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ABSTRACT Fusarium head blight (FHB) is one of the most important diseases in wheat worldwide.

Evaluation and identification of effective fungicides are essential for control of FHB. However, traditional

methods based on the manual disease severity assessment to evaluate the efficacy of fungicides are

time-consuming and laborsome. In this study, we developed a new method to rapidly assess the severity

of FHB and evaluate the efficacy of fungicide application programs. Enhanced red-green-green (RGG)

images were processed from acquired raw red-green-blue (RGB) images of wheat ear samples; the images

were transformed in color spaces through K-means clustering for rough segmentation of wheat ears; a

random forest classifier was used with features of color, texture, geometry and vegetation index for fine

segmentation of disease spots in wheat ears; a newly proposed width mutation counting algorithm was used

to count wheat ears; and the disease severity of the wheat ears groups was graded and the efficacy of six

fungicides was evaluated. The results show that the segmentation algorithm could segment wheat ears from

a complex field background. And the counting algorithm could effectively solve the problem of wheat ear

adhesion and occlusion. The average counting accuracy of all and diseased wheat ears were 93.00% and

92.64%, respectively, with the coefficients of determination (R2) of 0.90 and 0.98, and the root mean square

error (RMSE) of 10.56 and 7.52, respectively. The new method could accurately assess the diseased levels

of wheat eat groups infected by FHB and determine the efficacy of the six fungicides evaluated. The results

demonstrate a potential of using digital imaging technology to evaluate and identify effective fungicides for

control of the FHB disease in wheat and other crop diseases.

INDEX TERMS Fusarium head blight, K-means clustering, random forest, width mutation counting

algorithm, fungicide spraying.

I. INTRODUCTION

Wheat is one of the world’s major food crops, providing

essential nutrients for human life [1]. Its adequate supply is

essential to ensure global food security [2], [3]. Fusarium

head blight (FHB), caused by Fusarium graminearum, is a

devasting disease in wheat that occurs worldwide [4], [5].

FHB can cause metamorphism of the whole wheat grains [6]

The associate editor coordinating the review of this manuscript and

approving it for publication was Yakoub Bazi .

and reduce yield and quality of wheat. The fungus also

produces deoxynivalenol (DON), a toxin that can cause

poisoning to humans and animals [7]. Therefore, it is very

important to develop effective strategies to monitor the

development of FHB and control of the disease. At present,

control of FHB is still primarily through the use of

chemical fungicides [8]. Therefore, evaluating the efficacy of

fungicides is the first essential step in developing effective

fungicide application programs that can control the FHB

disease.
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There are two important steps in assessing the FHB disease

by using digital images: image segmentation for wheat ears

and wheat ear counting [9]–[11]. Through literature research

it was found that image processing alone and its integration

with machine learning are commonly used to achieve the

two steps [12]–[14]. For example, Fernandez-Gallego et al.

used image filtering technique to complete wheat ear

image segmentation and wheat ear counting [15]. Their

counting accuracy was higher than 90%. Cointault et al.

used image textural features to detect wheat ears, and the

average counting error was 6% [16]. Liu et al. used the

color and textural features of images to segment wheat

ears. Then they counted wheat ears by extracting wheat

ear skeleton, and the counting accuracy was 95.77% [17].

Fan et al. extracted the color and textural features of wheat

ears and used support vector machine (SVM) classifiers to

segment wheat ears. The average counting accuracy was

93.1% [18]. Zhao et al. used color features and Adaboost

algorithm to detect wheat ears, and the counting accuracy

was about 88.7% [19]. Liu et al. used the improved K-means

algorithm to count wheat ears and the counting accuracy

was 94.69% [20]. Zhou et al. used multi-sensor fusion and

an improved maximum entropy segmentation algorithm to

achieve great results of segmentation and counting of wheat

ears [21]. The multi-sensor images, however, were difficult

to obtain.

In recent years, deep learning method has been introduced

into object segmentation and object counting [22], [23].

Compared to conventional algorithms of machine learning,

although the accuracy of deep learning is normally high,

it needs many more samples and much more time for

model training [24]–[29]. In addition, data annotation is

a time-consuming and laborious task during the process

of preparing data set [25]. For example, Zhang et al.

designed a wheat ears detection and counting system

based on convolutional neural networks (CNNs) [26]. And

the overall recognition rate was as high as 99.6% with

39,338 images [26]. Sadeghi-Tehran et al. used simple linear

iterative clustering and deep CNNs to segment wheat ears

from original images in a field background [27]. And the

coefficient of determination (R2) between prediction number

and true number reached 0.94 with 24,938 wheat ears and

30,639 manually annotated backgrounds [27]. Michael et al.

used a CNN to recognize wheat spikes and the accuracy

was 95.91%. However, the time taken to complete each

training was approximately 3 hours [28]. Wang et al.

used full convolutional network (FCN) and Harris corner

detection method [29] to segment and count wheat ears,

respectively [30]. The segmentation model was trained by

4,550 training images and 1,950 verification images. The

training time was over 10 hours [30].

