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Shock-capturing finite volume schemes often give rise to anomalous results in hypersonic flow.We present a wide-

ranging survey of numerical experiments from 12 different flux functions in one- and two-dimensional contexts.

Included is a recently developed function that satisfies the second law of thermodynamics. It is found here that there

are at least two kinds of shock instabilities: one is one-dimensional and the other is multidimensional. According to

the results, the former does not appear if a flux function satisfies the second law of thermodynamics, and the latter is

suppressed by an additional dissipation with a multidimensional character. However, such dissipation has no effect

on the one-dimensional mode. Among the flux functions investigated, no universally stable schemes are found that

are free fromboth one- andmultidimensional shock instabilities. The appearance of these instabilities depends on the

relative positioning of the shock on the grid.

Nomenclature

e = internal energy, �p=��=��-1�
et = total energy, e� �1=2��u2 � v2�
H = total enthalpy, et � p=�
i, j = cell indices
M = Mach number
p = pressure
S = entropy, ln p � � ln �
u, v = velocity components
x, y = Cartesian coordinates
� = entropy coefficient in the entropy-consistent Roe

scheme
� = specific heat ratio, 1.4
� = grid-stretch parameter, 0; 1=8; . . . ; 1
" = shock-position parameter, 0:0; 0:1; . . . ; 0:9
� = density

Subscripts

L = left state (prestate) of the shock
M = intermediate state (internal state) of the shock
R = right state (poststate) of the shock
0 = freestream value

I. Introduction

T HE computation of hypersonic flows has proved surprisingly
troublesome on account of anomalies, such as carbuncle

phenomenon [1], which afflicts shock-capturing schemes. The
carbuncle phenomenon appears to be very complex [2], but

theoretical discussion is hampered by the fact that the carbuncle is a
real physical solution and so cannot be excluded by the application of
any simple physical principle. We feel convinced that there is no
single cause, nor is there any single cure. Several schemes have been
published with claims that they do not suffer from such effects.
However, it is difficult to establish such claims theoretically, because
we still lack an accepted explanation for the breakdowns. It is also
difficult to establish them experimentally, because the phenomena
depend on many factors (e.g., mesh geometry, mesh size, flowMach
number, and specific heat ratio) [2,3]. In this paper, we pursue an
experimental comparison froma viewpoint that is partly physical and
partly numerical. We will pay particular attention to those schemes
known to fail [4,5] and to schemes specifically claimed to avoid the
phenomenon [6–10]. Also, we will focus on a recently published
method [11–14] that is an entropy-consistent development of theRoe
scheme.

We have organized our investigation as follows around the
hypothesis that part of the mechanism for generating the carbuncle is
one-dimensional (1-D) and part is multidimensional:

1) In the 1-D problem,we begin by analyzing the apparently trivial
problem of a steady shock in one dimension. The parameter here is
the shock location on the grid and the flow Mach number.

2) In the 1-1=2-D problem, our next experiments are what we refer
to as 1-1=2-dimensional, in which we simply stack identical 1-D
problems on top of each other to form a two-dimensional (2-D) mesh
of squares. The parameter here is the shock location, and the
objective is to see whether the same outcome can be drawn as in the
previous test. Several authors have proposed fluxes that are intended
to cure the carbuncle by an additional dissipation term with a
multidimensional character. It is also investigated whether such
terms are effective in cure for the shock instabilities.

3) In the 2-D problem, as a more practical test, we consider the
flow past a circular cylinder, using a grid in which one mesh line (set
of cell interfaces) coincides with the shock obtained from a shock-
fitting code. Naively, one might expect that mesh alignment of this
kind would make it easy to capture the shock, but the 1-1=2-D test
refutes this expectation. We made a series of tests in which the mesh
was progressively dilated until, near the shock, the mesh lines were
displaced by precisely one cell width. Thus, the shock took up all
possible locations relative to the grid line, just as in the previous
experiments.

According to the results, 1-D and multidimensional effects in
shock instabilities are discussed separately, andmore insight in these
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instabilities will be explored. A final remark for developing a reliable
flux function will follow.

