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ABSTRACT

Motivation: Human serum albumin (HSA), the most abundant
plasma protein is well known for its extraordinary binding capacity
for both endogenous and exogenous substances, including a wide
range of drugs. Interaction with the two principal binding sites
of HSA in subdomain IIA (site 1) and in subdomain IIIA (site 2)
controls the free, active concentration of a drug, provides a reservoir
for a long duration of action and ultimately affects the ADME
(absorption, distribution, metabolism, and excretion) profile. Due to
the continuous demand to investigate HSA binding properties of
novel drugs, drug candidates and drug-like compounds, a support
vector machine (SVM) model was developed that efficiently predicts
albumin binding. Our SVM model was integrated to a free, web-
based prediction platform (http://albumin.althotas.com). Automated
molecular docking calculations for prediction of complex geometry
are also integrated into the web service. The platform enables
the users (i) to predict if albumin binds the query ligand, (ii) to
determine the probable ligand binding site (site 1 or site 2), (iii) to
select the albumin X-ray structure which is complexed with the most
similar ligand and (iv) to calculate complex geometry using molecular
docking calculations. Our SVM model and the potential offered by
the combined use of in silico calculation methods and experimental
binding data is illustrated.
Contact: eszter.hazai@virtuadrug.com
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Human serum albumin (HSA), a highly soluble negatively charged
protein, greatly augments the transport capacity of blood plasma
where it is present at a high concentration (∼0.6 mM). Its effect is
exerted by reversible binding of a vast array of chemically diverse
exogenous and endogenous compounds (Carter and Ho, 1994;
Curry, 2009; Kratochwil et al., 2002). This astonishing binding
capacity, which often seriously impacts pharmacokinetic properties
of therapeutic drugs is encoded in the secondary structure of HSA.

∗To whom correspondence should be addressed.

Namely, the protein is composed of ∼70:30% α-helix:random
coils with no β-sheets, which gives the protein a high degree of
conformational flexibility (Carter and Ho, 1994). The 66.5 kDa
single polypeptide chain of HSA consists of 585 amino acids
and the individual helices are connected by 17 disulfide bonds
to form 9 structural loops. Each 190-residue domain, labeled I,
II and III from the N terminus, contains 10 helices connected
by turns and are structurally very similar to one another (Carter
and Ho, 1994). The three homologous domains can be further
divided into six-helix and four-helix subdomains termed A and B,
which have a common four antiparallel α-helix core. Competitive
displacement studies of Sudlow et al. using fluorescent molecular
probes enabled the identification of two specific drug binding
sites termed in the literature as site 1 (subdomain IIA) and site
2 (subdomain IIIA) (Sudlow et al., 1975, 1976). Typically, HSA
ligands are accommodated primarily to one of the two high-
affinity sites with typical binding association constants in the
range of 104 −106 M−1 (Carter and Ho, 1994; Kratochwil et al.,
2002). It became evident from the experimentally resolved complex
structures (Supplementary Table S1) that these binding regions
are located in subdomain IIA and IIIA. Structural evaluation of
compounds bound specifically to these HSA sites revealed that site 1
ligands appear to be bulky heterocyclic compounds with a negative,
often delocalized charge near to the center of a largely nonpolar
molecule (Supplementary Table S1) (Buttar et al., 2010; Ghuman
et al., 2005; Petitpas et al., 2001; Ryan et al., 2010; Yang et al., 2007).
On the other hand, site 2 (also called the indole-benzodiazepine
site) preferably accommodates stick-like aromatic carboxylic acids
with a negative charge located at the alpha carbon, distant from
the hydrophobic region of the molecule (Supplementary Table S1;
Ghuman et al., 2005). However, these structural features are not
strict prerequisites for site 1 and site 2 binding since numerous
ligands are known to bind to both drug binding sites though with
different affinities [e.g. l-thyroxine (Petitpas et al., 2003), indoxyl
sulphate (Ghuman et al., 2005), dansyl-l-asparagine (Ryan et al.,
2010), or ibuprofen (Ghuman et al., 2005)].

High resolution crystal structures of HSA complexed with
various ligands resolved stereochemical details of its preformed
drug binding sites and enables the understanding of their binding
specificity (Fig. 1). Site 1 is a large, flexible, multi-chamber cavity
within the core of subdomain IIA that comprises all six helices of
the subdomain and additional residues from subdomains IB, IIB
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Fig. 1. (A) Representation of polar side-chains of the drug binding site 1
of HSA in subdomain IIA being involved in forming ionic/H-bonding
interactions with ligand molecules (prepared using the 2BXD pdb file of the
warfarin–HSAcomplex). Side-chain atoms are colored by atom type (carbon,
purple or pink; nitrogen, blue; oxygen, red). Note the two hydrophilic clusters
of residues around the entrance (Lys195, Lys199, Arg218, Arg222) and at the
middle/end (Tyr150, His242, Arg257) of the binding pocket. Some apolar
residues are also shown. (B) Polar key residues interacting with ligands
bound at drug binding site 2 of HSA in subdomain IIIA (prepared using the
2BXG pdb file of the ibuprofen–HSA complex).