So far, image processing has been developed and used

to detect the disease infection of wheat ears or wheat

ear counting [9]–[28], [30]–[33]. However, in the previous

research only the severity of a single diseased wheat ear

was studied by image processing technology [34], but not

on counting the number of diseased wheat ears in a wheat

ear group. Also, there still lacks an effective method that

can determine the severity of diseased wheat ear groups.

In addition, all the previous studies, evaluating the effects of

fungicide applications on the control wheat FHB [35], [36],

employ a manual assessment method by counting the number

of wheat ears affected to determine the efficacy of fungicide

application programs [37]. Such traditional disease severity

assessment method is laborious and time-consuming.

To overcome these disadvantages, we used machine

learning techniques from artificial intelligence, with the

objectives of 1) proposing to combine K-means clustering

algorithm and random forest classifier to segment wheat ears

and FHB diseased areas fromwheat images; 2) proposing and

developing a width mutation counting algorithm to count the

number of all wheat ears and the wheat ears diseased; and

3) rating the severity of FHB onwheat ear groups. The goal of

this study was to develop a digital imaging method that could

evaluate the control effects of common fungicides based on

the severity of wheat ear groups under the field conditions.

This paper is outlined as follows: Section II describes

the experimental site and the images acquired. Section III

describes the methods of segmenting wheat ears and counting

wheat ears. Section IV presents the experimental results for

segmenting and counting wheat ears. Section V discusses

the effectiveness of proposed methods. Finally, Section VI

provides the conclusion of this study.

II. EXPERIMENTAL DATA AND INFORMATION

A. EXPERIMENTAL SITE

The experimental site was located in Anhui Academy of

Agricultural Sciences, Hefei, Anhui, China (31◦89’47.76’’

latitude North, 117◦25’23.17’’ longitude East). Figure 1

shows the layout of the experimental site and design.

The size of each small experimental area was 1.5 m ×

1.5 m. Figure 1(b) shows 24 study groups sprayed by six

different fungicides (corresponding to the 6 different colors

in Figure 1(b)). Control group A contained three healthy

FIGURE 1. Experimental site layout and experimental design: (a)
experimental site, (b) wheat ear groups sprayed by different fungicides,
(c) control groups.
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wheat ear groups. Control group B contained three wheat ear

groups which were inoculated with Fusarium graminearum

spore and sprayed with fungicides. A wheat ear group

was selected in each color coded plot randomly. As shown

in Figure 1(c), two wheat ear groups were selected for

contrast at the areas of A1 and B1. Six wheat ear groups

sprayed by six fungicides were selected for analysis at areas

of G1, H1, J1, K1, L1 and M1. The six fungicides for the

selected groups were commonly used in China [38]. The six

study groups were sprayed with: 1) 50% Prochloraz [39]

water emulsion (375mL/hm2, 25µL), 2) 80% Tebucona-

zole [40] aqueous suspension concentrate (195mL/hm2,

13µL), 3) 25% Pyraclostrobin [41] emulsifiable concentrate

(300mL/hm2, 20µL), 4) 50% JS399-19 [42] aqueous sus-

pension concentrate (750mL/hm2, 50µL), 5) 50% Carben-

dazim [43] wettable powders (750g/hm2, 50mg), and 6) 30%

Prothioconazole [44] dispersed oil suspension concentrate

(360mL/hm2, 24µL), respectively. Control group A was

sprayed by water (600L/hm2, 25ml). Control group B was

sprayed by water (600L/hm2, 25mL) after being inoculated

the F. graminearum spore. The concentration of the spore

for inoculation was 105/mL. The volumes of F. graminearum

inoculation and fungicide application were all 25 mL in per

wheat ear group of Figure 1(b).

All fungicide applications were made as standard recom-

mendations [45], which met the national standard ‘‘NY/T

1464.15-2007 Guidelines on efficacy evaluation of pesti-

cides Part 15: Fungicides against fusarium head blight of

wheat’’ [46]. Readers can find the information of six fungi-

cides retrieved from http://www.chinapesticide.org.cn/. The

wheat cultivar used for the experiment was ‘‘Huai-Mai-35’’.

The trial was planted onOctober 15,2018. The pathogen inoc-

ulation was made at the flowering stage on April 17, 2019.

Fungicide applications were conducted on April 18, 2019.

Fertilization and irrigation for the study followed local

recommendations.