II. Numerical Methods

A. Governing Equations

The governing equations are two-dimensional compressible Euler
equations as follows:
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where � is density, u and v are velocity components in Cartesian
coordinates, p is pressure, et is total energy, and H is total enthalpy
(H� et � p=�). The calorically-perfect-gas model is assumed for
air with the specific heat ratio � � 1:4. These equations are solved by
the finite volumemethod. Both the spatial and the time accuracies are
first order if not mentioned otherwise. As for the numerical flux at
each cell interface, 12 different functions are used, including a
recently published entropy-consistent (EC) Roe scheme. A brief
introduction for this scheme appears in the next subsection.

B. Entropy-Stable and Entropy-Consistent Schemes

The new entropy-stable scheme is described in [11–14]. Basically,
the standard formula

F � � F � 1
2
Rj�̂jL�u (2)

is replaced by

F � � Fc �
1
2
Rj�̂ Ŝ jRT�v (3a)

where FC is a special averaging (^) of the left and right states that
conserves entropy,

F c � ��̂ û; �̂û2 � p̂1; �̂ û v̂; �̂ û Ĥ�T (3b)

S is a scaling factor,
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and the dissipation term is not driven by the jump �u in the
conserved variables, but by the jump�v in the entropy variables:
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The diagonal matrix of eigenvalues is replaced by j�̂j ! j�̂j�
�j��j, where the additional term �j��j is introduced to ensure that
the entropy produced by a shock is of third order, as it should be. The
coefficient alpha is not rigorously derived. For a weak shock sharply
resolved, it should be 1=6. For stronger or less-well-resolved shocks,
it needs to be larger, and we are presently engaged in trying to make
this more precise (�� 0:2 or 0.8 in the present paper). This entropy-
consistent scheme is called theEC-Roe scheme in this paper. Because
the analysis on which it is based is only semidiscrete, we have
employed a small Courant–Friedrichs–Lewy (CFL) number when
applying this scheme (see Table 1).

III. Numerical Experiments

A. One-Dimensional Problem: Steady Normal Shock

From the viewpoint of continuum mechanics, a shock wave is
regarded as a thin jump discontinuity, but a captured shock has
numerical internal structure. However, it is hard to establishwhat this
internal structure should be [3,15,16]. For example, theGodunov and
Roe schemes produce an intermediate state that lies on the Hugoniot
curve joining uR to uL, but such a state does not preserve mass flux
inside the shock. On the other hand, at least one intermediate state is
needed to allow representation of a shock that is not precisely located
at a mesh interface. Therefore, we prescribe initial conditions that
include an intermediate state and boundary conditions that force the
shock to remain in its initial position. The grid comprises 50 equally
spaced cells, as in Fig. 1, with initial conditions for left (L: i 	 12)
and right (R: i 
 14):
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following the Rankine–Hugoniot conditions across the normal
shock. The internal shock conditions (M: i� 13) are as follows:

1) The density is given as

�M � "�L � �1-"��R (5)

where the shock-position parameter "� 0:0; 0:1; . . . ; 0:9.
2) The other variables are calculated based on �M so that all

variables lie on the Hugoniot curve, connected to uL and uR, as in
[16].§

At the outflow boundary, we prescribe the mass flux at the ghost
cell (i� imax � 1)

��u�imax�1;j � ��u�0 � 1 (6)

for the mass in the whole computational domain to remain constant
and for the shock to be fixed at the same position; meanwhile, other
values are simply extrapolated (e.g., �imax�1;j � �imax;j). In other
words, this set of the outflow boundary conditions mimics the
situation in which a normal shock sits in front of a wall constantly.
(Under the standard wall condition, the shock goes upstream, of
course, until it reaches the inflow boundary. If another outflow

ishock=12+ε
M0

i

Fig. 1 Computational grid and conditions for the 1-D steady shock test

problem.