and IIIA (Ghuman et al., 2005; Petitpas et al., 2001; Ryan et al.,
2010) (Fig. 1). Residues 148–153 from subdomain IB close off the
top of the site which has an extension toward the interdomain cleft
stabilized by residues from subdomain IIB (Val343, Leu347) and
IIIA (Leu481), respectively. The binding pocket can be accessed
through an open entrance of ∼10 Å in diameter between helices h1
and h2, which faces subdomain IIIA and thus is partially shielded

from bulk solvent. The opening is surrounded by four basic residues
(Lys195, Lys199, Arg218, Arg222). Although the interior of the
binding crevice is mainly apolar, there is an additional cluster of
polar residues toward the middle/end of the pocket (Tyr150, His242,
Arg257). The main volume of the pocket is separated by Ile264
into two hydrophobic sub-chambers. Just inside the hydrophilic
entrance, there is a third chamber formed by Phe211, Trp214,
Ala215, Arg218 and Leu219. Trp214 is an important structural
element of site 1 since rotation of its indole ring enables certain
ligands to be accommodated at the binding site and to form π–π

stacking interactions (Buttar et al., 2010; Ghuman et al., 2005). The
large central compartment of site 1 is typically occupied by planar
aromatic/heterocyclic rings of the ligands, which are inserted snugly
between the ‘ceiling’and ‘floor’of the pocket represented by Ala291
and Leu219/238, respectively. The enclosure of the guest molecules
within the pocket is driven by formation of multiple hydrophobic
contacts with nonpolar site residues. On the other hand, acidic
or electronegative peripherial groups of the ligands are oriented
in the sub-chamber formed around Trp214, or toward the solvent
accessible mouth of the cavity where they can form intermolecular
H-bonds with the basic residues (Ghuman et al., 2005; Petitpas
et al., 2001). The additional basic patch on the middle/opposite
side of the pocket (Tyr150, His242, Arg257) also enables H-
bond formation with ligand substituents. X-ray data of compounds
crystallized with HSA show in most cases H-bonding with the
phenolic –OH of Tyr150 suggesting the important contribution
of this residue in ligand binding at site 1 (Buttar et al., 2010;
Ghuman et al., 2005; Petitpas et al., 2001; Ryan et al., 2010).
Appropriately sized molecules possessing two anionic functions on
opposite ends such as l-thyroxine (Petitpas et al., 2003) and the
uremic toxin 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid
(CMPF; Ghuman et al., 2005) can form multiple H-bonds at both
sides of the pocket resulting high-affinity binding. The site 1 has
ample binding room so that most compounds examined to date by
X-ray method do not fill it completely. Due to this fact, site 1 is
able to accommodate multiple ligands simultaneously as has been
demonstrated by crystal structures of HSA with co-binding pairs
of azapropazone-phenylbutazone, azapropazone-indomethacin and
indomethacin-myristic acid (Ghuman et al., 2005). Fatty acid (FA)
binding induced conformational changes of HSA alter the structure
of the site 1 in the sense that it diverts Tyr 150 and, to a lesser extent,
Arg 257 out of the pocket. The carboxylate head of FAs bound in
the long and narrow channel located between subdomains IA and
IIA (FA site 2; Simard et al., 2006) forms H-bonds with Tyr150,
Arg257 and Ser287 so these residues will be no longer available
to interact with site 1 ligands (Ghuman et al., 2005). Except for
oxyphenbutazone, however, these changes have only a minor impact
on the location and orientation of the bound ligands. The site 1 itself
can also anchor a fatty acid molecule but due to its low-affinity
binding drug ligands of the site displace the lipid molecule.