In Figure 2, there were four close-up instances of wheat

ears. The color of wheat ears could become yellow or pink

gradually when affected by FHB.

B. IMAGE COLLECTION

A Nikon D3200 digital camera was used to collect wheat

images. With this camera each image had a size of 6,016 ×

4,000 pixels. The viewing angle of photographing was 45◦.

The distance between the camera and the wheat ears was

around 1.2 m. The aperture was f/3.5. The exposure time

was 1/800s. The field of view was 0.8 m×0.8 m. The spatial

resolution was 300 dpi×300 dpi. To avoid the interference

from the background, such as wheat stalks, bare soil, weeds

and light exposure, a non-reflective black fabric was used

behind the wheat as image background. The black fabric also

prevented the irrelevant wheat ears from being captured by

the camera when photographing a wheat ear group. It also

provided a unified background environment for further study

based on hyperspectral images (it is necessary to provide a

non-reflective black fabric to prevent over light exposure of

FIGURE 2. Close-up instances of wheat ears: (a) wheat ear group,
(b) healthy wheat ear, (c) half healthy and half sill wheat ear, (d) sill
wheat ear.

the background when acquiring hyperspectral images) and

experimental reproduction.

High-resolution digital images were collected during the

filling stage of wheat. The images were collected from 9 a.m.

to 3 p.m. on May 9, 2019. The weather of the day was

sunny and windless. Choosing this time window was for

the purpose of avoiding possible image inconsistency due

to varying sun light and weather conditions. The reasons of

choosing this plant growth stage to carry out the experiment

were as follows: 1) wheat was just onset during the flowering

stage and it was at the early stage of infection. There were

not enough diseased wheat ears to show the disease level

then. 2) The initial filling stage of wheat is an important

window for secondary spraying. If the severity of disease

can be accurately identified and diagnosed, it will be helpful

to formulate effective control schemes and spray amount

quantitatively, which may help reduce the amount of spraying

pesticides to protect the environment. 3) When the wheat ears

ripen, the color of diseased and healthy wheat ears are both

yellow. It is difficult to distinguish them at that stage.

For each wheat ear group, four images were taken from

four azimuths, which is shown by the numbers and arrows in

the upper of Figure 1 (b). The four images from each wheat

ear group were named as N_1, N_2, N_3, and N_4, where N

represents the name of each wheat ear group.

III. METHODS

Figure 3 shows the flow chart of the relationship between

the methods proposed and developed in this research,

which included four parts: image transformation, image

segmentation, wheat ear counting and spray application

evaluation. The details of these methods were described in

Section III-A to Section III-E.

A. IMAGE PREPROCESSING AND TRANSFORM

Image preprocessing included: 1) cropping the images of

each wheat ear group entirely with a rectangular frame

109878 VOLUME 8, 2020
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FIGURE 3. The flow chart of proposed and developed methods in this
research.

to remove redundant background artifacts; 2) in order to

improve the efficiency of the algorithm, resampling the size

of each image uniformly to 2,000 × 2,000 pixels.

Image transform from a red-green-blue (RGB) image into

a red-green-green (RGG) one was done by replacing the blue

component in the RGB image with its green component after

image enhancement. The image transform was for enlarging

the gray-level value difference of wheat ear regions between

RGB images and RGG images (Figure 11).

B. ROUGH SEGMENTATION ALGORITHM

FIGURE 4. The flow chart of rough segmentation algorithm.

Figure 4 shows the process of rough segmentation.

In this experiment, it was found that RGB images and

RGG images had different colors in the regions of wheat

ears after converting them to hue-saturation-intensity (HSI)

color space and hue-saturation-value (HSV) color space,

respectively. Therefore, firstly RGB images and RGG images

were converted to HSI color space and HSV color space,

respectively. Since the color gamut in lightness-a-b (Lab)

color space is wider, it is beneficial for clustering. Therefore,

all of the images were converted to Lab color space then.

Figure 5 shows the clustering results for images that were

converted or not converted to the Lab color space. Red circles

in Figure 5(b) represent some regions having unsatisfactory

clustering effect.

K-means algorithm is a common clustering algorithm and

it divides the similar data points by presetting K value and the

initial clustering center of each category [20]. The optimal

clustering results are obtained by iterative optimization of

the average distance between the divided cluster center and

other points in the cluster [20]. According to the number of

categories of main objects in each image and actual clustering

result, K value was set as 4; The initial clustering center of

each category was randomly sampled; The distance metric

was set asManhattan distancewhich represents the sum of the

absolute wheelbase of two points on the standard coordinate

system [47]. Three grayscale images of each image were

respectively converted into one-dimensional column vectors,

FIGURE 5. Comparison of clustering effect of a wheat ear group: (a)
converted to Lab color space, (b) not converted to Lab color space.

and then merged them into a two-dimensional matrix. The

two-dimensional matrix is the input variable of K-means

algorithm.

