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The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio
(SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated
based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing
condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing
vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE
was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for
four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted
from the denoised signals, out of which a few sensitive features were selected using the Fisher’s Criterion (FC). Extracted features
were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances
of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.

1. Introduction

The detection of fault in the machinery, in its incipient stage
itself, has gained prime importance as it avoids machine
down time, catastrophic failure of the machinery, threat
to human life, high maintenance costs, and so forth. The
fault diagnostic techniques based on the vibration signal
analysis have become popular in recent times [1, 2]. The
problem of the strong noise components masking the
weak characteristic signals has always posed challenges to
the condition monitoring expert. Several wavelet based
signal processing techniques aiming at denoising the mea-
sured signal so as to increase the Signal-to-Noise Ratio
(SNR) and reduce the Root-Mean-Square Error (RMSE)
have been proposed and tried by several researchers [3–
7]. The details of the techniques used by some of the
researchers have been explained in Section 2.2. The wavelet
based denoising technique has gained popularity due to

its effectiveness and ease of application [8]. It overcomes
the difficulty of determining the resonant frequency of the
system. Therefore, the wavelet technique has been adopted
in this work for denoising the bearing vibration signals.
The detail coefficients, obtained from the Discrete Wavelet
Transform (DWT), generally include a large proportion of
the high-frequency noise components along with some of
the characteristic information of the machine fault. Suitable
compression or suppression of these components would
remove the noise. The suppressed detail coefficients can then
be used along with the original approximation coefficients in
reconstructing the decomposed signal, by using the Inverse
Wavelet Transform (IWT), which would now be fairly free of
the noise [9, 10].

The Artificial Neural Networks (ANNs) and the Support
Vector Machines (SVMs) have been used to a large extent
in the fault diagnosis problems with high success rates.
The bearing vibration signals are nonstationary signals and
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hence a nonlinear mapping from the input space to the
output space is required, which is successfully fulfilled by
the classifiers like the ANN and the SVM. Several researchers
have applied the ANN and the SVM to the bearing fault
identification problem. Wang et al. [12] have used the ANN,
with difference values of the autoregressive coefficients as
inputs, in a rotating machinery fault identification problem.
Zarei [13] has proposed to improve the diagnostic abilities
of an ANN applied to a four-condition bearing classification
problem by using the time domain features alone as the ANN
inputs. Kankar et al. [14] have applied the ANN and the SVM
to a five-condition ball bearing defect classification problem
and obtained high classification accuracies. The SVM is a
soft computing tool which performs the tasks executed by
an ANN, but with a different approach. The SVM positions a
hyper plane between the two classes of data, thus separating
the data belonging to the two classes. The ANN’s approach
is to minimize the error on the training data set which
is known as the empirical risk minimization, whereas the
SVM’s approach is based on the structural risk minimization,
in which the upper bound of the generalization error is
minimized [15]. Yang et al. [16] have used the energy features
extracted from a number of Intrinsic Mode Functions as
input vectors to the SVM classifier to diagnose the REB
condition. Sugumaran et al. [17] have illustrated the use of
a decision tree to identify the best features, extracted from
bearing vibration signal, which were given as inputs to the
Proximal Support Vector Machine (PSVM) and the SVM.
They reported that the PSVM performed better than the
SVM. The popularity of the ANN and the SVM classifiers in
the REB diagnostics has motivated the authors of this paper
to use them in this work.

The objective of any classifier like the ANN or the SVM
is to attain a good generalization ability, that is, to exhibit
high accuracies on the training and the test data. This calls
for the optimal design of the ANN/SVM architecture. One
of the requirements of designing an optimal ANN/SVM
architecture is to reduce the input dimensionality, that is,
to select a few predominantly sensitive features as inputs.
This is known as the Dimensionality Reduction Technique
(DRT). Researchers have proposed and tried several DRTs.
Some of the popular DRTs are Principal Component Analysis
(PCA), Fisher’s Criterion (FC), Singular Value Decompo-
sition (SVD), Genetic Algorithm (GA), and so forth. Yen
and Lin [20] have investigated the effectiveness of the DRTs,
namely, Linear Discriminant Analysis and FC for reducing
the number of wavelet packet features extracted for analyzing
a bearing classification problem. Fuente et al. [21] have used
the Fisher’s Discriminant Analysis (FDA) for identifying the
faults in a real plant in terms of maximizing the scatter
between the classes and minimizing the scatter within each
class. Chiang et al. [22] and Tang and Li [23] explain the fault
diagnosis based on the FDA. Jack and Nandi [24], Samanta
et al. [25], and Saxena and Saad [26] have shown in their
works that the GA can be effectively used as a DRT along
with the optimization of the topology parameters of the
ANN/SVM. From the preliminary work carried out by the
authors of this paper, it was found that the GA effectively
selected the sensitive features, but took a longer time as the
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Figure 1: Denoising schemes and bearing diagnostic procedure
employed in the study.