Site 2 in subdomain IIIA (indole-benzodiazepin site) is
topologically similar to site 1 in a sense that both are composed of
six-helices of the corresponding subdomains, which are arranged to
form largely apolar cavities with defined polar features. In contrast to
site 1, the entrance to site 2 is exposed to solvent and its inner cavity
is smaller and more rigid which features account for the pronounced
stereoselectivity observed for bound compounds (e.g. l-tryptophan
shows a 100-fold greater HSA affinity than the d-enantiomer; 2,3
benzodiazepines exhibit conformational selectivity; Ghuman et al.,
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2005). Furthermore, site 2 is less complex in its structure since only
few residues from subdomain IIB contribute to its opening. The
interior of the binding pocket is hydrophobic, with a single polar
patch near to the entrance centered on Arg410 and Tyr411 but also
including Lys414 and Ser489 (Fig. 1). This arrangement explains
the ligand specificity of the site featured by mostly extended,
stick-like nonsteroidal anti-inflammatory agents (NSAIDs) with a
peripheral carboxylic group (e.g. ibuprofen, flurbiprofen, diflunisal).
In spite of its relative rigidity, site 2 also possesses a degree
of conformational adaptability as shown by its capacity to bind
two molecules of long-chain fatty acids simultaneously (Curry,
2003). The aliphatic chain of one fatty acid is accommodated in
extended conformation by a long, narrow hydrophobic tunnel and
its carboxylic head is involved in ionic (Arg410) as well as H-
bonding (Tyr411, Ser489) interactions (FA site 4, high-affinity). The
second fatty acid makes salt bridges with Arg348 and Arg485, and
a H-bond with Ser342 while its methylene tail occupies the central
pocket of site 2 (FA site 3, low-affinity). Accordingly, both fatty
acid ligands of subdomain IIIA compete directly with the binding of
site 2 specific compounds (Bhattacharya et al., 2000; Curry, 2009;
Ghuman et al., 2005; Petitpas et al., 2003). However, under normal
physiological conditions only 0.1–2 molecules of FA are bound per a
HSA molecule (Curry, 2003) which are distributed primarily among
the three high-affinity FA sites in subdomain IA-IIA, IIIA and IIIB
(Simard et al., 2006).

Besides the two primary drug binding sites in subdomain IIA and
IIIA, HSA possesses some additional ligand binding pockets, which
can function as secondary sites for agents that bind preferentially to
site 1 or 2 (Supplementary Table S2). Moreover, the hydrophobic,
L-shaped cavity in subdomain IB termed here as site 3 is also
the primary binding locus of some compounds including hemin
(Zunszain et al., 2003), bilirubin (Zunszain et al., 2008), the steroid
antibiotic fusidic acid (Zunszain et al., 2008) and a sulphonamide
derivative (Buttar et al., 2010). Secondary binding sites of other
substances have also been identified in a shallow trench at the
interface between subdomain IIA and IIB that overlaps the FA site
6, in subdomain IIIB (oxyphenbutazone, propofol) and in the cleft
between domains I and III where iodipamide and l-thyroxine can be
bound (Bhattacharya et al., 2000; Ghuman et al., 2005; Ryan et al.,
2010). In addition, some molecules owing site 1 as primary binding
site have been observed to possess a secondary binding locus at site
2 in subdomain IIIA and vice versa (Ghuman et al., 2005).

Given the importance of HSA, knowledge of the exact binding
site of albumin is of potential importance in drug research, e.g. in
the investigation of drug–drug interactions. Co-administered drugs
may exert a competition for the binding to the same albumin binding
site, free fraction of the low-affinity drug is enhanced. Similarly,
competition for a certain binding site may occur between drugs
and endogenous substances (Tesseromatis and Alevizou, 2008). This
competition has a potential clinical consequence (Bird and Carmona,
2008).The availability of a vast amount of experimental binding
data, and a number of X-ray structures enable the development of
reliable in silico prediction models.

In silico prediction methods of protein–ligand interactions are
divided into ligand-based methods and structure-based methods.
Structure-based methods i.e. molecular docking gives insights into
the ligand–protein interactions in atomic detail. Molecular docking
methods are capable of predicting interactions with ligands sharing
low or no similarity with known ligands. However, the calculation

of free enthalpy of the ligand–protein interaction possesses low
correlation with experimental data. Therefore, docking calculations
alone cannot be used as a tool to define binding ability and the
binding site of a ligand.

In ligand-based methods such as quantitative structure-activity
relationships (QSAR) and support vector machine (SVM), the
potential ligand binding is predicted based on similarity with
the known ligand structure and its physicochemical properties.
A number of studies have been published that use in silico tools
in order to predict HSA binding of various ligands (Colmenarejo,
2003). These studies utilize different in silico methods such as
QSAR (Kaliszan et al., 1992; Colmenarejo et al., 2001; Hall et al.,
2003), or SVM (Xue et al., 2004). The drawback of ligand-based
methods is that they do not provide information on interactions with
the protein at an atomic level. Therefore, in our study, both ligand
(SVM) and structure-based (molecular docking) in silico methods
were combined in order to yield accurate prediction of ligand–HSA
binding and complex geometry.

It is important to note that the outcome of the available in silico
studies cannot be simply utilized by experimental chemists, and
therefore it does not sufficiently contribute to aiding experimen-
tal work.

Thus, the goal of our work was—besides the development of
in silico model that accurately predicts HSA binding—to create a
web service that enables the in silico prediction of albumin binding
that could be used by experimental researchers. More specifically
the web-based platform utilizing our SVM model enables the users
to predict: (i) the capability of HSA to bind the query ligand; (ii)
the probable ligand binding site, and, moreover albumin-ligand
complex geometry is estimated with molecular docking tools.
Several examples are presented here that demonstrate the capability
of our method to predict HSA binding.