Morphological operations of dilatation (structuring ele-

ment: ‘square’, 2 × 2 pixels), deleting small area objects

(threshold = 200, eight neighborhoods) and hole filling were

used in the rough segmentation algorithm.

C. FINE SEGMENTATION ALGORITHM

After rough segmentation, most of leaves, stalks and wheat

awnswere removed. But still a part of leaves, stalks andwheat

awns remained to be removed, which is the fine segmentation

for.

For fine segmentation the random forest classifier and

sliding window method were used to segment the rough

images and diseased spots.

Random forest is an integrated algorithm that is built

by a decision forest based on a decision tree learner [48].

Based on the training set resampling and voting mechanism,

random attribute selection is introduced in the training

process of random forest classifier [49]. Random forest has

better generalization than a single decision tree classier and

overcomes the shortcoming that the decision tree is easy to

be over-fitting [50]. In view of the excellent classification

and generalization ability, the random forest classifier was

selected for fine segmentation of wheat ears and extraction

of diseased spots in this research. The CART (classification

and regression tree) decision algorithm was adopted in

this paper. Twenty trees were set in the random forest

classifier. Bootstrap aggregates for an ensemble of decision

trees. TreeBagger (a function in MATLAB 2016a) bags an

ensemble of decision trees for classification.

Morphological operations of dilatation (structuring ele-

ment: ‘square’, 3 × 3 pixels), deleting small area objects

(threshold = 200, eight neighborhoods) and hole filling were

used in the fine segmentation algorithm.

1) TRAINING SAMPLES & SLIDING WINDOW SIZE

In training set, the numbers of wheat ear images and back-

ground images were 10 and 15, respectively. The background

images included leaves, stalks, bare soils, lodging straws and

wheat awns. Figure 6 is the examples of training set.
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FIGURE 6. Examples of training set: (a) healthy wheat ear, (b) diseased
wheat ear, (c) stalks, (d) leaves, (e) bare soils & lodging straws, (f) wheat
awns.

If the sliding window is too large, the segmentation

will perform poor; If the sliding window is too small,

the training time will increase. According to the actual

segmentation performance (see the part C of Section V),

a 8 × 8-pixel window was determined to slide over the

images of training set with a step of 8 pixels to obtain a

total of 25,094 sub-images so that the training time was

approximately 17 minutes.

2) FEATURE SELECTION

Eighteen features were selected from sample color, texture,

and geometry, and vegetation index from images in the

experiment.

a: COLOR FEATURES

Choosing six grayscale images extracted from the inputting

image in RGB color space and Lab color space. Then, in order

to enhance the difference between wheat ear regions and

non-wheat ear regions, image 2D convolution operation was

performed. The size of convolution kernel was 2 × 2 pixels.

Figure 7 is the process of color feature extraction for image

fine segmentation with random forest classifier.

FIGURE 7. Process of extracting color features.

b: TEXTURE FEATURES

Choose four texture features generated by gray-level

co-occurrence matrix (GLCM) [51]:

Contrast =
∑

i,j

(i− j)2 pij (1)

Homogeneity =
∑

i,j

pij

/⌊

1 + (i− j)2
⌋

(2)

Energy =
∑

i,j

(

pij
)2

(3)

Correlation =





∑

i,j

(i− µx)
(

j− µy

)

pij





/

(

σxσy
)

(4)

where i is row, j is column, pij is the value of image in i row

and j column, µx(µy) is the mean of each image, σx(σy) is

standard deviation of each image.

The offset distance and angle of GLCMwere set as 1 pixel

and (−90◦,0◦,90◦,180◦), respectively. Other parameters were

set as default.

c: VEGETATION INDEX FEATURES

It was found that the effect of image fine segmentation

by combining normalized green-red difference vegetation

index (NGRDI) and normalized green-blue difference vege-

tation index (NGBDI) is interesting to investigate. Therefore,

a new vegetation index is proposed to integrate NGRDI

and NGBDI into the normalized green-red-blue difference

vegetation index (NGRBDI) as follows:

NGRBDI = (g− b) / (g+ b) − α (g− r) / (g+ r) (5)

where r=R/(R+G+B), g=G/(R+G+B), b=B/(R+G+B);

R, G and B are the pixel values of three bands of the original

image, respectively; ‘‘α’’ is an enhancement factor. In this

experiment, the value of α was set as 2.

d: SHAPE INVARIANT MOMENT FEATURES

Hu [52] used central moment to construct seven invariant

moments which can describe the region shape. These

invariant moments have the characteristics of translation,

scale, and rotation invariance. Therefore, invariant moments

have become important regional feature sets and are widely

used in the field of image detection [53], [54].