Table 1 CFL number chosen for each freestream Mach

numberM0

M0 1.5–6.0 10.0 20.0
CFL 0.5 0.2 0.1

§Though there are some alternative ways to determine internal shock states
[e.g., all the primitive variables can be given as uM � "uL � �1-"�uR], we
confirmed that these have minor effects on our conclusions.
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condition is applied, the outflow boundary no longer behaves as the
wall and different results are obtained.¶)

The inflow boundary has the freestream values. The freestream
Mach number is chosen in the range 1:5 	 M0 	 20:0. If a scheme is
always stable for all those values of " and M0, the scheme can be
labeled as 1-D stable.

Then the computations are conducted until when time steps
multiplied by the CFL number reached 20,000 (e.g., 100,000 steps
with CFL� 0:2), and the CFL number is chosen depending onM0,
as in Table 1, based on stability limit of the EC-Roe scheme [11]. To
see howwell upwind schemes preserve the initial shock position, we
compare results of the following widely used or recently proposed
schemes, such as Godunov’s exact Riemann solver [4]; Roe’s
(original) scheme [5], which is a linear approximate Riemann solver;
Roe scheme with Harten’s entropy fix (E-fix) [17], which removes
expansion shock; AUSM� [6], AUSM�-up [7], AUSMPW� [8]
and RoeM2 [9] schemes, which preserve total enthalpy H in steady
flow; andHLLE [10], which is widely believed to be a carbuncle-free
but notoriously dissipative scheme.

The behaviors of those schemes are summarized in Fig. 2. If the
L2-norm of density residual dropped at least 3 orders of magnitude,
the computation is stable (O in the figure). If, on the other hand, the
shock was moving back and forth and the computation did not
converge, it is unstable (� in the figure). These typical solutions are
shown in Fig. 3. In stable cases, the contours are identical from
10,000 (not shown) through 50,000 steps, but not in the unstable
cases, as the shock is still moving.

The following can be seen from Fig. 2:
1) The Roe schemewith E-fix and the EC-Roe schemewith a large

entropy-coefficient (�� 0:8) are 1-D stable in all cases, whereas
others are not. The other schemes are stable only for low Mach
numbers (M0 < 2:0, except for AUSM� and AUSM�-up schemes)
or for particular shock positions, depending on the schemes. Thus,
most schemes that are claimed as carbuncle-free are actually not
stable in a 1-D calculation. This aspect of the carbuncle has been
largely ignored by researchers, but our contention is that one-
dimensional stability is crucial for curing the carbuncle. In the
following subsections, we will extend this discussion to two-
dimensional problems. We also point out here that those two
successful fluxes can resolve shear/boundary-layers well, as reported
in [11,18,19].

2) The shock location � for the unstable results are generally
different for different schemes. However, the results for the exact
(Godunov) Riemann solver and the unmodified Roe scheme are
almost identical, as pointed out byBarth [3]. According to the present
criterion which divides stable and unstable cases, only one exception
is seen at M0 � 4:0 and "� 0:7. In addition, these solutions for
"� 0:0 are not necessarily stable under the current setup, in which
the downstream boundary plays a significant role, though the two
Riemann solverswere designed to accurately capture the shockwhen
it properly sits on the mesh line.

B. One-and-One-Half-Dimensional Problem: Steady Normal Shock

Next we solved a steady shock that is initially aligned in one
direction in a 2-D field (Fig. 4). We expect that such a computed
flowfield should behave in a 1-D manner unless multidimensional
instability is introduced, and thus we call this problem a 1-1=2-D
problem. This is a simplified carbuncle problem that was developed
first byQuirk [20] andmodified byDumbser et al. [21], but we used a
grid that is extended farther downstream from the shock. We found
that this made the development of unstable solutions more likely. In
particular, we employed a grid with 50 � 25 cells spaced evenly
without any perturbation (no other kinds of perturbations are
introduced either). The freestream Mach number chosen is
M0 � 6:0, because the solutions in the 1-D problem are almost the
same forM0 
 6:0 (Fig. 2). The periodical condition is imposed for
the boundaries of j direction, whereas the other initial conditions and

boundary conditions are the same as in the 1-D tests. The
computations were conducted for 40,000 steps with CFL� 0:5. If a
scheme is stable for all the shock positions ", the scheme can be
labeled as 1-1=2-D stable.

