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Abstract—The rapid growing trend of mobile devices continues
to soar causing massive increase in cyber security threats.
Most pervasive threats include ransom-ware, banking malware,
premium SMS fraud. The solitary hackers use tailored techniques
to avoid detection by the traditional antivirus. The emerging need
is to detect these threats by any flow-based network solution.
Therefore, we propose and evaluate a network based model
which uses ensemble Machine Learning (ML) methods in order
to identify the mobile threats, by analyzing the network flows
of the malware communication. The ensemble ML methods not
only protect over-fitting of the model but also cope with the issues
related to the changing behavior of the attackers. The focus of this
study is on android based mobile malwares due to its popularity
among users. We have used ensemble methods to combine output
of 5 supervised ML algorithms such as RF, PART, JRIP, J.48 and
Ridor. Based on the evaluation results, the proposed model was
found efficient at detecting known and unknown threats with the
accuracy of 98.2%.

Index Terms—Intrusion Detection, Machine Learning, Ensem-
ble Methods, Supervised Machine Learning, Mobile Threats,
Anomaly Detection

I. INTRODUCTION

According to research by Sophos [1], by 2020 more than 6

billion users will be using mobile devices. Mobile devices are

rapidly overtaking personal computers from web surfing to

mobile banking, due to their portability and smart features.

Therefore, the potential usage has caught the attention of

cybercriminals who maximize their efforts to obtain user

information. Most of the users do not care about the security

measure of their devices and thus become the victim of these

threats. These applications could lead to several mobile threats,

such as theft of financial information, ransom-ware, misuse of

premium SMS and theft of personal information. A traditional

anti-virus can detect only 50% of the threats and on the other

hand around 71% of the smart-phone users do not use any

kind of anti-virus [2]. Thus there is a need for an extra layer of

security at the network side to protect the users from advanced

threats, which a traditional anti-virus could not detect.

Most of the NIDS use signatures to detect attacks and

therefore capable of detecting only known attacks [3]. A minor

modification in attack can bypass a signature based NIDS

and could generate up to 90% of false alarms [4]. Deep

packet inspection is also difficult when the traffic is encrypted

and computationally expensive [5]. Flow based techniques

are useful in combating several issues caused by encrypted

traffic [6]. Machine learning methods are getting popular in

the detection of advanced threats. This transition is supported

by Arp et al [7].

To build a ML classifier, a dataset is required. The well-

known datasets available in the field of intrusion detection,

which uses network traffic features are KDD99, DARPA

1998/1999 and ISCX 2012 IDS dataset. However, some short-

comings were observed in these datasets by [8] and [9]. These

datasets are quite old and not applicable to mobile attacks.

Due to non-availability of public datasets in this domain,

we have used a dataset which was created in our previous

research [10] for evaluation purpose. This dataset was build

using the traffic generated by several benign and malicious

samples. The dataset is based on bidirectional flows extracted

from real malware traffic, which makes it unique. The dataset

contains several threats such as unauthorized premium SMS

sender, Spam sender, bots, back-door, root exploit, fake anti-

virus, ransom-ware and information theft. These datasets were

used to train and build the ML classifiers using several ML

algorithms. The classifier is used to make predictions on new

data to detect normal or malicious patterns in the traffic. A

signature-based NIDS could miss the threats in the traffic, for

which the signature is not yet known. However, ML classifiers

can detect known and unknown threats by analyzing traffic

patterns.

The main focus of this paper is the performance evaluation

of ensemble ML techniques that combines output of several

ML algorithms. The benefit of using ensemble method is not

only to increase the efficiency of the classifier but also to

reduce the risk of over-fitting the model. This can also address

the problem caused by minor changes in the attack pattern,

in order to avoid concept drift situation. The concept drift

situation occurs in machine learning methods when the relation

between the features used to train the model and target to

be predicted changes over an interval of time. The concept

drift causes decrease in accuracy when prediction is made on

unseen data.

The structure of this paper is as follows. Section 2 focuses

on previous research conducted in this area. Section 3 de-

scribes the machine learning algorithms used in this study. Sec-

tion 4 focuses methodology of this research. Section 5 is based

on the performance evaluation of ensemble machine learning

classifiers using different datasets. Several experiments that are



performed for evaluation purposes are also explained. Finally,

in Section 6, conclusion and future work of this research are

outlined.