GA depended on the performance of the ANN or the SVM
to compute the fitness value, that is, for every computation
of the fitness value, the ANN or SVM had to be run, making
the process time consuming. However, the effectiveness of
the FC in selecting the sensitive features was found to be
comparable with that of the GA based feature selection, and,
more importantly, unlike the GA, FC was independent of the
performance of the ANN or SVM. Therefore, in this work,
FC has been used as a DRT.

In this paper, the effectiveness of seven different wavelet
based denoising schemes have been evaluated in terms of the
classification accuracies of the ANN and the SVM on the
denoised training and the test data, extracted from the REB
vibration signals. Firstly, a synthetic signal (representing the
vibration signal of a defective bearing) has been corrupted
by a Gaussian white noise and subjected to the seven
denoising schemes. Secondly, the real-time bearing vibration
signals, measured from a customized bearing test rig under
one load and two speed conditions, for four conditions of
the bearings, have been subjected to the same denoising
schemes. The denoising scheme which provided high SNR
and low RMSE in the first part of the work provided high
classification accuracies (on the training and the test data) in
the second part of the work. The focus of this work was to
evaluate the best wavelet based denoising scheme based on
the performance of the ANN and the SVM. Figure 1 shows
the denoising schemes and the bearing diagnostic procedure
employed in this study.

2. Wavelet Based Denoising

The characteristic vibration signals of the defective bearings
are not generally readily available when collected by means
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Table 1: List of thresholding schemes.

Thresholding scheme Researcher/s

Conventional thresholding schemes
s1 Donoho [11]

s2 Donoho [11]

Modified or improved thresholding
schemes

s3 Huaigang et al. [3]

s4 Fang and Huang [4]

s5 Lin and Cai [5]

s6 Zhang et al. [6]

s7 Cai-lian et al. [7]

of a Data Acquisition (DAQ) system. This is mostly because
the noise, influenced by the resonant frequency of the
rotating system, masks the characteristic vibration signals.
The noises are often stochastic signals whose frequency
band will overlap with the interested signals. Therefore, it is
difficult to eliminate the noise from the signals effectively by
using the traditional filtering methods. Also, the traditional
methods of denoising need the knowledge of the parameters
which are difficult to be determined [8]. The wavelet based
denoising has gained popularity due to its effectiveness and
also that it overcomes the difficulties of the traditional
denoising methods. The SNR must appreciably increase and
the RMSE must become small on a successful application of
a denoising method.

Suppose that a signal of interest f (n) has been corrupted
by the noise z(n), so that we get a signal g(n) as in (1) which
resembles the raw signal collected by means of a DAQ system,

g(n) = f (n) + σz(n), (1)

where z(n) is a unit-variance, zero-mean Gaussian white
noise and σ2 is the variance of the noise. The denoising is
a way to recover f (n) from the samples of g(n) as properly
as possible. The three-step procedure adopted in the wavelet
based denoising is (i) decomposition of the raw signal using
the wavelet transform to get the approximation and the
detail coefficients, (ii) suppressing the detail coefficients by
selecting a suitable threshold value and by applying a suitable
thresholding rule, and (iii) reconstructing the signal by
applying IWT to the original approximation coefficients and
the suppressed detail coefficients to get the denoised signal
[9, 10].

Several denoising schemes (step ii) have been proposed
by researchers [3–7]. In this work, the denoising effectiveness
of seven different denoising schemes has been compared.
Table 1 gives the list of seven denoising schemes and the
researchers who have proposed them.