2 METHODS

2.1 SVM calculations
In the course of our SVM method development, molecules are characterized
with numerous descriptors and then are presented in the multidimensional
space based on the calculated descriptors. The compounds are classified into
three categories based on experimental data: (i) non-ligand; (ii) site 1 ligands;
and (iii) site 2 ligands. SVM constructs a hyperplane in this high-dimensional
space having the maximum margin between the three classes. In the course
of prediction molecular descriptors of a given molecule are calculated and
then is classified in its position by this multidimensional space.

A total of 163 small molecules with available experimental data
on their HSA binding properties were collected from the literature
(Supplementary Tables S3 and S4). The collection contains 62 compounds
that bind to HSA binding site 1 (site 1 ligands), 38 site 2 ligands
and 63 molecules that exhibit no or low-affinity HSA binding.
The structures of the ligands were downloaded from the PubChem
Database (http://pubchem.ncbi.nlm.nih.gov). All molecules were subjected
to geometry optimization using Molconvert (Chemaxon) software applying
Dreiding molecular mechanics force field (Mayo et al., 1990). Gasteiger
partial charges were calculated (Gasteiger and Marsili, 1980). The
Dragon software (www.talete.mi.it) was used to calculate a total of 3250
molecular descriptors for each molecule. The descriptors were filtered
using following preprocessing steps: (i) those with >80% zero values and
(ii) those that have too small standard deviation values (3%). Libsvm
(LIBSVM: a library for support vector machines; software available at
www.csie.ntu.edu.tw/∼cjlin/libsvm) was employed as the SVM algorithm in
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our work. A radial basic function (RBF) was chosen as the kernel function,
where ‘r’ is the parameter. The other parameters were set to default values.

In the training process two parameters, the regularization parameter ‘C’
and the kernel width parameter ‘g’ were optimized by using a grid search
approach. The feature selection tool fselect (part of the Libsvm package) was
employed to measure the relative importance of the features. Descriptors with
a correlation larger than 0.9 were filtered and descriptors with higher F-score
were kept for further SVM calculations.

As external validation set 63 molecules were selected. The remaining
100 molecules were randomly divided to training (60%) and test (40%)
sets. 100 SVM model built using randomly chosen training set was trained
and validated by cross-validation, and the performance of the model was
evaluated by the corresponding test set.

Accuracy of the method was calculated by the following equation:
Accuracy = (true positive + true negative)/(true positive + false positive
+ true negative + false negative). The SVM model with the highest accuracy
on the test set was selected. The model was validated based on the external
dataset.

2.2 Molecular docking
Molecular docking calculations were carried out using Autodock Vina
software (Trott and Olson, 2010). Ligand structures were optimized
using Dreiding force field (Mayo et al., 1990) in Molconvert program
of Chemaxon. Gasteiger partial charges (Gasteiger and Marsili, 1980)
were calculated on ligand atoms. X-ray structures of the crystallized
small molecule-HSA complexes (Supplementary Tables S1 and S2) were
downloaded from the Protein Data Bank (http://www.rcsb.org). Polar
hydrogen atoms were added to the protein and Gasteiger partial charges
were calculated using Autodock Tools. Water molecules, heteroatoms were
removed from the structures. Simulation boxes were centered on the
originally crystallized ligands. 20×20×20 Å simulation box was used in
each docking calculations, using an exhaustiveness option of 8 (average
accuracy).

2.3 Web service
A free web service was built that is capable of predicting the albumin
binding site and geometry of ligands (http://albumin.althotas.com) using
the combined SVM docking-based method described here. Autodock Vina
software is also integrated to the web service for complex geometry
calculation. The service has been built in PHP-MySQL and utilizes several
external programs and methods in the workflow. The workflow of the service
is summarized in Figure 2. The structure of the query ligand can be uploaded
or drawn in using the built-in Chemaxon Marvin Java applet. The platform
is also connected to Pubchem database, so drug molecules can be directly
downloaded from Pubchem using text search. The structural conversions
and 3D geometry optimization by Dreiding method are carried out using the
Molconvert software. The 2D and 3D molecular descriptors are calculated
using DragonX software. Our built-in SVM model presented here is used to
predict the binding site of a given substance. Molecular similarity between
the query structure and the X-ray HSA ligands is calculated in order to aid the
selection of the appropriate PDB structure to be used in complex geometry
calculation. In the final step the complex geometry and binding affinity are
predicted by automatic molecular docking calculations using Autodock Vina
algorithm (Trott and Olson, 2010). In order to increase the docking speed,
a special implementation of Autodock on Fpga was developed and is in the
testing phase in this server. This feature is already freely available in our
web service, Docking Server (http://www.dockingserver.com) (Bikadi and
Hazai, 2009).

3 RESULTS
The goal of the current work was to develop a model that accurately
predicts HSA binding site of a ligand and the resulting complex

Fig. 2. Workflow of the web service.

geometry. A web service has been established that utilizes the
combined method for prediction of HSA binding. A 2D structure
of a ligand is used as input and HSA binding characteristics are
predicted.