II. RELATED WORK

Recently, a lot of research has been done in the area of

machine learning to solve many cybersecurity issues. Most of

the research done in the field of using ML techniques to detect

Android-based malware is based on features such as system or

API calls. There are only a few studies which have focused on

network-based intrusion detection for android malwares [10]

[11]. In some of the studies [12] [7] [13] [14], the detection

engine or model need to be installed on the mobile phone

to detect e.g. intrusions or malicious applications. However,

most of the smartphone users do not install security solutions

in their phones.

Arp et al. [7] developed Drebin which uses Support Vector

Machine (SVM) to detect malicious android applications.

Drebin is based on the features such as permissions, API calls

and Network addresses. The detection of Drebin is limited

when the malwares uses dynamic code or any obfuscation

technique. Many researchers [12] [13] used malwares from

MalGenome [15] dataset to generate traffic and build classi-

fiers on various traffic based features. The concept drift has

been seen in some studies [12] where the classifiers produced

significant decrease in the TPR when evaluated on the unseen

traffic. Input features used to train the model play important

role in the field of machine learning as the attackers change

their behavior with time to avoid detection. Features like IP

address could lead to produce concept drift in the model. In

some of the studies [13] [11], the classifiers were not tested

on unseen data which is crucial part in the evaluation of ML

classifiers.

Many researchers [16] [17] [6] used flow-based mod-

els for network traffic classification. Furthermore, the flow-

based techniques to detect botnets were studied by several

researchers [18] [19] [20]. Most of network traffic in the

malware communication is encrypted [5] and therefore flow-

based features seems to be efficient in detecting these threats

[6].

III. MACHINE LEARNING ALGORITHMS

In this research work, we have used the ensemble of several

machine learning algorithms such as Random Forest, J48,

RIDOR, JRIP and PART. The performance evaluation of these

algorithms was already performed individually in our previous

work [10]. In this study, we have used ensemble methods

to combine the output of these ML algorithms to increase

the effectiveness of the ML classifiers.The combination meth-

ods used in our study such as majority voting, maximum

probability and product of probabilities were adopted from

[21] [22]. ML classifiers used in the network traffic analysis

becomes less efficient with time as the attackers change their

behavior and this situation is known as concept drift. During

the model building, each algorithm has different weight-age

for each feature. Some of the algorithms have built-in feature

selection algorithms and they make the decisions on limited

features. If there is any change in traffic pattern, each algorithm

behaves differently. Combining the output of these individual

algorithms not only increases the efficiency but also the

stability in case of minor changes in the traffic pattern.

J48 is the WEKA Implementation of C4.5 [23] algorithm

which was developed by Ross Quinlan in 1993. C4.5 is a

decision tree based algorithm, which works on the ”divide

and conquer” rule. C4.5 first divides the training dataset with

highest single class instances, then it checks the feature with

the highest information gain in the subset and splits it into

further subsets according to that feature. It repeats these steps

for each subset [23].

The Random Forest(RF) [24] is one of the most popular

ML algorithms used for classification, developed in 2011 by

Leo Breimen. Random forest is the collection of decision trees

built from random subsets of dataset (bootstraps) with random

features selected in each subset. Each tree is trained by 2/3

of the dataset and remaining 1/3 is used to estimate error

rate. This 1/3 of the dataset is same as the validation set in

other ML algorithms, therefore there is no need for a separate

validation dataset. The output of the random forest is based

on the majority vote by each decision tree output.

Ridor is the WEKA implementation of Ripple-Down Rule

Learner [25], which was developed by Gaines and Compton

in 1995. Ridor uses Incremental reduced error pruning (IREP)

algorithm [26] to build its rules. Pseudo code for IREP is

mentioned in Figure 1 of [27]. Ridor generates its first rule

as a default rule for one class and then builds the rules for

other classes depending on the weighted error rate known as

exception rules. Let’s suppose there are two classes ”Deny”

and ”Allow”. First, it makes a default rule for ”Deny” and

then it builds up the rules for ”Allow” [25].