2.1. Conventional Denoising Schemes. The wavelet denoising
method focuses on the selection of the thresholding rules
and the determination of the threshold value. Donoho [11]
gave two thresholding rules, namely, hard-thresholding (s1)
and the soft-thresholding (s2), which are considered to be
the conventional wavelet based denoising schemes and they

are readily available functions in the Wavelet toolbox of
MATLAB. The hard-thresholding scheme is expressed as

y1(x) =
{

x if |x| ≥ λ,

0 if |x| < λ,
(2)

where x is the wavelet coefficient, y1(x) is the corresponding
suppressed wavelet coefficient by hard-thresholding, and λ is
the threshold value.

The soft-thresholding scheme is expressed as

y2(x) =
{

sign(x)(x − λ) if |x| ≥ λ,

0 if |x| < λ,
(3)

where y2(x) is the suppressed wavelet coefficient obtained by
soft-thresholding and the other terms have the same meaning
as in (2).

2.2. Modified Soft-Thresholding Schemes Proposed by Different
Researchers. A list of the denoising schemes s3 to s7 proposed
by various researchers [3–7] is provided in Table 1. Huaigang
et al. [3] have proposed an improved soft-thresholding
function as given in (4). According to them, the conven-
tional thresholding functions set the coefficients below the
threshold value to zero, but, in their proposed method,
these coefficients were tuned by a polynomial function. The
coefficients that were below the threshold value and close to
it were attenuated to a value less than the far coefficients.
For important coefficients, the function was garrote-like,
resulting in a more powerful function:

y4(x) =
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x + (k − 1)λ− 0.5
kλm

xm−1
if x > λ,

0.5
k|x|[m+(2−k)/k]

λ[m+(2−2k)/k]
sign(x) if |x| < λ,

x − (k − 1)λ− 0.5
k(−λm)

xm−1
if |x| < −λ,

(4)

where m and k are tuning parameters and the other terms in
(4) have the same meaning as in (2). By tuning the parameter
k, the thresholding function can be between the hard- and
the soft-thresholding functions. By tuning the parameter
m, the near-optimum thresholding function is adjusted to
the optimum one by applying small changes. As per [3],
optimization of the parameter k works similar to a global
search and optimization of the parametermworks like a local
search in finding the best thresholding function. The authors
in [3] have selected m = 2 and 4 and k ∈ [0, 1]. In this work,
m = 4 and k = 0.8 have been selected.

Fang and Huang [4] have proposed a wavelet trimmed
thresholding scheme as given in (5) which was an improved
version of the hard- and the soft-thresholding schemes:

y5(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x

(

|x|α − λα

|x|α
)

, if |x| ≥ λ,

0, if |x| < λ,

(5)

where α is a parameter and the other terms in (5) have the
same meaning as in (2). They suggested that with careful
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tuning of the parameter α for a particular signal, a best
denoising effect could be achieved. When α = 1, it was
equivalent to the soft-thresholding and when α → ∞, it
was equivalent to the hard-thresholding. Accordingly, in this
work, α = 5 has been chosen.

Lin and Cai [5] proposed a new threshold function given
in (6) which had the advantage of the nonnegative dead zone
thresholding:

y6(x) =

⎧

⎨

⎩

√

1− β2 sign(x)|x − λ| + βx, if |x| ≥ λ,

0, if |x| < λ,
(6)

β = exp

[

− (|x| − λ)2

k

]

, (6a)

where k is a positive number and the other terms in (6) have
the same meaning as in (2). When x → λ, β → 1 and
y6(x) = x, which overcomes the disadvantage of the soft-
thresholding, and when x → ∞, β → 0 and y6(x) → 0,
which makes the signal smoother than the hard-thresholding
function. A value of k = 0.5 has been chosen in this work, for
using this scheme.

Zhang et al. [6] have proposed an improved thresholding
function given in (7):

y7(x) =

⎧

⎨

⎩

sign(x)(|x|u − αλu)
1/u

, if |x| ≥ λ,

0, if |x| < λ,
(7)

where u and α are parameters whose proper tuning can
provide an effective denoising while the other terms in (7)
have the same meaning as in (2). The power u is used in order
to enlarge the difference between the signal and the noise,
u > 0 (u = 2, 3, 4, . . .). It can be observed that when α = 0,
(7) becomes the hard-thresholding function. When the value
of α is appropriately chosen between 0 and 1, the effectiveness
of the denoising could be optimized. For using this scheme in
this work, u = 10 and α = 0.6 have been chosen.