3.1 Ligand-based (SVM) approach for determination
of ligand binding to a potential HSA binding site

A number of studies utilize different in silico methods for
HSA binding prediction (Colmenarejo et al., 2001; Hall et al.,
2003; Xue et al., 2004). While both previous and our study
are aimed at in silico prediction of albumin binding, there is a
significant difference between our and the previously published
models which makes direct comparisons impossible. Namely, the
published models have limited global applicability in contrast to
our model because of the followings: (i) The published models
do not distinguish between site 1 and site 2 ligands. This is
a major drawback of these studies, as valid QSAR calculations
should be based on structurally related molecules binding at
the same site of the protein. (ii) The models were designed to
quantitatively predict the binding affinity of compounds, which
bind to HSA, while our method is capable to classify nonalbumin
and albumin ligands. (iii) The applied experimental methods
(binding constant calculated from the retention time in a HPLC
column with immobilized HSA in Colmenarejo, 2001) are not
accurate and the experimental conditions (using 15% acetonitril
in the eluent, thus ligand binding is investigated in a partly
organic buffer) do not reflect the real physiological environment
of albumin.
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In order to develop a globally applicable model for albumin
binding, we collected a unique dataset containing 163 ligands
categorized into site 1, site 2 or nonalbumin ligands. In our view,
datasets collected from the literature cannot be used for quantitative
prediction because of the great influence of experimental conditions
on affinity values (Weisiger, 2001). However, for an SVM
classification model, the quantitative binding data are unnecessary
and the gathered data can be used for building a generally applicable
model.

The SVM approach has been shown to be a very effective
classification tool in the fields of computational biology and
chemistry (Ivanciuc, 2007). In our study, a three states classification
method was utilized, where ligands were divided into the following
classes: class 0, no or low affinity to HSA; class 1, site 1 ligand; and
class 2, site 2 ligands (see Supplementary Tables S3 and S4).

Because of the lack of sufficient amount of experimental binding
data on site 3, it was not considered in the SVM model. One
of the key points in SVM model building is the numerical
representation (descriptor calculation) of the chemical structure. The
model performance and the accuracy of the results strongly depend
on the descriptor calculation and optimal selection. In the course of
our study, 3250 descriptors were calculated for each molecule. After
careful selection, 45 descriptors were used in the final model, which
are shown in Supplementary Table S5.

Several of the 45 selected descriptors in our model
reflect physicochemical properties, which have been previously
characterized as a contributing factor to albumin binding. As can
be seen, logP (Colmenarejo et al., 2001; Hersey et al., 1991) is one
of the most important physicochemical parameter in our model, as
several selected descriptors are based on logP and the aromacity of
the compounds (Supplementary Table S5). Anti-inflammatory drugs
(NSAIDs) are known to bind to HSA with high affinity (Ghuman
et al., 2005; Kratochwil et al., 2002; Sudlow et al., 1976; Urien
et al., 1984)—and in accordance with these, anti-inflammatory-like
index is included in our model. Similarly, carboxylic acid containing
compounds bind strongly to HSA, which is reflected in our model by
the presence of ‘number of carboxylic acids’ descriptor. A number
of 3D descriptors were also selected reflecting the difference in
site 1 and site 2 geometries. The selected model yielded 100%
accuracy on training and 78% accuracy on test set. This model
was validated on our external dataset and 81% of the ligands
were accurately predicted (for detailed results see Table 1). The
external dataset included 18 compounds that possessed low or no
affinity toward HSA. From these, 15 compounds were accurately
predicted, 1 compound was predicted to be site 1 ligand, whereas
2 compounds were predicted as site 2 ligands. Among the 27 site
1 ligands, 22 were accurately predicted, 4 was identified as site
2, whereas 1 as ligand possessing low or no affinity toward HSA.
Among the 18 site 2 ligands in the external dataset 14 compounds
were accurately predicted, whereas 3 compounds were predicted as
site 1 and 1 compound as site 2 ligand. These results indicate that
only 5 compounds were misclassified for their capability of binding
to HSA.

3.2 Structure-based approach for determination of
complex geometry

In the course of our work, molecular docking calculations were
used in order to obtain complex geometry at the binding site