D. METHODS OF WHEAT EAR COUNTING

When photographing with an angle of inclination and a close

distance, there were some sudden width changes happened in

the heads, tails and mutual adhesions of connected domains

of wheat ears. As shown in Figure 8, the reason why the

width of wheat changed is that each wheat ear has a different

angle and a jagged shape characteristic. In this paper, we only

considered the case where the widths of connected domains

of wheat ears were suddenly reduced or increased by more

than 50% (see the width change of the red and blue lines in

each green frame shown in Figure 8).

FIGURE 8. The width changes of wheat ears.
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This phenomenon can be used to count wheat ears. And

according to the place of width mutation, the problem of

counting wheat ears with mutual occlusion can be resolved.

The details are as follows:

1) METHOD OF COUNTING ALL WHEAT EARS

In this method, calculating the rate of width change between

rows by scanning each connected domain row by row. Then

finding the width mutation points by the rate of width change.

At last, the number of wheat ears is calculated by the width

mutation points. The pseudo-code of the width mutation

algorithm is as follows:

The Pseudo-Code of the Width Mutation Algorithm

(i) Dividing connected domains of wheat ears. Acquiring

the coordinates ([xmin,ymin], [xmax,ymax]) in the top left

corner and lower right corner of each connected domain,

respectively. Calculating the height (H), width (W) and

inclination angle (A0) of each connected domain. Calculating

the average height (H0) of wheat ears in each image. The

number of wheat ears (Count_A) is initially set as 0.

(ii) Three cases are divided: H6H0, H0<H62H0, 2H0<H.

The three cases have different threshold parameters: thresh-

old_k, threshold_rate and threshold_width, which are (0.5,

0.5, W), (0.5, 0.4, W), (0.3, 0.3, W/2), respectively. The

value of threshold_k and threshold_rate ranges from 0.3 to

0.5. According to the actual samples, the parameters can

be adjusted. The second and third cases are for solving the

problem of mutual occlusion.

(iii) In the third case, longitudinal division is performed at

intervals of 2H0 at first. In the second and third cases, each

connected domain is rotated to horizontal direction according

to A0.

(iv) Scanning each connected domain row by row and

calculate the rate of width change between row i and row i+1.

(v) if rate>threshold_rate, marking the rightmost points of

row i and row i+1.

(vi)Marking the points ([xmin,ymin], [xmax,ymax]). Removing

the marked points that are too close to each other when the

distance between them is less than 48.5 pixels.

(vii) Connecting all marked points to calculate

slope-difference K between two neighboring lines.

If K>threshold_k, Count_A plus one.

(viii) If there are only two marked points of each connected

domain, Count_A plus one.

(ix) If H<H0/3 and W<threshold_weight, Count_A minus

one.

(x) Outputting the number of wheat ears.

Figure 9 is the examples of the width mutation points and

connection lines marked by the red circles and red lines,

respectively. According to the above algorithm, when the

slope-difference between two neighboring lines in Figure 9 is

greater than the threshold_k, the number of wheat ears plus

one. That is, the number of corners of lines (see the blue

FIGURE 9. Width mutation points and lines.

arcs in Figure 9) is equal to the number of wheat ears.

According to actual observation, there are always corners

between the mutual adhesions of wheat ears. Figure 9 shows

the width mutation algorithm can detect the corners of mutual

adhesions of wheat ears. So, the proposed counting method

can solve the problem of mutual occlusion of wheat ears.

2) METHOD OF COUNTING DISEASED WHEAT EARS

In this method, the regions of diseased spots need to be

counted according to the connected domain. The pseudo-code

is as follows:

The Pseudo-Code of Counting Diseased Wheat Ears

(i) Dividing connected domains of diseased spots.

(ii) Filtering out noise points with small area.

(iii) Calculating the average area (Area_A) of per connected

domain.

(iv) The number of connected domains (Count_B) is initially

set as 0. If the area of each connected domain is over than

Area_A, the Count_B plus one.

(v)Outputting the number of diseased wheat ears (Count_B).

E. CRITERIA FOR EVALUATION ALGORITHM AND

STANDARDS FOR FHB

According to national standard ‘‘GB/T 15796-2011 Rules

for monitoring and forecast of the wheat head light’’ [55],

the details of this standard are as follows:

1) SEVERITY OF SINGLE WHEAT EAR

The severity of individual wheat ears is catgorized into five

levels (Table 1):

TABLE 1. Standard for evaluating severity of single wheat ear.

The levels of diseased wheat ears measured in this

experiment were greater than level 0.
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2) RATE OF DISEASED WHEAT EARS

Calculating the rate of diseased wheat ears according to

formula (6).