In a new thresholding function proposed by Cai-lian
et al. [7], suppression of the detail coefficients was done
according to (8):

y8(x) = x ×

⎧

⎨

⎩

1− exp
[

−(x/λ)2
]

1 + exp
[

−(x/λ)2
]

⎫

⎬

⎭

. (8)

This thresholding function depends on the proper selec-
tion of the constant λ. It is continuous unlike the conven-
tional soft-thresholding function and is easily differentiable,
statistically very reliable, and robust, making it completely
suitable for the discrete signal denoising. The optimum value
of λ can be determined as proposed in [7], but, in the current
work, λ = 0.8 has been chosen by trial and error so as that
the ANN’s and the SVM’s training and test accuracies were
maximum.

3. Wavelet Based Denoising of a Synthetic Signal

The focus of the first part in this work was to apply the
seven wavelet based denoising schemes listed in Table 1 to a

synthetic signal that represented a defective bearing vibration
signal. In order to simulate the vibration signal of a defective
bearing, a weak synthetic signal 0.5e−500t sin(10000t) with
a defect frequency of 50 Hz was considered. A sampling
frequency of 48 kHz was used as the real-time bearing
vibration signals were acquired at the same rate. A plot of
the synthetic signal is shown in Figure 2(a). It was corrupted
with a strong zero-mean Gaussian white noise. A plot of the
corrupted signal is shown in Figure 2(b). The energy of the
synthetic signal was 41.89 and that of the corrupted signal
was 510.77. The expression for computing the signal energy
is given in (9), whereas the expressions for computing the
SNR and the RMSE for a denoised signal are given in (11),
and (12) respectively:

E =
N
∑

i=1

x2
i , (9)

where E is the energy of the signal x and N is the length of
the signal:

SNR = 10 loge

[

∑N
i=1 x

2
i

∑N
i=1 (di − xi)

2

]

, (10)

RMSE =

√

√

√

√

√

1

N

N
∑

i=1

(di − xi)
2, (11)

where x is the corrupted signal, d is the denoised signal, and
N is the length of the signal.

The corrupted signal was subjected to the seven wavelet
based denoising schemes listed in Table 1. The corrupted
signal was subjected to the DWT so as to decompose it
into four levels using Daubechies 8 mother wavelet through
a customized MATLAB program. According to Nyquist’s
rule, the maximum frequency of the vibration signal was
set to 24 kHz because the sampling frequency was 48 kHz.
The frequency bandwidths of the approximation and the
detail coefficients of the wavelet decompositions are shown
in Figure 3. For each level of the wavelet decomposition, the
threshold value λ was determined as per Stein’s Unbiased
Risk Estimate (SURE), as SURE threshold selection rules are
more conservative as expressed in [9]. This threshold value
was used for all denoising schemes, except for s7, where it
was selected by trial and error. Figure 4 shows the plots of
the noise free synthetic signal and the denoised signals by
different schemes. The values of E, SNR, and RMSE for the
denoised signals are given in Table 2. The objective of signal
processing was to increase the SNR and lower the RMSE of
a corrupted signal. From Table 2, it can be observed that s7
gave high SNR and low RMSE. The peaks in the original
synthetic signal (representing the bearing fault impulses)
were identifiable more clearly in s7 denoising scheme when
compared to the other schemes (refer to Figure 4).

4. Wavelet Based Denoising of
Real-Time Vibration Signal

In the second part of the work in this paper, the objective
was to apply the seven schemes of denoising discussed in
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Figure 2: (a) Plot of a synthetic signal simulating a defective bearing vibration signal free of noise. (b) Plot of a signal corrupted with
zero-mean Gaussian white noise.
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Figure 3: Discrete wavelet decomposition of bearing vibration signal.