Our computations are summarized in Table 2, showing a
comparisonwith 1-D results. In this table, the following notations are
used:

1) S denotes a case in which the code converged steadily and
exponentially toward a satisfactory solution.

2) U denotes a case in which the residual hung up at some stage
and the solution remained of poor quality. This case resembles 1-D
unstable or a carbuncle solution.

3) A denotes a case similar to U, but in which the residual
eventually began to decrease again, with convergence to an
unsatisfactory solution, usually asymmetric and in the form of a
carbuncle.

As can be seen, there is no 1-1=2-D stable scheme. Overall, the
case that was stable in 1-D was more likely to be 1-1=2-D stable than
the 1-D unstable case, and almost no case that was unstable in 1-D
proved to be stable in 1-1=2-D (with few exceptions). In addition, if
there are both 1-D and 1-1=2-D stable cases and 1-D and 1-1=2-D
unstable/asymmetric cases, these cases are sometimes separated by
1-D stable but 1-1=2-D unstable/asymmetric (or vice versa) cases.
Therefore, we claim that 1-D stability is crucial for 1-1=2-D stability.

1. Shock Locations that are Stable in One Dimension

Here, we show only cases that were stable in 1-D. In Fig. 5, Mach
number contours at 40,000 time steps are shown for typical cases,
and Fig. 6 shows representative profiles of the L2-norm of density
residual histories for these calculations. The tests reported in this
subsection determine how the 1-1=2-D instability develops. The
instabilities that appeared sometimes took the form of local
oscillations confined to the shock [stage 1 (Fig. 5d)], streaks of
vorticity streaming behind the shock [stage 2 (Fig. 5e)] or total
breakdown [stage 3 (Figs. 5f and 5g)] [11,22]. In the last case, the
density behind the shock is no longer that behind a normal shock, and
even under our new boundary condition, the shock is free to move
and may eventually disappear off the grid (Fig. 5h). In this case, the
residual suddenly drops to the machine-zero level when the shock is
wiped out (Fig. 6b). The following features of these results are
noteworthy from Table 2 and Figs. 5 and 6:

1) The only two schemes that were universally stable in 1-D (the
EC-Roe schemewith�� 0:8 andRoe’s schemewithHarten’s E-fix)
both failed this test. Thus, it is found that there is 1-1=2-D stability
that is distinct from 1-D stability. Moreover, many of the schemes
that were stable in 1-D for some particular combination ofM0 and "
are unstable here. Hence, 1-D stability is not sufficient for the
1-1=2-D stability.

2) Comparing the results of the EC-Roe scheme with �� 0:2 and
0.8, we can see that the latter is more unstable than the former in this
test, in contrast to 1-D tests. Thus, although adding dissipation in a
direction normal to a shock enhances 1-D stability, we think another
strategy has to be considered for a direction parallel to the shock to
establish a 1-1=2-D stable scheme. This also holds for a comparison
of the original Roe and Roe (E-fix).

3) The AUSM� solution has a surprising feature when "� 0:7:
after the residual once converged to O�10�11� with an apparently
stable solution (shown in Fig. 7a), the flowfield suddenly
destabilized around 10,000 steps. Then the residual grew
exponentially and remained at a significant magnitude (Fig. 6c).
Eventually, the calculation reached the stage 1 carbuncle solution
[20,000 steps (Fig. 7b) and 40,000 steps (Fig. 5d)]. Further
explanation will appear later; this scheme cannot be called 1-1=2-D
stable.

4) TheAUSM�-up scheme showed the stage 2 carbuncle solution
for "� 0:8 (Fig. 5e), and the residual stagnated at around O�10�5�
(not shown). This scheme, again, is not 1-1=2-D stable.

5) The AUSMPW� scheme has a multidimensional term and is
claimed to be carbuncle-free. With this term, as can be expected, the
results were stable whenever the 1-D case was stable (Table 2).

