for steepest descent and 10 steps for conjugate

gradient, each step measuring 0.02 Å.

Finally, all compounds were docked against the 1VZK molecular target at the minor
groove position using a grid box with 20 × 20 × 26 Å and atomic coordinates centered
to 14.44 Å, 20.57 Å, and 8.64 Å, for x, y, and z, respectively. In order to evaluate the
best docking methods for DNA docking, three virtual screening simulations using MolAr
were performed through AutoDock Vina, DOCK 6 (Amber Score), and CSV. All method-
ologies were double-checked by redocking, measurement of the area under the Receiver
Characteristic Operator (ROC) curve (AUC-ROC), Enrichment Factor (EF), and Boltzmann-
Enhanced Discrimination (BedROC). The redocking process consisted of removing the
crystallographic ligand, with subsequent docking of the ligands into the same binding site.

In addition, we developed a machine learning model with the docking binding energy
results and molecular descriptors of the molecules hereby tested to calculate the ∆Tm
experimental values. The data frame was elaborated using the 57 compounds described
previously, from which only 11 had their ∆Tm values calculated [11]. The descriptors were
obtained using the Mordred library [36], a molecular descriptor calculator. Afterward, six
Linear Regression algorithms were performed with the following descriptors: Molecular
Weight, cLogP, cLogS, Total Surface Area, Relative Polar Surface Area, Polar Surface Area,
AutoDock Vina with major groove, AutoDock Vina with minor groove, Ehomo, E−1

homo, Elumo,
E+1

homo, DOCK 6 with Amber Score, Consensus with Grid and Amber Score, Structural
Information Content level 1, Bond Information Content level 1, and chemical hardness
[η = (Elumo − Ehomo)/2)].

4.2. Molecular Dynamics

The five best-docked ligands (according to MolAr Consensus with Amber score) were
chosen for MD simulations among the crystallographic reference ligands (PDB-ID 1VZK)
to characterize the molecular recognition between ligands and DNA. The ligands (PDB-IDs
1VZK, 1LEY, 1ZPH, 1ZPI, 261D, and 2GYX) are shown in the Supplementary Material,
Figure S2. All ligands and the energy values for all configurations are presented in the
Supplementary Material, respectively, in Figure S1 and Table S1.

The ligand-DNA complexes were inserted into a 74.15 × 52.33 × 55.58 Å simulation
box and solvated with TIP3P model water molecules [37]. Sodium chloride ions were
added to neutralize the system charge. Each system was energetically minimized with
5000 cycles using the Conjugate Gradient algorithm [38]. The nucleic acid atoms had
position restraints with an exponent of energy function of 2 and scaling of 1.0 applied
to them during the first 4000 cycles and no restraints during the last 1000 cycles. After
the energy minimization, the systems were heated to 310 K during a 30 ps equilibration
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conducted under an isothermal-isochoric ensemble (NVT), followed by a 500 ps simulation
under an isothermal-isobaric ensemble (NPT) using the Langevin piston method [39] to
maintain the total pressure to an average of 1 bar. The final production had a total of 50 ns.
Water stretching and bending motions were constrained by the SETTLE algorithm [40].
Electrostatic interactions were treated via the Particle-Mesh Ewald method [41,42] with a
12 Å cutoff radius. All simulations were performed using the CHARMM36 [41,43,44] force
field implemented into NAMD software [33], version 2.13. Analysis was performed using
VMD, version 1.9.3 [45].

5. Conclusions

Even though DOCK 6 and AutoDock Vina showed different results, the overall result
was improved when they were combined and subjected to the MolAr CVS approach. AUC-
ROC, BedROC, and EF values showed the combination was able to generate more reliable
results and a better prediction of the ligand conformation. MD is a critical methodology
to confirm the interactions between ligands and nucleic acids, showing that MolAr CVS
virtual screening can rank ligands in the DNA intercalating compounds. It is noteworthy
that CVS has a low computational cost when compared with MD simulations.

In this study, two different approaches were carried out to predict the activity of
compounds capable of binding to the minor groove of DNA. The first approach, structure-
based drug design, was carried out to rank compounds for their ability to dock with the
1VZK molecular target at the minor groove position using docking and MD simulations.
The second approach, ligand-based drug design through Machine Learning methods,
ranked the six selected structures based on their binding energy. These methods were able
to properly describe the intermolecular interactions between intercalating agents and DNA
and build a machine learning model able to predict the ∆Tm experimental values. The
application of docking machine learning and molecular dynamics methodologies suggests
compounds 51, 42, and 45 as leads for the development of improved anticancer compounds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15020132/s1, Figure S1: Structure of all ligands with their PDB
code and docking results values, Table S1: Docking Results with all configurations with energy values
in Kcal/mol, Figure S2: Ligands chosen for MD simulations after docking. Figure S3. Total Energy
(Kcal/mol) calculated in Dynamic Molecular Simulation for interactions with DNA and ligands:
(a) 45; (b) 51; (c) 42; (d) 15; (e) 44; (f) 43.
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