the previous section to the vibration signals collected from
a customized bearing test rig for four bearing conditions
(N: normal bearing, IR: bearing with defect on inner race,
B: bearing with defect on Ball, and OR: bearing with defect
on an outer race). A schematic diagram of the customized
test rig used for extracting the bearing vibration signals
is shown in Figure 5. It consisted of a horizontal shaft

mounted on a support bearing (right) and a test bearing
(left). A radial load on the test bearing was applied through
a hydraulic loading arrangement. The accelerometers were
mounted on the horizontal and the vertical surfaces of the
test bearing housing (X & Y). The vibration signals measured
through the accelerometers were acquired at a rate of 48000
samples per second and stored in the computer through
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Figure 4: Plots of noise free synthetic signal and denoised signals by different schemes.

the DAQ system. The acceleration signals were collected for
5.08 seconds from a 6205 deep groove ball bearing under a
radial load of 1.7 kN and shaft speeds of 356 and 622 rpm.
The signals collected from accelerometer-X were considered
for analysis, as the signals acquired in Y-direction were not
very sensitive to the bearing condition. Each trial of the
experiment resulted in a data vector of size 250000 × 1.

Figure 6(a) shows the raw vibration signal collected from
a bearing with the OR defect for a load of 1.7 kN and a speed
of 622 rpm and Figure 6(b) shows the plot of the denoised
signal using scheme s7. It is clear from the figures that the
selected denoising scheme has been effective in representing
the original signal with reduced noise (SNR-1.9279, RMSE
0.0261).

5. Feature Extraction

Each denoised vibration signal (250000 × 1) was divided
into 50 nonoverlapping bins each with 5000 data. From each
bin, 30 features were extracted out of which features 1 to
17 (T1 to T17) were the statistical time domain features and
features 18 to 30 (F1 to F13) were the statistical frequency
domain features. This formed a single pattern. Hence, for
four conditions of the bearing, two speed conditions and
one load condition, a total of 400 patterns (50 × 8) were
extracted. The feature set matrix consisted of 30 features ×
400 patterns. Each feature was normalized, by dividing each
element of the feature by the feature maxima, so as to attain
values between 0 and 1. The patterns of the matrix were
thoroughly mixed, out of which 300 patterns (75%) were
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Figure 6: (a) Raw vibration signal from bearing with OR defect. (b) Denoised vibration signal from bearing with OR defect using s7.

used in the training data set and the remaining 100 patterns
(25%) in the test data set. A list of the features extracted from
the denoised vibration signal is given in Table 3.

6. Feature Dimensionality Reduction

The FC has been used as a DRT in this work. The criterion
for the FC is based on computing the “separation distance”
between the two classes of interest and it depends upon the
mean and the standard deviation of the two classes. The
separation distance between the two classes as per the FC is
given in (12) as suggested by Yen and Lin [20]:

J
P,Q
k =

∣

∣

∣Mean
(

tPk

)

−Mean
(

t
Q
k

)
∣

∣

∣

2

[

Std
(

tPk

)]2
+
[

Std
(

t
Q
k

)]2 , (12)

where J
P,Q
k is a measure of the Fisher’s Separation Distance

between the two classes of the bearing P and Q for the kth

feature (P and Q each may be N, IR, B, and OR defect).
Mean() and Std() are the mean and the standard deviation.
For the four-class problem in this study, the summation of

the pairwise combinations JN ,IR
k , JN ,OR

k , JN ,B
k , J IR,OR

k , J IR,B
k , and

JOR,B
k has been taken to estimate the Fisher’s Discriminant

Power (FDP) Fk of a specific feature tk [20]:

Fk = JN ,IR
k + JN ,OR

k + JN ,B
k + J IR,OR

k + J IR,B
k + JOR,B

k , (13)

where F is a vector of FDPs.
The features with higher values of the FDPs form sen-

sitive inputs to the ANN/SVM classifiers. The FDPs com-
puted for all the 30 features have been arranged in a
descending order, resulting in a vector F∗. In this paper a new
method of selecting the number of sensitive features based
on a threshold value θ has been proposed. The expression to
compute θ is given in (14):

θ ≈
∑s

k=1 F
∗
k

∑ f
k=1 Fk

, (14)
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Table 2: Energy, SNR, and RMSE of synthetic signal, corrupted
signal, and denoised signals.