previously predicted by our SVM method. As the selection of the
most appropriate protein geometry is crucial for accurate complex
geometry prediction, the available X-ray structures of ligand–
HSA complexes were analyzed in detail in order to determine
possible differences at the binding sites. Comparison of X-ray
data of ligand-HSA complexes shows some degree of side-chain
variability at the binding sites. Depending on the size and chemical
constitution of the accommodated ligand molecule, these changes at
site 1 involve the rotation of aromatic (Tyr150, Trp214) and basic
residues (Lys199, Arg218, Arg222) (Ghuman et al., 2005; Zunszain
et al., 2008). Distinctly from other site 1 ligands, accommodation
of indomethacin, iodipamide (Ghuman et al., 2005), dansyl-l-
phenylalanine (Ryan et al., 2010) and carboxylic indole derivatives
(Buttar et al., 2010) occurs in a partially distinct compartment in
subdomain IIA that is formed by the rotation of the Trp214 side-
chain. In these cases, the indole ring is involved in π–π stacking
interaction with the aromatic moiety of the actual ligand molecule.
Ligand induced side-chain rearrangements can also be observed
at site 2 which binds negatively charged (e.g. ibuprofen, indoxyl
sulphate) and neutral compounds (e.g. propofol, diazepam) too
(Bhattacharya et al., 2000; Ghuman et al., 2005). Comparison
of the binding environment of ibuprofen and diazepam bound at
site 2 reveals important ligand-induced side-chain alterations. The
carboxylic group of ibuprofen makes salt bridges with Lys414 and
Arg410 (PDB id: 2BXG). In contrast, binding of diazepam having
no acidic functional group does not require the accommodation of
these basic residues and thus they occupy different steric position
(PDB id: 2BXF). Moreover, the binding of diazepam induces large
rotation of Leu387 and Leu453, which allows the phenyl ring of
the drug to access the rear right-hand sub-chamber of the pocket
(Ghuman et al., 2005). Thus, it can be concluded that the careful
selection of the X-ray structure is crucial for accurate docking
calculation.

3.3 Organization of the web service
A web service has been developed which enables the user to predict
ligand binding to HSA (http://albumin.althotas.com).

The molecule of interest can be uploaded in pdb, mol, mol2,
hin or smiles format or drawn in. Moreover, Pubchem database
is directly connected to our platform and can be searched by
compound name. After submitting the compound of interest, the
followings will be calculated: (i) SVM prediction on binding of
the ligand to HSA (no or low-affinity HSA ligand, site 1 or site
2 ligand); (ii) physicochemical parameters of the ligand which
were found to play an important role in HSA binding: molecular
weight, logP, Ghose–Viswanadhan–Wendoloski anti-inflammatory-
like index, number of carboxylic acids, number of substituted
phenyl rings in the ligand molecule. The Tanimoto similarity of
the molecule of interest with the X-ray ligands is also calculated
and presented in a table in order to advice the user to select the
appropriate X-ray structure for docking calculations. By clicking
on the menus on the left panel molecular docking calculations
will be automatically started. The calculated complex geometry,
docking energy, binding affinity, calculated interaction surface and
literature reference of the X-ray structure actually used are shown.
These results aid experimental researchers on analyzing ligand–HSA
interaction. However, it should be kept in mind that the standard error
of Autodock Vina is 2.85 kcal/mol (Trott and Olson, 2010), which
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Table 1. SVM prediction results

Compound name exp pr

Training set
(Orthochlorophenyl-
4phenyl)acetic
acid

2 2

2,4-Dichlorophenoxyacetic
acid

2 2

3-Acetylcoumarin 1 1
3-Carboxy-4-methyl-5-propil-
2-furan-propionic
acid

1 1

4-Chromanol 1 1
6-n-Benzyl-2-thiouracil 1 1
Aciclovir 0 0
Allopurinol 0 0
Amikacin sulfate 0 0
Amphetamine 0 0
Azapropazone 1 1
Bumetanide 1 1
Busulfan 0 0
Cefepime 0 0
Chlorodiazepoxide 2 2
Chlorothiazide 1 1
Compound1 1 1
Compound2 1 1
Dansyl-l-proline 2 2
Decitabine 0 0
Diazepam 2 2
Diiodisalicylic acid 1 1
Dopamine 0 0
Ethosuximide 0 0
Felbamate 0 0
Flufenamic acid 2 2
Flurbiprofen 2 2
Galantamine 0 0
Ganciclovir 0 0
Indomethacin 1 1
Indoxyl sulphate 2 2
Iodipamide 1 1
Ioxilan 0 0
Ketamine 0 0
Levocetirizine 2 2
Minoxidil 0 0
Naproxen 2 2
Nicotine 0 0
Oseltamivir 0 0
Phenprocoumon 1 1
Phenylbutazone 1 1
Propofol 2 2
Rizatriptan 0 0
Ropinirole 0 0
Salicylazosulphapyridine 1 1
Sulfamethoxypyridazine 1 1
Sulindac sulfide 2 2
Sulphafurazol 1 1
Sulphamethizole 1 1
Sumatriptan 0 0
Thyroxine 2 2
Tolbutamide 1 1
Tramadol 0 0
Tranexamic acid 0 0

Compound name exp pr

Tryptophan 2 2
Valproic acid 1 1
Zanamivir 0 0
Zidovudine 0 0
Zolmitriptan 0 0

Test set
5-Fluoroacil 0 0
Acetylsalicylic acid 1 1
Benoxaprofen 2 2
Bethanidine 0 0
Captopril 0 0
Chlorpropamide 1 1
Chromone-2-carboxylic
acid

1 1

Cytarabine 0 0
Daidzein 1 1
Dansyl-l-sarcosine 2 2
Diflunisal 2 2
Erythromycylamine 0 0
Flucloxacillin 1 1
Fluconazole 0 0
Gemcitabine 0 0
Genistein 1 1
Guanethidine 0 0
Iopanoic acid 1 1
Levetiracetam 0 0
Meptazinol 0 0
Methimazole 0 0
Morphine 0 0
Oxazepam 2 2
Paracetamol 0 0
Pentostatin 0 0
Pramipexole 0 0
Pranofen 2 2
Qercetin 1 1
Salicylosalicylic acid 1 1
Thiotepa 0 0
Tolazamide 1 1

........................................................