¶Private communication with Tomoyuki Hanawa, Chiba University,
Japan, Nov. 2007.
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Fig. 2 One-dimensional stability limits for upwind schemes (freestream Mach number 1:5 � M0 � 20:0 and shock position "� 0:0; 0:1; . . . ; 0:9).
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However, when that multidimensional term was eliminated, the
solutions did not converge in some cases (e.g., "� 0:0, 0.5, and 0.6).
Hence, the multidimensional term properly works as is designed.

6) The RoeM2 scheme also has a multidimensional term and is
claimed to be carbuncle-free. With this term, in contrast to
AUSMPW�, the results were either stable or unstable when the 1-D
case was stable (Table 2 and Fig. 5c). When the multidimensional
term was eliminated, the solutions were either stabilized or
destabilized, depending on " (Table 2). This may be attributed to the
aforementioned fact that too much dissipation addition to the
direction parallel to the shock can lead to unstable solutions.
Moreover, with a multidimensional term for "� 0:5, the solution
was once destabilized around 24,000 steps, similarly to AUSM�
("� 0:7), but in this case, the solution remained stable (according to
the present criteria) for 200,000 steps (shown in Fig. 8).

7) The HLLE scheme, the only scheme known to be carbuncle-
free among widely used schemes (though it lacks resolution of
contact discontinuities and boundary layers), showed a stable result
whenever the 1-D case was stable.

In search of more insight, we measured how the unstable 1-1=2-D
solutions deviated from the stable 1-D solutions; specifically, we
computed the L1-norm of differences of the primitive variables
��; u; v; p�. Figure 9 shows the time histories of the deviations from
the 1-D solutions for selected results (only u and v are shown, for
brevity, because � and p behaved as the same manner as u). The
deviation of v stands for the amount of 1-1=2-D instability. A
noteworthy conclusion is that in all of the unstable cases except two,
the deviation grew rapidly and immediately in all variables (e.g.,
Figs. 9b and 9c). The exceptions were AUSM� ["� 0:7 (Fig. 9e)]
and RoeM2 ["� 0:5 (Fig. 8c)], for which the growth was very
gentle. This accounts for the apparently satisfactory stability of these
schemes at early times; that is, the 1-D instability did not appear and
the solution went toward the convergence, whereas the 1-1=2-D
instability subliminally grew. Thus, one should pay careful attention
when applying AUSM� or RoeM2 until the computation fully
converges to a satisfactory solution. As proved here, the deviation of
the 1-1=2-D solution from the 1-D solution is a powerful tool for
investigation of instability of a flux function.

2. Shock Locations That are Unstable in One Dimension

According to Table 2, all of the cases that were unstable in 1-D
were, with few exceptions, unstable in 1-1=2-D. This even includes
the cases of AUSMPW� and RoeM2 that feature multidimensional
dissipation. In Fig. 10, we present the results of these schemes for
cases that were unstable in 1-D. It seems that in the case of
AUSMPW� ("� 0:9), the dissipation is able to suppress both the 1-
D and the multidimensional modes. In the case of RoeM2 ("� 0:0),
however, the 1-D mode remains, though not for the "� 0:7 and 0.8
cases. RoeM2 without the multidimensional dissipation ("� 0:0) is
one of the few exceptions. As shown before, however, this version of
the RoeM2 scheme failed this test for another choice of shock
location. Thus, by eliminating the multidimensional dissipation, the
scheme just changed its favorite shock location. The HLLE scheme,
because of its inability to sustain contact discontinuities, has a built-
in dissipation that also completely suppresses the additional modes
but leaves the 1-D mode in place. Thus, HLLE is not carbuncle-free,
although it has been believed to be so.

a) Stable (Roe,   =0.5, 50,000 steps)   εε b) Unstable (Roe,   =0.0, 49,000 steps)   ε c) Unstable (Roe,   =0.0, 50,000 steps) ε

Fig. 3 Typical examples of Mach number contours for the 1-D steady shock (freestream Mach numberM0 � 2:0).

ishock=12+εM0=6.0

i

j

Fig. 4 Computational grid and conditions for 1-1=2-D steady shock

test problem.