Signal type Energy SNR RMSE

Synthetic signal 41.895919 — —

Corrupted signal 510.773031 0.793049 0.264839

Signal denoised by s1 40.005523 0.824919 0.264418

Signal denoised by s2 40.005523 0.824919 0.264418

Signal denoised by s3 48.305217 1.539327 0.255139

Signal denoised by s4 40.005523 0.824919 0.264418

Signal denoised by s5 44.967623 0.930983 0.263019

Signal denoised by s6 44.136735 0.930165 0.263030

Signal denoised by s7 75.604166 4.712617 0.217706

where f is the total number of features extracted (30 in
this work) and s is the number of selected features such
that the sum of the s largest FDPs divided by the sum
of all the FDPs is approximately equal to θ. In this work,
a threshold value of θ = 0.85 was chosen. Table 4 shows
the FDPs for signals denoised by seven schemes. It can be
seen that different denoising schemes have selected different
numbers of features (s) based on the threshold value of θ =

0.85.

7. Performance of the Denoising
Schemes Based on the ANN/SVM

In order to evaluate the performance of the different
denoising schemes, the ANN/SVM classifiers were trained
and tested using two types of inputs based on the features
extracted from the denoised signals, namely, (i) the use of
all the 30 features as inputs and (ii) the use of the features
selected by the FC as inputs. A binary scheme of classification
was used to define the bearing condition at the output of

both the ANN and the SVM, namely, N (1 0 0 0), IR (0 1
0 0), B (0 0 1 0), and OR defect (0 0 0 1) to denote the four-
class condition of the bearings.

7.1. ANN Classifier. The ANN adopted here was the Multi-
layer Perceptron Neural Network (MLPNN) which uses back
propagation algorithm for training. Only one hidden layer
with different numbers of neurons in hidden layer, nh = 5, 10,
15, 20, 25 and 30 were used. The sigmoid activation function
is used in the hidden and the output layer. A mean square
error of 10−6, a minimum gradient of 10−10, and maximum
number of epochs of 500 are used. The training process
would stop if any one of these conditions were met. The
initial weights and biases of the network were fixed randomly.
The MLPNN was implemented by using the MATLAB
Neural Network Toolbox. Figure 7 shows the structure of the
MLPNN used, where x1, x2, . . . xn are the inputs (features), nh
are the number of nodes in the hidden layer, and w ji and wo j

are the connection weights between the input-hidden layers
and the hidden-output layers, respectively.

The performance of the MLPNN classifier for the two
types of inputs (all the features and the features selected
by FC) extracted from the denoised signals is shown in
Table 5. It is clear from the table that, for signals denoised
using scheme s7, the accuracies on training and test data
were higher compared to other schemes. The accuracies for
different numbers of neurons in the hidden layer, nh = 15, 20,
25, and 30 were comparatively lower and therefore have not
been reported in the table.

7.2. SVM Classifier. The SVM classifier used in this work was
based on the customized MATLAB tool box provided in [27].
In this work, the SVM was trained and tested for different
values of the regularization parameter γ and the kernel width
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Table 3: Time and frequency domain features extracted for the
study.

Sl. number Feature

(1) T1 = n−1
n
∑

i=1
xi

(2) T2 =
[

n−1
n
∑

i=1
x2
i

]1/2

(3) T3 =
[

(n− 1)−1
n
∑

i=1
(xi − T1)2

]1/2

(4) T4 =
1

2
[Max(xi)−Min(xi)]

(5) T5 =
(

n−1
n
∑

i=1

√

|xi|
)2

(6) T6 = n−1
n
∑

i=1
|xi|

(7) T7 = (n− 1)−1
n
∑

i=1

(

xi − T1

T3

)3

(8) T8 = (n− 1)−1
n
∑

i=1

(

xi − T1

T3

)4

(9) T9 =
T4

T2

(10) T10 =
T4

T5

(11) T11 =
T2

T6

(12) T12 =
T4

T6

(13) T13 =
T3

T6

(14) T14 =
[

log(T3)
]−1

n
∑

i=1
log(|xi| + 1)

(15) T15 =
√

T5

T3

(16) T16 = −
n
∑

i=1
log

{

[

T3

√
2π
]−1

exp

[

−(xi − T1)2

2T2
3

]}

(17)

T17 = −
n
∑

i=1
log

⎡

⎣βη−β|xi|β−1 exp

{

|xi|
η

}β
⎤

⎦,

where β is the shape factor and η is the scale factor

(18) F1 = N−1
N
∑

k=1
S(k)

(19) F2 = (N − 1)−1
N
∑

k=1

[S(k)− F1]2

(20) F3 = N−1F−1.5
2

N
∑

k=1

[S(k)− F1]3

Table 3: Continued.