Y =
number of diseased wheat ears

number of all wheat ears
× 100% (6)

3) CRITERIA FOR EVALUATION ALGORITHM

Four metrics, Pixel Accuracy (PA), Precision, Recall and

F-measure, were used to evaluate segmentation qual-

ity [56]–[58]. PA and Precision represent the accuracy of

the segmentation algorithm in all samples and positive

samples, respectively. Recall represents the integrity of the

segmentation image [30]. F-measure was used to balance

Precision and Recall [30]. These metrics were calculated as

follows:

PA = (
TP+ TN

P+ N
) × 100% (7)

Precision = (
TP

TP+ FP
) × 100% (8)

Recall = (
TP

TP+ FN
) × 100% (9)

F − measure = (
2 × Precision× Recall

Precision+ Recall
) × 100% (10)

where TP represents the pixel area correctly predicted as

wheat ear; TN represents the pixel area correctly predicted

as background; FP is the pixel area predicted as wheat ear,

but actually these pixels belong to the background. FN is the

pixel area predicted as background, but actually these pixels

belong to wheat ears. P+ N represents the sum pixel area of

wheat ear and background in the manual field measurement.

The accuracy, R2 (r-squared) and RMSE were used to

evaluate the counting method [59]. The values of Accuracy

and R2 closer to 1 indicate better performance, as do smaller

RMSE values.

Accuracy =

(

1 −
|yi − xi|

yi

)

× 100% (11)

R2 = 1 −

N
∑

1

(yi − xi)
2

N
∑

1

(yi − ȳi)2

(12)

RMSE =

√

√

√

√

√

N
∑

1

(yi − xi)
2

N
(13)

where N is the number of test images, yi is the actual number

of wheat ears in image i, ȳi is the actual average number of

wheat ears per image, and xi is the predicted number of wheat

ears in image i.

IV. RESULTS

All data processing algorithms were programmed using

MATLAB2016a (MathWorks, Natick,Massachusetts, USA).

The hardware used for implementation of the algorithms was

a PC computer with Windows7/10 operating system, Intel(R)

Core i7-3770 CPU processor and 8GB of memory.

A. IMAGE TRANSFORMATION

Figure 10 (a)&(b) are the examples of original RGB images

and transformed RGG images, respectively. The result shows

that the color visualization of the RGG image was changed

compared with the original RGB image.

FIGURE 10. Comparison of image transformation: (a) a RGB image, (b) a
RGG image.

B. ROUGH SEGMENTATION

Figure 11(a)&(b) are the clustering results of the images

in Figure 10(a)&(b), respectively.

FIGURE 11. The clustering results of the RGB image and RGG image: (a)
the clustering result of the RGB image, (b) the clustering result of the RGG
image.

The colors of wheat ear regions were dark blue and

purplish red in Figure 11(a)&(b), respectively. But the

colors of leaves and stalks regions were purplish red

in Figure 11(a)&(b). That is, the gray-level value difference

of wheat ear regions between RGB images and RGG images

is big. In order to remove leaves and stalks and extract wheat

ears, the clustering result of the RGG image was subtracted

from the clustering result of the RGB image. Figure 12 is the

result of rough segmentation.

FIGURE 12. Result of rough segmentation.
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C. FINE SEGMENTATION

Figure 13(a) is the fine segmentation result of a wheat ear

group. After further fine segmentation, choosing regions of

healthy wheat ears and diseased wheat ears as training set

for segmenting diseased spots. Figure 13(b) is the result of

diseased spots segmented.

FIGURE 13. Final results of fine segmentation: (a) fine segmentation
result of wheat ear group, (b) segmentation result of diseased spots.

D. COMPARISON OF WHEAT EAR SEGMENTATION

PERFORMANCE

We compared the proposed segmentation method with three

other segmentation methods, the Otsu method [60], the

method of Liu et al. [17] and the method of Wang et al. [30],

for wheat ear segmentation. The Otsu method and the method

of Liu et al. are the traditional unsupervised segmentation

methods. The method of Wang et al. is based on deep

learning method of semantic segmentation (300 training

images,100 verification images, learning rate = 0.001, batch

size = 10, epochs = 30, and steps_per_epoch = 300).

Figure 14 shows the segmentation results of these methods.

As shown in Figure 14, red circles represent the seg-

mentation errors of each method, which indicate that the

segmentation errors of the proposed method were less than

other three methods. Many leaves, stalks and bare soils were

not removed by using Otsu method. Some leaves or stalks

were also not removed by using method of Liu et al. The

error of the method of Wang et al. might be related to the

neural network used, or the number of training data. To better

evaluate the segmentation results, PA, Precision, Recall and

F-measure were used to evaluate the segmentation effect of

different segmentation method in Figure 15.