Table 2 Summary of computed results for 1-D and the 1-1=2-DM0 � 6:0 steady shock with various schemes (S:

symmetry and converged, A: asymmetry and converged, U: not converged)

Scheme Test problem "� 0:0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Godunov 1-D U S S S S S S U U U
1-1=2-D U U U U U U U U U U

Roe 1-D U S S S S S S U U U
1-1=2-D U S S S U U U U U U

Roe (E-fix) 1-D S S S S S S S S S S
1-1=2-D U U U U U U U U U U

EC-Roe (�� 0:2) 1-D S S S S S U U U U S
1-1=2-D S S S U U S U U U S

EC-Roe (�� 0:8) 1-D S S S S S S S S S S
1-1=2-D U U U U U U U U U U

AUSM� 1-D S S S S U U S S S S
1-1=2-D S S S S U U U U S S

AUSM�-up 1-D S S S S S U U U S S
1-1=2-D S S S S S A U U U S

AUSMPW� 1-D S S S S S S S U U U
1-1=2-D S S S S S S S U U S

(without multidimensional term) 1-1=2-D U S S S S A U U U U
RoeM2 1-D U S S S S S S S U U

1-1=2-D U A A A A S A U U U
(without multidimensional term) 1-1=2-D S S S S S A A S S S

HLLE 1-D U S S S S S S U U U
1-1=2-D U S S S S S S U U U
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We confirmed our expectation that if a scheme is unstable in 1-D,
then it remains unstable in 1-1=2-D even if a multidimensional
dissipation is added. This suggests that the scheme of Sanders et al.
[23]would also be unstable in 1-1=2-D for certain cases, althoughwe
have not confirmed this by experiment.

In summary, we have found 1-D stable schemes [EC-Roe scheme
(�� 0:8) and Roe (E-fix)] but no 1-1=2-D stable schemes. The
following schemes are stable only under certain shock locations:
Roe, EC-Roe (�� 0:2), AUSM�, AUSM�-up, AUSMPW� (with

and without multidimensional dissipation), RoeM2 (with and
without multidimensional dissipation), and HLLE.

A natural question arises here: What if a 1-D stable scheme is
equipped with a multidimensional dissipation? One example to
answer this is found in our latest work [24], in which an anomalous
result of EC-Roe (�� 0:8) is greatly (not perfectly, though)
improved with a surface-tension-like multidimensional dissipation
that is applicable to unstructured grids. Thus, it is said that such a
combination is very promising for development of a carbuncle-free
scheme in a strong sense. This result supports our claim that 1-D and
multidimensional dissipations should be separately considered.

In addition, we leave a few comments on very recent results in
[18,19]. It was reported therein that a combination of Roe (E-fix) and
HLLE (called a “rotated-RHLL” flux) successfully passed all the
1-1=2-D tests, as well as van Leer type of flux-vector-splitting
schemes [25,26], on the limitation of the present criterion.We do not
pursue those results in the present work, but these fluxes are,
according to the discussions here, likely to produce the proper
amount of dissipations in both the normal and parallel directions to
the shock.

αα

ε ε

ε

ε

a) Stable (Roe, =0.1)  b) Stable (EC-Roe ( =0.2),

=0.0)

d) Stage 1 unstable 

(AUSM+,   =0.7)  

c) 1-D unstable (RoeM2, 

=0.7) 

g) Stage 3 unstable (Roe

(E-fix),   =0.0)

h) Stage 3 unstable: 

disappeared (Godunov, 

  =0.5)

f) Stage 3 unstable  (Roe, 

   =0.5)

e) Stage 2 unstable 

(AUSM+-up,    =0.8)

ε

ε

ε ε

Fig. 5 Typical examples ofMachnumber contours at 40,000 time steps for the 1-1=2-dimensional steady shock (freestreamMachnumberM0 � 6:0 and
shock position " is one-dimensionally stable).