Azidocillin 1 0
Dansyl-l-arginine 1 0
Glafenic acid 1 2
Ketoprofen 2 1
Niflumic acid 1 2
Propiomazine 2 1
Thyroxine 1 2
Topotecan 0 1
Methyldopa 0 2

External set
(Orthochlorophenyl-
4phenyl)hydroxyacetic
acid

2 2

4-Hydroxycoumarin 1 1
6-Mercaptopurine 0 0
Amisulpride 0 0
Argatroban 0 0
Atovaquone 1 1
Baicalein 1 1

Compound name exp pr

Bleomycin 0 0
Carprofen 2 2
Chlorazepate 2 2
Chloro-2’ p-biphenylcarboxylic
acid

2 2

Cyclophosphamide 0 0
Dansyl-l-norvaline 2 2
Dansyl-l-phenylalanine 2 2
Diclofenac 2 2
Dicoumarol 1 1
Didanosine 0 0
Fenbufen 2 2
Fludarabine phosphate 0 0
Glibenclamide 1 1
Isoxicam 1 1
Itanoxone 2 2
Lisinopril 0 0
Mefenamic acid 2 2
Meloxicam 1 1
Melphalan 0 0
Metformin 0 0
Nalidixic acid 1 1
Naringenin 1 1
Nelarabine 0 0
Neostigmine 0 0
Ochratoxin A 1 1
Oxyphenbutazone 1 1
p-Biphenylyl-4 oxo-4methyl-2
butyric acid

2 2

Phenytoin 1 1
Piroxicam 1 1
R-warfarin 1 1
Salicylamide 1 1
S-Ibuprofen 2 2
Spiramycin 0 0
Sulfinpyrazone 1 1
Sulphadimethoxine 1 1
Suprofen 2 2
Suprofen methyl ester 1 1
S-warfarin 1 1
Tenoxicam 1 1
Thymoquinone 1 1
Topiramate 0 0
Triiodobenzoic acid 1 1
Venlafaxine 0 0

............................................................

5-Dimethylaminonaphthalene-
1-sulfonamide

1 2

Cefazolin 1 0
Cloxacillin 2 1
Dansyl-l-asparagine 1 2
Dansyl-l-glutamate 1 2
Dicloxacillin 2 1
Probenecid 2 1
Sulphamoxole 1 2
Topotecan 0 1
Clofibrate 2 0
Iohexol 0 2
Ioxaglic acid 0 2

Class 0, non-ligand; 1, site 1 ligand; 2, site 2 ligand; exp, experimental; pred, predicted. Dotted lines separate the correctly classified and misclassified compounds.
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means that binding affinities practically cannot be quantitatively
predicted using docking calculations. This problem is not limited
to Vina software. Namely, a critical assessment study of docking
softwares and scoring functions concluded that none of the docking
programs or scoring functions were capable of predicting ligand
binding affinity (Warren et al., 2006).

3.4 Evaluation of the platform on its ability to predict
HSA binding interactions of site 1 and site 2
specific drug molecules

Some pharmaceutical substances were selected whose binding sites
have previously been reported to coincide with site 1 or site 2. In
order to test the usefulness of the system, predictions were carried
out for these molecules (these molecules were part of the external
set in our SVM model). Site 1 ligands were all accurately predicted
by our SVM model (Supplementary Table S6). Site 2 ligands
were all predicted to bind to albumin, and with the exception of
probenecid and ketoprofen the binding site was correctly identified
(Supplementary Table S7). X-ray structures of HSA used in the
docking procedures were chosen by considering the molecular
similarity score between X-ray ligands of HSA and the molecules
to be docked. The docking results were evaluated in correlation
with the experimental binding data by considering the geometry
of the docked compound and the nature/number of noncovalent
interactions involved in stabilization of the complex.

In accordance with the X-ray data, the H-bonding pattern of
compounds docked to site 1 (Supplementary Table S6) highlights the
role of the two polar side-chain clusters located at the entrance and
at the middle/closed end of the pocket (Buttar et al., 2010; Ghuman
et al., 2005; Ryan et al., 2010). The polar hydroxynaphthoquinone
moiety of atovaquone is engulfed in the central/back compartment
of the cavity where it forms H-bonds while its hydrophobic ring
substituents extend along the horizontal axis of the pocket. In full
agreement with the X-ray data (Buttar et al., 2010; Ghuman et al.,
2005; Ryan et al., 2010), Tyr150 was found to be involved in
H-bonding with all molecules docked to site 1 emphasizing its
central role in ligand binding at site 1.