Sl. number Feature

(21) F4 = N−1F−2
2

N
∑

k=1

[S(k)− F1]4

(22) F5 =
[

N
∑

k=1
fkS(k)

][

N
∑

k=1
S(k)

]−1

(23) F6 =
{

N−1
N
∑

k=1

[

fk − F5

]2
S(k)

}1/2

(24) F7 =

⎧

⎨

⎩

[

N
∑

k=1
f 2
k S(k)

][

N
∑

k=1
S(k)

]−1
⎫

⎬

⎭

1/2

(25) F8 =

⎧

⎨

⎩

[

N
∑

k=1
f 4
k S(k)

][

N
∑

k=1
f 2
k S(k)

]−1
⎫

⎬

⎭

1/2

(26) F9 =
[

N
∑

k=1
f 2
k S(k)

]{

N
∑

k=1
S(k)

N
∑

k=1
f 4
k S(k)

}−1/2

(27) F10 =
F6

F5

(28) F11 = N−1F−3
6

N
∑

k=1

(

fk − F5

)3
S(k)

(29) F12 = N−1F−4
6

N
∑

k=1

(

fk − F5

)4
S(k)

(30) F13 = N−1F−0.5
6

N
∑

k=1

(

fk − F5

)1/2
S(k)

∗
Features 1 to 17 (T1 to T17) are statistical features extracted from data in

time domain and 18 to 30 (F1 to F13) are features extracted from data in the
frequency domain. n is the number of data points in the time domain signal,
xi is the acceleration amplitude of ith data point in the time domain signal,
N is the number of lines in the frequency spectrum, S(k) is the amplitude of
the kth line in the frequency spectrum, fk is the frequency value of the kth
line in the frequency spectrum [18, 19].

σ2. Parameter γ was varied from 6 to 10 in steps of 1 and σ2

was varied from 3 to 4 in steps of 0.25.
The performance of the SVM classifier for the two types

of inputs (all the features and the features selected by the FC)
extracted from the denoised signals is shown in Table 6. It is
clear from the table that, for signals denoised using scheme
s7, the accuracies on the training and the test data were
higher compared to the other schemes. The accuracies for
the other values of γ and σ2 were comparatively lower and
are therefore not reported in the table.

8. Discussion

The focus of this work is to evaluate seven different wavelet
based denoising schemes. In order to ascertain the effective-
ness of the schemes, a corrupted synthetic signal simulating
the real-time bearing vibration signal is used. By observation
and also based on the SNR and RMSE, scheme s7 is found
to be the most effective in denoising the corrupted signal.
In order to evaluate its performance on a real-time bearing
vibration signal, signals collected from bearings under four
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Table 4: FDP and selected features by FC.

FDPs arranged in a descending order for signals denoised by seven schemes

s1 s2 s3 s4 s5 s6 s7

s = 5 s = 5 s = 6 s = 6 s = 4 s = 4 s = 9

# F∗ # F∗ # F∗ # F∗ # F∗ # F∗ # F∗

1 419.43 1 419.43 1 419.43 1 419.43 1 419.43 1 419.43 1 419.43

17 11.13 17 11.13 17 11.17 17 11.13 17 11.12 17 11.12 17 11.12

21 7.36 21 7.36 21 7.38 21 7.36 21 7.36 21 7.37 26 8.56

5 7.21 5 7.21 5 7.25 5 7.21 5 7.22 5 7.22 24 8.15

20 7.11 20 7.11 20 7.21 20 7.11 21 7.31

6 6.33 6 6.31 5 7.16

20 7.04

22 6.94

6 6.29
k=s
∑

k=1
F∗k 452.24 452.24 458.77 458.55 445.13 445.14 482

k= f
∑

k=1
Fk 533.87 533.87 531.85 533.87 519.46 520.73 565.51

θ 0.85 0.85 0.86 0.86 0.86 0.85 0.85

Table 5: Performance of the MLPNN classifier.