As shown in Figure 15, each color column and black

line represent the mean and the standard deviation of four

evaluating indicators of 32 testing images, respectively. The

PA, Precision, Recall and F-measure of proposed method

were 0.865, 0.518, 0.512, 0.511, respectively. In addition

to the Recall indicator, the proposed method had a highest

mean value in the other three indicators. Compared with Otsu

method, there is more than a 17% improvement on average in

the PA, Precision and F-measure; Compared with method of

Liu et al., there is more than a 16% improvement on average

in Precision, Recall and F-measure; Compared with method

of Wang et al., there is more than a 2% and 7% improvement

on average in PA and Precision evaluation index, respectively.

In summary, the proposed segmentation method performs

FIGURE 14. Comparison of different segmentation methods: (a) original
image, (b) ground truth of original image, (c) segmentation result of
newly proposed segmentation method, (d) segmentation result of Otsu
method, (e) segmentation result of method of Liu et al., (f) segmentation
result of method of Wang et al.

FIGURE 15. Evaluation of segmentation effects of different methods.

better than other three methods for segmenting wheat ears

under the conditions of severe occlusion of wheat ears and

little training samples.

E. WHEAT EAR COUNTING AND CONTROL EFFECT

EVALUATION OF PESTICIDE SPRAYING

Counting wheat ears whose occlusion rate was lower than

50% by manual visual method in the original images.

For the reason of occlusion, the real numbers of wheat
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TABLE 2. Results of counting all wheat ears in each image.

TABLE 3. Results of counting diseased wheat ears in each image.

ears of each image pictured in different azimuth were

different. Table 2 and Table 3 shows the results of wheat ear

counting.

To evaluate the proposed counting method, we compared

the proposed counting method with the Harris corner

detection method which used by Liu et al. and Wang et al.

Table 2 shows that the highest accuracy of proposed counting

method was 98.39%, the lowest accuracy was 82.86%.

Table 3 shows that the highest accuracy of proposed counting

method was 100%, lowest accuracy was 80%. The difference

between the predicted value and the measured value of

proposed counting method was no more than 10. And the

counting accuracy of proposed counting method exceeded

that of the Harris corner detection method.
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FIGURE 16. Fitting between predicted value and measured value: (a) fitting result of all wheat ears, (b) fitting result of
diseased wheat ears.

In Figure 16(a), R2 of proposed counting method and Har-

ris corner detection method were 0.90 and 0.60, respectively.

RMSE were 10.56 and 51.26, respectively. In Figure 16(b),

R2 were 0.98 and 0.92, respectively; RMSE were 7.52 and

28.54, respectively. Figure 16 shows that the predicted value

of all wheat ears and diseased wheat ears were highly

correlated with the measured value of ones by proposed

counting method.

According to the standard in Section III-E, Table 4 shows

that: (1) the difference value between predicted average Y

and measured average Y was less than 4% in each wheat

ear group; (2) according to measured average Y and actual

disease index between B1 and other wheat ear groups, six

pesticides all had a control effect of FHB; (3) the higher rate

of diseased wheat ears, the worse control effect evaluation of

pesticide spraying was. According to the value of predicted

average Y, the relationship of selected wheat ear groups

was:B1>L1>G1>J1>H1>K1>M1>A1. That is, the pre-

dicted control efficacy of six fungicides was: Prothioconazole

> JS399-19 > Tebuconazole > Pyraclostrobin > Prochloraz

> Carbendazim.

According to manual statistics of plant protection experts

in Table 4, the actual disease index relationship of selected

wheat ear groups was: B1>L1>G1>J1>H1>K1>M1>A1.

Actual control effect relationship of the six fungicides is: Pro-

thioconazole > JS399-19 > Tebuconazole > Pyraclostrobin

> Prochloraz>Carbendazim. It means that the actual control

effect relationship of the six fungicides is consistent with the

relationship predicted by theproposed counting method.

V. DISCUSSION

A. COMPARISON OF THE SEGMENTATION

EFFECT OF NGRBDI

As shown in Figure 17, there are the segmentation results

of NGBDI, NGRBDI, NGRDI and VDVI (visible band

difference vegetation index). Comparing these red circles and

green circles, it is found that NGRBDI can better segment

wheat ears and remove leaves or stalks than other vegetation

indices.

To better evaluate the segmentation results, PA, Precision,

Recall and F-measure were used to evaluate the segmen-

tation effect of the proposed vegetation index. As shown
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TABLE 4. Control efficacy evaluation of fungicide spraying.