In the course of docking calculations performed on site 2, apolar
moieties of the ligand molecules were found to be buried in the
hydrophobic cleft of subdomain IIIA. Hydrophilic head of the
ligands interact with the single main polar patch of the site 2
constituted by Arg410, Tyr411, Lys414 and Ser489 (Supplementary
Table S7). In every case, except for diclofenac, there is a H-bonding
with the hydroxyl group of Tyr411 showing its equivalent role to
Tyr150 at site 1. Similarly to a number of other ligands of HSA
(Buttar et al., 2010) displacement data indicated the binding of
atovaquone in subdomain IIIA too (Zsila and Fitos, 2010). In the
docked complex, hydophobic tail of the molecule is deeply inserted
into the apolar void of the site while the oxygen atoms of the
hydroxynaphthoquinone ring are positioned at the mouth of the
cavity and make extensive H-bonds with the proximal polar residues.

The structure of the NSAID drug oxaprozin is reminiscent to
phenylbutazone so at the first sight its primary binding at site 1
would be expected. Displacement studies using marker compounds
have demonstrated that oxaprozin binds with a significantly lower
affinity than at site 2 (Aubry et al., 1995). Both oxaprozin and
phenylbutazone are ionized at physiological pH but they markedly
differ in the distribution of the negative charge: in phenylbutazone

the charge is delocalized on the carbonyl oxygens of the pyrazolidine
ring, in oxaprozin, however, it is localized at the carboxylic end-
group of the molecule. Taking the structural similarity between
oxaprozin and diazepam into account, docking calculations were
performed by using the X-ray template of the diazepam–HSA
complex. The docked oxaprozin molecule fits on the bound position
of diazepam projecting its one phenyl ring into the rear right-hand
sub-chamber of the pocket formed by rearrangement of Leu387 and
Leu453 side-chains (Ghuman et al., 2005) (Supplementary Fig. S1).
The carboxylic group can form three H-bonds with the side-chains
of Tyr411, Lys414 and Ser489, respectively.

The extensive plasma protein binding of diclofenac can be
ascribed to its interaction with HSA. HSA binding of diclofenac
is characterized by two classes of sites, a high-affinity (Ka =
5×105 M−1) and a low-affinity one (Ka =0.6×105 M−1) locus
(Chamouard et al., 1985). Sign of the induced circular dichroism
(CD) bands of diclofenac bound to site 1 exhibits complete reversal
when it is transferred to site 2 (Chamouard et al., 1985; Yamasaki
et al., 2000) suggesting that chiral conformations of the drug
molecule adopted at these sites are in mirror image relation. The
induced CD spectrum of diclofenac molecule accommodated in an
asymmetric protein binding environment can be accounted for the
nonplanar conformation of its diphenylamine chromophore. The
results obtained with diclofenac docked into the binding pocket
of subdomain IIA and IIIA are in full agreement with the above
assumption showing nonplanar, nearly mirror-image conformations
of the molecule (Supplementary Fig. S2). At site 1 diclofenac is
positioned in the binding room of warfarin and its carboxylic group
points toward the entrance of the pocket within H-bonding distance
to Lys199, Arg218 and Arg222. Similarly, the carboxylic group also
forms H-bonds with basic side-chains near to the entrance of the site
2 cavity (Arg410, Lys414) while the difluorophenyl ring of the drug
is inserted into the hydrophobic interior of the binding pocket (data
not shown).

4 CONCLUSIONS
The goal of the presented study was to develop an SVM model
that accurately predicts HSA binding site of a ligand and the
resulting complex geometry using molecular docking calculations.
A web service has been developed that utilizes the combined
method for prediction of HSA binding. The goal of the web service
was to make our combined method available for scientists to
aid experimental research. Our SVM method accurately predicted
potential albumin binding and the binding site of the ligand in
81% of the cases in the external dataset. Moreover, the users
are advised which X-ray structure would potentially yield the
most appropriate result based on similarity between the X-ray
and query ligands. Autodock Vina implemented in our web-based
platform enables to perform minutes scale ligand–HSA docking
calculations for researchers who conduct HSA binding experiments.
The results can be obtained by this way help to evaluate which
kind of interactions (hydrophobic, H-bond, ionic) can act between
protein residues and the guest compound docked to a specific HSA
binding site. This approach also facilitates our understanding of the
conformational features of ligand molecules in HSA-bound state as
well as experimental displacement data by comparison of docked
ligand–HSA structures with experimentally resolved complexes. In
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addition, the accumulating number of X-ray structures of ligand–
HSA adducts allows continuous future improvement of the online
platform to enhance its efficacy in correlating docking results with
experimental binding data.
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