Fig. 6 Residual histories for 1-1=2-dimensional steady shock (freestream Mach numberM0 � 6:0 and shock position " is one-dimensionally stable).

a) b)

Fig. 7 Mach number contours at a) 10,000 and b) 20,000 time steps for
the 1-1=2-dimensional steady shock (AUSM�, freestream Mach

numberM0 � 6:0 and shock position "� 0:7).

Fig. 8 Plots of a) Mach number contours at 200,000 time steps, b) residual histories, and c) histories of deviations of primitive variables from 1-D

solutions for the 1-1=2-dimensional steady shock (RoeM2, freestream Mach numberM0 � 6:0 and shock position "� 0:5).
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C. Two-Dimensional Problem: Hypersonic Flow over a Blunt Body

with a Shock-Aligned Grid

Finally, we will go on to a fully 2-D problem. Figure 11 shows the
computational grid and conditions in this case. The grid has 48 � 120
cells and has initially been designed so that a fitted bow shock lies on
an i� const line forM0 � 6:0.∗∗We checked that our version of this
gridwas perfectly symmetric by removing some very small rounding
errors that arose due to translation from the format in which the grid
was received. We then stretched this grid outward, controlling the
motion of the i� const line that theoretically coincides with the
shock position. We introduced a parameter � such that if �� 0, we
recover the original grid, but if �� 1, the adjacent grid line moves to
the theoretical shock location. We varied this parameter by intervals
of 1=8 so that, just as in the earlier tests, the shock took up a variety of
locations relative to the grid line.We expected that if our results were

stable for �� 0, theywere also stable for �� 1. However, there were
a few exceptions, perhaps because the captured shocks were not
exactly alignedwith the grid. As the parameter � changes by unity, so
does the parameter ", but they are not the same because the captured
shocks will not be in exactly the same position as the fitted shock.

The specified condition at the inlet (i� 0) is just the freestream
Mach number ofM0 � 6:0 with reference density and pressure. The
slip condition is applied at the wall (i� imax � 1), and the simple
extrapolation is employed at the outlet (j� 0 and jmax � 1).
Computations were conductedwithCFL� 0:5 for 50,000 time steps
unless the residual converged to machine zero. The spatial accuracy
is first order or second order by using the MUSCL scheme [27] with
van Albada’s limiter [28].

Two examples of computed flowfields are shown in Fig. 12.
Compared here are results of the second-order Roe scheme with
�� 0 (no displacement) and �� 4=8 (half-cell displacement). The
bow shock exactly lies on an i� const line and the solution
converged successfully for �� 0; however, for �� 4=8, the shock

Fig. 9 Histories of deviations of primitive variables from 1-D solutions (freestreamMach numberM0 � 6:0 and shock position " is one-dimensionally
stable).

b) AUSMPW+ without 

multidimensional term  (   =0.9), 

stage 2 unstable )

a) AUSMPW+ (    =0.9), stable 

c) RoeM2 (  =0.0), 1-D unstable 

εε

ε

ε

ε d) RoeM2 without multidimensional 

term (   =0.0),  stable

Fig. 10 Effects ofmultidimensional terms inAUSMPW� andRoeM2:

Mach number contours at 40,000 time steps for the 1-1=2-dimensional
steady shock (freestreamMach numberM0 � 6:0 and shock position " is
one-dimensionally unstable).

M0=6.0

i
j

Wall

Outlet 

Outlet 

Inlet 

Theoretical 

Shock Shape 

Fig. 11 Computational grid and conditions for the blunt-body

problem.

∗∗Private communication with Jeffery White et al. NASA Langley
Research Center, Apr. 2007.
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seemed to look for a comfortable position rather than settle down on a
particular i� const line, and the solution did not converge. This
observation is similar to that shown in the previous test cases.

In Table 3 we summarized the results for various flux functions
investigated in the preceding subsections. Computed flowfields
selected from each scheme are shown in Fig. 13. According to these
results, the following discussions have been drawn:

1) All the schemes presented here showed unstable (U) or
asymmetric (A) results for some conditions. In every case, we find
some set of consecutive positions for which the solution is stable (S)
and another set for which it is unstable (U). Sometimes these sets are
separated by an example of case A. This behavior was also noted in
the 1-D and 1-1=2-D tests.