FIGURE 17. Segmentation results of different vegetation indices: (a)
NGBDI, (b) NGRBDI, (c) NGRDI, (d) VDVI.

in Figure 18, the proposed vegetation index had a highest

mean value in each evaluation indicator. And compared with

NGBDI, NGRDI and VDVI, NGRBDI was more than a 6%

improvement in each evaluation index. Therefore, the newly

proposed vegetation index (NGRBDI) is suitable for wheat

ears segmentation in this research.

B. THE VISUALLY COMPARISON BETWEEN THE

PROPOSED WIDTH MUTATION COUNTING METHOD

AND HARRIS CORNER DETECTION METHOD

Figure 19 visually shows the difference between the proposed

width mutation counting method and the Harris corner

FIGURE 18. Evaluation of the segmentation effects of different vegetation
indices.

detection method. As shown in Figure 19(a), three images

represent a single wheat ear, two adhered wheat ears and three

adhered wheat ears, respectively. As shown in Figure 19(b),

the red circles represent the width mutation points. The

number of blue arcs represents the number of wheat ears

predicted by proposed counting method. In Figure 19(c),

the blue points represent the Harris corner points of each

wheat-ear skeleton, which is done by scanning the binary

wheat-ear images. Because of the rough boundary of each

binary wheat-ear image, there are many corners of each

wheat-ear skeleton. Thus, the number of Harris corner

points increased so that the counting error greatly increased.
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FIGURE 19. Comparison of different counting methods: (a) wheat ears in
original images, (b) result of the proposed counting method, (c) result of
Harris corner.

The comparison with the Harris corner detection method

illustrates that the proposed countingmethod ismore accurate

when counting wheat ears and has better performance in

solving the mutual occasion problem of wheat ears.

C. ANALYSIS OF THE SIZE OF SLIDING WINDOW AND

IMAGE RESOLUTION

To study the impact of the size of the sliding window, we used

20 2,000 × 2.000 pixel images to analyze the change of the

segmentation accuracy. As shown in Figure 20, the mean

value of each indicator increased significantly when the size

FIGURE 20. Analysis of the size of the sliding window.

of the sliding window decreased from 14 × 14-pixel to

8 × 8-pixel. The mean value of each indicator changed a

little when the size of the sliding window decreased from

8× 8-pixel to 4× 4-pixel. In addition, the number of training

samples and training time increased when the size of the

sliding window decreased. The conclusion is that the size of

the sliding window is reasonable at 8 × 8-pixel.

We analyzed the segmentation results by different image

resolution. In order to eliminate the effect of sliding

window, the size of the sliding window was set as

8 × 8-pixel in each image resolution. As shown in Figure 21,

the mean value decreased when the resolution of each image

decreased from 1,500 × 1,500-pixel to 500 × 500-pixel in

Recall and F-measure. The mean value of each evaluation

indicator changed a little from 2,500 × 2,500-pixel to

1,500 × 1,500-pixel. However, the training time increased

when the image resolution increased. Therefore, the 2,000×

2,000-pixel was reasonably set in this experiment.

FIGURE 21. Analysis of the resolution of original images.

D. EFFECTS OF DIFFERENT BRIGHTNESS CONDITIONS

The formula used to calculate brightness of each original

image is as follow:

Brightness = 0.229 × r + 0.587 × g+ 0.114 × b (14)

where r, g and b are the mean of each band in RGB image.

Figure 22 shows the change of brightness in the 24 images.

The method of Zhou et al. [21] is sensitive to illumina-

tion. According to Figure 22, different images taken from

four azimuths have different average brightness. However,

the errors between the predicted value and the measured

value shown in Table 2 and Table 3 are not significant.

That means the proposed algorithm is robust to different

brightness conditions, and camera aperture is adjustable.

Therefore, the effect of illumination in this experiment is

small. However, in order to ensure the accuracy of wheat

ear counting and image segmentation, it is recommended to

collect image data in sunny and windless weather.
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FIGURE 22. Brightness of three wheat ear groups.

VI. CONCLUSION

In this paper, a proposed algorithm based on image

transformation and K-means clustering was used for rough

segmentation and combining random forest classifier for

fine segmentation. Selecting 18 features in the experiment

to improve the effect of fine segmentation and a new

vegetation index (NGRBDI) was created. Furthermore,

the widthmutation counting algorithms improved the average

counting accuracy of all wheat ears and diseased wheat

ears. Finally, the predicted relationship of control efficacy

evaluation of fungicides is completely consistent with the

actual control efficacy relationship rated by plant protection

specialists.

The results of this research show that the proposed

algorithm can correctly evaluate the efficacy of fungicides

for controlling the wheat FHB disease under the field

conditions. However, considering that effect of wheat ear

counting depends on accuracy of image segmentation, further

investigations are needed to verify whether the proposed

segmentation method is suitable under other more complex

field conditions. Further research is also needed to study the

effects of different application rates of fungicides on control

efficacy.
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