Scheme Number of neurons in hidden layer

All the 30 features as input Features selected by FC as inputs

Epochs
Training accuracy

(%)
Test accuracy

(%)
Epochs

Training accuracy
(%)

Test accuracy
(%)

s1
5 30 100 95.67 82 100.00 88.75

10 35 100 92.67 78 100.00 89.75

s2
5 36 100 93.67 200 98.83 92.25

10 47 100 94.67 63 100.00 89.25

s3
5 41 100 94.33 38 100.00 95.25

10 61 100 90.33 163 100.00 90.50

s4
5 15 100 96.00 153 99.92 91.75

10 42 100 94.00 102 100.00 86.50

s5
5 61 100 93.67 157 99.92 92.50

10 182 100 86.00 92 100.00 88.00

s6
5 207 99.11 90.00 152 99.92 92.25

10 80 100 87.33 143 100.00 89.25

s7
5 22 100 97.67 18 100.00 95.50

10 52 100 92.33 124 100.00 91.25

Table 6: Performance of SVM classifier.

Scheme
All the 30 features as input Features selected by FC as inputs

γ σ2 Training accuracy
(%)

Test accuracy
(%)

γ σ2 Training accuracy
(%)

Test accuracy
(%)

s1 6 3.5 68.67 58.00 6 3 68.67 57.00

s2 6 3.5 68.67 58.00 6 3 68.67 57.00

s3 6 3.75 78.33 67.00 6 3 75.00 63.00

s4 6 3.5 68.67 58.00 6 3 68.67 57.00

s5 6 3.0 67.67 57.00 9 3 71.67 64.00

s6 6 3.0 67.67 57.00 10 3 71.67 64.00

s7 7 3.5 86.00 80.00 8 3 85.33 84.00
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Table 7: The effectiveness of the denoising scheme s7 using the
ANN and the SVM.

All feature set Reduced feature set

Training
accuracy

(%)

Test
accuracy

(%)

Training
accuracy

(%)

Test
accuracy

(%)

ANN 100.00 97.67 100.00 95.50

SVM 86.00 80.00 85.33 84.00

conditions and single load and two speeds were subjected
to the same denoising schemes. The denoised signals were
used for extracting the features in the time domain and the
frequency domain. The features extracted were subjected to
dimensionality reduction using the FC. Both the reduced
feature set selected by the FC and the complete feature set
were used as inputs to the ANN and the SVM classifiers
for comparing the performance of the different denoising
schemes. Table 7 shows the performance of the ANN and
the SVM classifier for the denoised vibration signal using
the s7 scheme. It is clear from the table that the denoising
scheme s7 resulted in more than 95% accuracy on the test
data using the ANN and more than 80% accuracy on the test
data using the SVM. Also for s7 scheme, the reduced feature
set obtained using FC resulted in a higher performance in
terms of the test data accuracy and the number of epochs
when compared to the use of all the features. The proposed
method of selecting the number of sensitive features from the
vibration data obtained using different denoising schemes
based on a threshold θ has been successful. Therefore, the
DRT like the FC can be effectively used in improving the
performance of the ANN and the SVM classifiers. Hence s7
scheme is found to be effective in denoising the real-time
vibration signals, when compared to the other denoising
schemes.

9. Conclusions

This paper presents the evaluation of the effectiveness of the
wavelet based denoising schemes using the ANN and the
SVM classifiers applied to the bearing condition classification
problem. Seven different denoising schemes selected from
an extensive literature survey were used for denoising a
synthetic corrupted signal resembling a bearing vibration
signal. Based on the SNR and the RMSE, the best denoising
scheme was selected. This scheme has been applied, along
with the other schemes for denoising the real-time vibration
signals collected from an REB test rig for four different
bearing conditions, one load and two speeds. The features
extracted from the denoised signal in the time domain
and the frequency domain have been used as inputs to
the ANN and the SVM classifiers. In order to reduce the
dimension of the feature set, FC is used and the reduced
feature set is also used as inputs to the ANN and the SVM.
The proposed method of selecting the reduced number of
features based on the threshold θ is found to be effective.
It is found that the best denoising scheme selected based
on the synthetic signal performed better (in terms of the

classification accuracies and the number of epochs) with the
feature set extracted from bearing vibration signals, when
compared to the other denoising schemes. Hence, it can be
concluded that s7 scheme can be effectively used to denoise
the bearing vibration signals for an efficient classification of
its condition.
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