2) The shock locations for stable and unstable are different for
different schemes, again, as in the 1-D and 1-1=2-D tests.

3) These shock locations are also different for different orders of
spatial accuracies (e.g., the EC-Roe scheme with �� 0:2 favors
3=8 	 � 	 6=8 for first order and 4=8 	 � 	 7=8 for second order).
This difference would be due to the difference of computed shock
standoff distances.

4) The entropy fix slightly helped the Roe scheme to be stable for
second-order, but not for first-order, computations.

5) The EC-Roe scheme with �� 0:8 failed all the cases, in
contrast to 1-D tests, but as in 1-1=2-D cases. The effect of adding
dissipation is seen from Figs. 13d and 13e by comparing the
thickness of the captured shocks. If too much dissipation is added on
a flux function (and the shock is broadened), the flux function seems
more likely to be vulnerable to the multidimensional shock
instability, as mentioned in the 1-1=2-D tests.

6) Schemes equipped with multidimensional effects
(AUSMPW� and RoeM2) still suffered from shock instability,
although they worked well for limited cases.

7) Schemes that are claimed to be carbuncle-free, including
HLLE, are not actually shock stable.

These results are broadly similar to the 1-1=2-D results. For most
of the schemes, the proportions of stable and unstable cases were
about the same. Again, there is no stable scheme.

An extension of the present discussions to 3-D viscous problems
appears in [19], in which further degrees of freedom trigger the
multidimensional instability.

a) =0 b) δδ =4/8 

Fig. 12 Pressure contours with grid around 2-D cylinder at 50,000 time steps (Roe, second order).

Table 3 Summary of computed results for theM0 � 6:0 2-D cylinder with various schemes (S: symmetry and

converged, A: asymmetry and converged, and U: not converged)

Scheme Order of accuracy �� 0 1=8 2=8 3=8 4=8 5=8 6=8 7=8 1

Godunov First A A A U U S S S S
Second S S U A U U S S S

Roe First A A A U U A A A U
Second S U U U U U S S S

Roe (E-fix) First A A A A A A A A A
Second S S U U U U S S S

EC-Roe (�� 0:2) First U U A S S S S A U
Second U U U U S S S S U

EC-Roe (�� 0:8) First U A A U U U A U U
Second U U U U U U U U U

AUSM� First U U U S S S S A U
Second S S U U S U U U U

AUSM�-up First U U U S S S S A U
Second S S U U S U U U U

AUSMPW� First S S S S S S U S S
Second S S S U U S S S S

(without multidimensional term) First S S S A U A U S S
Second S S S U U S S S S

RoeM2 First S S S A U S S S S
Second S S S S U U S S S

(without multidimensional term) First S S S U U S S S S
Second S S U U U U S S S

HLLE First S S S U U S S S S
Second S S S U U U S S S
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IV. Conclusions

We have conducted a broad range of investigations of hypersonic
shock stability within the common framework of upwind shock-
capturing schemes. We have focused on the role played by the
relative positioning of the shock on the grid.

1) There are at least two kinds of shock instabilities: one is one-
dimensional (1-D) and the other is multidimensional.

2) All but two of the flux functions investigated were unstable,
even in 1-D, for at least some combinations of shock location and
freestream Mach number. The exceptions, Roe with entropy fix and
EC-Roe (�� 0:8), satisfy the second law of thermodynamics (i.e.,
proper entropy creation across the shock).

3) All the fluxes, including those two fluxes, showed unstable
results in multidimensional (1-1=2-D and 2-D) tests. Thus, we think
it likely that some form of multidimensional dissipation is required.
On the limited basis of the present tests, the dissipation in the context
of AUSMPW� [5] seems more reliable than that for RoeM2 [6].
However, they are effective only when the multidimensional
instability standalone is present; they do not work well if 1-D mode
also appears at the same time.Moreover, neither is formulated for use
on unstructured grids.
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