JRIP is a WEKA implementation of RIPPER, which was

proposed by William Cohen in 1995, as an optimized version

of IREP [26], [27]. JRIP divides the training set into two

subsets in the ratio of 2:1 in the form of grow:prune.

PART is a partial decision tree algorithm developed by

Frank [28] in 1998. This algorithm works on the separate-

and-conquer rule and is a combination of C4.5 rules and

RIPPER algorithm, excluding the global optimization feature.

This algorithm produces rules in ordered sets, which makes a

decision list. The rules are based on ”Best” leaf of the partial

C4.5 decision tree [28].

J48 and Random Forest are the tree based algorithms while

RIDOR, JRIP and PART are rule based algorithms. All of

these ML algorithms have some internal validation function

for tuning to avoid over-fitting e.g Random forest [24] uses

1/3 of the dataset for estimating the error rate. JRIP [27] and

RIDOR [25] both use IREP which selects 2/3 of the dataset

for training and 1/3 of the dataset for the pruning of the model.

J48 [23] has an internal mechanism of pre-pruning and post-

pruning to avoid over-fitting and PART [28] is the combination

of J48 and JRIP.

Random Forest has several advantages, such as high accu-

racy and effectiveness on large datasets [29]. Random Forest



Fig. 1: Ensemble Machine Learning model for Intrusion Detection



is an ensemble of multiple decision trees. Although the output

of Random Forest is hard to understand, the performance of

this classifier makes it outstanding. J48 provides speed over

Random Forest, but the accuracy is not as high as that of

Random Forest. J48 is a decision tree so it is easy to under-

stand. RIDOR, PART and JRIP are rule-based algorithms, so

the rules generated by these algorithms can be used in any

knowledge-based expert system.

IV. METHODOLOGY AND IMPLEMENTATION

In this research, an ensemble ML based Network intrusion

detection system is proposed and evaluated, shown in Fig. 1.

The first step was traffic generation, followed by filtration,

feature extraction and labeling of the dataset. The dataset was

used to build the ML Classifiers using WEKA [30]. In this

study, the focus is only on the evaluation of ensemble ML

classification model, as the evaluation of individual classifiers

is already done in our previous work [10].

The overall implementation and evaluation of this model

performed in four main phases, as shown in Fig. 1, comprised

of Traffic generation, preprocessing, model building and eval-

uation of the ML model.

TABLE I: Feature List

Feature No. Feature Description Value

1 Duration Connection Duration Real
2 DP Destination Port Real
3 PktSent Packet Sent Real
4 PktRcv Packets Received Real
5 PLBytesSent Payload bytes sent Real
6 PLBytesRcv Payload bytes received Real
7 IFlagF Initial Flags in Forward Direction Nominal
8 IFlagR Initial Flags in Reverse Direction Nominal
9 UFlagsF Union of Flags in Forward Direction Nominal
10 UFlagR Union of Flags in Reverse Direction Nominal

Traffic was generated for both benign and malicious appli-

cations using the method mentioned in our previous research

[10]. A number of benign applications were used to generate

real traffic which were installed from Google playstore. These

applications were executed at a different interval of time. Wire-

shark was used to capture the packets on the interface of the

virtual machines. The samples of malware families (FakeAV,

DroidKungFu, OPFake, GinMaster, FakeInst and Anserver)

were downloaded from Virustotal using several conditions.

The number of samples completed for the study was around

600. Traffic was generated through a public sandbox ”Anubis

(Andrubis)” [31] and ”Cuckoo” [32].

During Processing feature extraction and labeling of traffic

flows was done. The features were extracted using RFC-5103

BiFlow export method [33]. The following features (see Table

I) were extracted from the flows of the traffic of benign and

malicious applications. Instances were then labeled as normal

or malicious respectively.

A. Machine learning classifiers

In this study, we have evaluated the combination of 5

decision tree and rule based algorithms. Output of these

algorithms can be easily interpreted by security experts and

can be integrated with the traditional NIDS. The classifiers

build from these ML algorithms produce rules and trees which

can be used to make predictions on new traffic to identify

threats. By using ensemble methods, the combination of these

ML classifiers was used to increase the efficiency of the

classification model as shown in Fig. 1.

V. PERFORMANCE EVALUATION AND RESULTS

Several well-known parameters were used to evaluate en-

semble ML classifiers.

TABLE II: Confusion Matrix

Predicted
Malicious Normal

Actual
Malicious TruePositive FalseNegative

Normal FalsePositive TrueNegative

True Positive (TP): Malicious instance classified as Malicious.

False Positive (FP): Benign instance classified as Malicious.

False Negative (FN): Malicious instance classified as Normal.

True Negative (TN): Benign Instance classified as Normal.

TPR =
TP

TP+FN

FPR =
FP

FP+TN

TNR =
TN

TN+FP

FNR =
FN

TP+FN

Accuracy =
TP+TN

TP+FP+TN+FN

ROC (Receiver Operating Characteristic) curve is a plot

between TPR and FPR at various threshold settings [34]. Area

under ROC Curve (AUC) is also an important parameter in

evaluating the ML classifier, this value is derived from the

ROC curve and it can tell which model makes best predictions.

A higher AUC value shows a better ML Classifier. Accuracy

is also an important parameter to consider as it is based on

both TPR and FPR.

A. Evaluation of Classification Model

We have performed two experiments in order to evaluate the

performance of the ML classifiers using ensemble methods. In

the first experiment, we have tested the classifiers using cross

validation and percentage split of the same data. In the second

experiment the evaluation was performed using the new unseen

dataset.

1) Experiment 1 - Ensemble Methods : Ensemble methods

combine output of several ML classifiers by different tech-

niques such as weighted voting or measuring probability as

shown in Fig 1. In this experiment, we combined the output

of several classifiers by 3 combination rules as shown in the

Table III - IV.

These tables show the detailed performance evaluation of

ensemble methods using different combination. In Experiment

1a, we have used 10 fold cross validation method which

is most widely used validation method. This method splits



TABLE III: Experiment 1a (Ensemble Methods) using Cross Validation

Performance Evaluation by combining J48, RF, JRIP, RIDOR and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.995 0.030 0.970 0.005 0.991 0.984
Maximum Probability 0.983 0.005 0.995 0.017 0.985 0.999
Product of Probabilities 0.999 0.005 0.995 0.001 0.998 0.999

Performance Evaluation by combining J48, Random Forest, JRIP and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.996 0.041 0.959 0.004 0.990 0.978
Maximum Probability 0.993 0.030 0.970 0.007 0.989 0.999
Product of Probabilities 0.994 0.025 0.975 0.006 0.991 0.987

Performance Evaluation by combining J48, RF and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.996 0.023 0.977 0.004 0.993 0.986
Maximum Probability 0.993 0.043 0.957 0.007 0.987 0.999
Product of Probabilities 0.994 0.039 0.961 0.006 0.989 0.993

TABLE IV: Experiment 1b (Ensemble Methods) using Percentage Split Validation

Performance Evaluation by combining J48, RF, JRIP, RIDOR and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.995 0.030 0.970 0.005 0.991 0.982
Maximum Probability 0.983 0.005 0.995 0.017 0.985 0.999
Product of Probabilities 0.999 0.005 0.995 0.001 0.998 0.981

Performance Evaluation by combining J48, Random Forest, JRIP and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.996 0.041 0.959 0.004 0.990 0.982
Maximum Probability 0.993 0.030 0.970 0.007 0.989 0.999
Product of Probabilities 0.994 0.025 0.975 0.006 0.991 0.978

Performance Evaluation by combining J48, Random Forest and PART

Combination Rule TPR FPR TNR FNR Accuracy AUC

Majority Voting 0.996 0.023 0.977 0.004 0.993 0.982
Maximum Probability 0.993 0.043 0.957 0.007 0.987 0.999
Product of Probabilities 0.994 0.039 0.961 0.006 0.989 0.981

the original dataset into ten pieces and repeats the training

and testing for ten times using holdout technique. Cross

validation method reduce the chances of over-fitting the model.

In experiment 2a, percentage split was used to divide the

dataset into two pieces and 70% of the data was used for

training while the remaining 30% was used for testing. This

method is very useful when the model needs to be used for

predictions. The best results were obtained by the majority

voting of output by Random Forest, PART and J48 classifiers.

The TPR of 99.5% was observed using ensemble methods



TABLE V: Performance Evaluation of Experiment 2a - Detecting Unknowns

Evaluation on ML classifiers on unknown dataset

ML Algorithm TPR FPR TNR FNR Accuracy AUC

Random Forest 1.000 0.029 0.971 0.000 0.975 0.998
PART 1.000 0.117 0.883 0.000 0.900 0.917
JRIP 1.000 0.043 0.957 0.000 0.964 0.979
Ensemble Methods 1.000 0.021 0.979 0.000 0.982 0.989

TABLE VI: Performance Evaluation of Experiment 2b - Detecting Unknowns

Evaluation on ML classifiers on unknown dataset after interval of time

ML Algorithm TPR FPR TNR FNR Accuracy AUC

Random Forest 0.932 0.038 0.962 0.068 0.955 0.947
PART 0.926 0.112 0.888 0.074 0.897 0.893
JRIP 0.919 0.047 0.953 0.081 0.945 0.937
Ensemble Method 0.939 0.025 0.975 0.061 0.966 0.957

which was better than that of Random Forest. However, the

FPR of 4.1% observed which is higher than Random Forest. It

can also be seen that the best accuracy is seen by combining

output of the five classifiers using the product of probabilities.

2) Experiment 2 - Detecting Unknown: This experiment

was performed to evaluate the performance of ensemble ML

classifiers on a new dataset that contains unknown instances

from malicious samples and contains new traffic from different

benign applications. We have limit this experiment to 3 ML

Algorithms (Random Forest, PART and JRIP) as these ML

algorithms produced the best results in individual evaluation.

We have combined the output of these ML algorithms by

majority vote method as shown in the Table V.

In Table V, performance evaluation of different classifiers

can be seen. The RF performed best in individual classifiers

with the highest TPR and lower FPR. The FPR produced by

PART was significantly high. However, the ensemble classifier

outperformed all the individual classifiers. In Table V, it can

be seen that ensemble method performed better than RF in

detecting unknown threats with the accuracy of 98.2% and

the FPR was reduced to 2.1%.

This experiment showed that the ensemble methods are not

only able to detect unknown threats but they are also good at

identifying benign traffic. True Negative Rate (TNR) produced

by these ensemble classifiers is also high which shows the

efficiency of the classifier in distinguishing between normal

and malicious instances.

Another experiment 2b (see Table V) was performed to

check the performance of the classifiers after an interval of

time. For that purpose, unseen traffic from some new malicious

and benign applications was added to the test dataset. The

performance of the individual classifiers decreased a bit with

time due to the changes in the traffic patterns generated by

the new malware samples. The ensemble methods increased

the performance by combining the output of these individual

classifiers. It can be clearly seen that the ensemble methods

produced the highest accuracy and AUC value by combining

the output of these classifiers.

VI. CONCLUSION

The ensemble methods used in this study were able to

detect known and unknown threats. This study is the first

step towards a more advanced ML based intrusion detection

system. Ensemble methods not only produce better results but

also reduce the chance of concept drift. Intrusion detection

systems which rely only on ML techniques need frequent

retraining. Otherwise, the decrease in TPR could be seen.

In our previous studies, several experiments were performed

to compare the ML model with antivirus vendors and we

observed that ML classifiers were more efficient than some

of the traditional antivirus. Furthermore, the efficiency of the

ML classifiers was enhanced by using ensemble methods and

these methods also helped with concept drift. Moreover, we

have observed that the feature extraction and selection play an

important role in the output of the classifier. Wrong features

such as ”IP Address” could over-fit the model and produce

concept drift condition in the system.

The ensemble ML classifiers built were able to detect

malicious traffic with a TPR of 99.9%, while the output from

individual classifiers was observed between 94%-99.6%. As

the ML classifiers are built for predictions, it is also important

to evaluate the performance of the ML classifiers on new

data. In this research, we have evaluated ML classifiers on

unseen data and the accuracy of 98.2% was observed by

ensemble methods while the accuracy observed by individual

classifiers was between 90% - 97.5%. These results showed

that the ensemble methods are more efficient than individual

classifiers. Future work in progress aims to integrate the

ML classifiers with traditional NIDS and to introduce some

innovative methods in order to reduce the chance of concept

drift.
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