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ABSTRACT

Evapotranspiration (ET) estimation is important for water management decision tools. In this study, dif-

ferent ET data with varying resolution, accuracy, and functionality were reviewed over a semiarid, data-

sparse region in southern Iran. Study results showed that the widely used reanalysis andModerate Resolution

Imaging Spectroradiometer (MODIS) datasets have relatively high uncertainty and underestimated ET over

the sparse heterogeneous landscape. On the other hand, fine-resolution ET datasets using Landsat imagery

with Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) and Surface

Energy Balance System (SEBS) algorithms, yielded high accuracy. Evaluation ofMETRIC and SEBSmodels

in estimating seasonal crop water use showed a mean absolute error of 5% and 13%, respectively. The

Satellite Application Facility on Climate Monitoring (CMSAF) data were used as radiation input to the

models and were found to be a representative data source with daily average RMSE of 70Wm22. An average

crop coefficient Kc was estimated for the region and was obtained as 0.77. The study proposes and applies a

hybrid framework that uses reference ET from simple diagnostic models (such as the REF-ET tool) and

calculates actual ET by using the satellite-derived regionally and locally representative Kc values. The ET

estimates generated with the framework were regionally representative and required low computational

resources. The study findings have the potential to provide practical guidance to local farmers and water

managers to generate useful and usable decision-making tools, especially for ET assessments in the study

region and other data-sparse areas.

1. Introduction

Themotivation for this study stems from the need that

has been highlighted in agricultural regions that domi-

nate the semiarid areas such as southern Iran and the

broader Middle East–North Africa (MENA) region

(Rockströmet al. 2009). These regions suffer fromwater

scarcity and paradoxically have agriculture as the main

economy (Esmaeili and Vazirzadeh 2009; Droogers

et al. 2012). The per capita freshwater availability for

Iran was estimated to be below 1500m3 yr21 (the water

scarcity threshold) in 2030; the value is currently less

than 200m3 yr21 in countries like Yemen and Jordan

within theMENA region (Faramarzi et al. 2009; Droogers

et al. 2012). The agricultural economy is also the driver

for maintaining geopolitical stability in these regions

(Voss et al. 2013). As such, the region’s population is

experienced in agriculture but is only modestly skilledCorresponding author: Prof. Dev Niyogi, climate@purdue.edu

MAY 2019 JAMSH ID I ET AL . 947

DOI: 10.1175/JHM-D-18-0082.1

� 2019 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 08/04/22 04:11 PM UTC

mailto:climate@purdue.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


in the use of technology needed for water management

applications (Allan and Allan 2002). The agricultural

population is also challenged by the lack of formal ed-

ucation, and several projects have been looking at such

semiarid and the MENA region as a locale where future

sustainability and stability is linked to water access and

management (Haddadin 2001; Hakimian 2003). The

groundwater table in these regions has been declining,

and local knowledge suggests this decline is due to over-

irrigation. Figure 1 shows the changes in the groundwater

from 2005 to 2017 based on Gravity Recovery and Cli-

mate Experiment (GRACE) data, centered over the re-

gion. While there is the seasonal recharge, a long-term

steady decline in the groundwater storage field is evident.

As a result, the region continues to have increased water

vulnerability due to preexisting limited water avail-

ability and exacerbating groundwater decline. Exces-

sive groundwater pumping has caused regulations to be

enacted, with reports of a potential gray market for

water permits (El Kharraz et al. 2012) leading to land

abandonment and cultural and geopolitical instability.

Moreover, the recent climate variability with instances of

prolonged and severe drought has caused further stress on

the region’s ability to sustain itself (Nazemosadat and

Ghasemi 2004; Raziei et al. 2009).

From the hydrometeorological perspective, the problem

boils down to quantifying the water budget in this area.

There is relatively good information becoming available

regarding rainfall occurrences and availability based on

some in situ and satellite measurements (Yatagai et al.

2008; Tabari and Talaee 2011). The core issue is that

local agencies need a water management plan in con-

junction with a correct understanding of the hydrologi-

cal cycle, along with tools for understanding crop water

use and sufficient irrigation. To that end, one important

piece of information that the local agencies need is a

simple but reliable estimate of the regional evapo-

transpiration (ET) that can be used in terms of designing

decision tools at local and regional scales. ET estimates

are important to improve decision-making tools, detect

crop stress, refine irrigation scheduling, and manage of

water resources at the watershed scale (Gibson et al.

2013; Kongo and Jewitt 2006; Kamali and Zand-Parsa

2017).

For ET estimation, a number of approaches are avail-

able. These include direct measurements like lysimeters and

eddy covariance techniques (Baldocchi 2003; Aubinet 2008,

Liu et al. 2013), or estimations by mathematical, empirical,

or analytical approaches (Wright 1982; Hargreaves and

Samani 1985; Allen et al. 1998). To overcome temporal

and spatial field scale inherent in traditional parametric

methods, a number of studies have also developed re-

mote sensing-based algorithms utilizing surface energy

balance concepts to retrieve ET for a regional scale ei-

ther by modeling (e.g., Bastiaanssen et al. 1998; Su 2002;

Allen et al. 2007; Irmak et al. 2013) or satellite products

of ET estimates (Anderson et al. 2011; Mu et al. 2011;

Vinukollu et al. 2011; Senay et al. 2011; Jamshidi et al.

2019). Atmospheric reanalysis data have also been used

in a number of studies (Fall et al. 2010; Trenberth et al.

2011; Weedon et al. 2014), but in regard to estimating

ET at regional and local scales, relatively few studies

exist and most are based on physical and empirical

approaches or using satellite measurement (Wang

et al. 2011; Mao and Wang 2017).

In this study, we assessed the different ET data

sources that provide evapotranspiration from gridded

datasets such as reanalysis to fine-resolution satellite

datasets for the Gareh Bygone Plain (GBP) in southern

Iran. It should be noted that, due to the paucity of in situ

data in the region, the spatial scale of this study is limited

to the GBP, the landscape and climate of which is

broadly representative of the southern Iran regions. An

implicit objective is to understand the reliability and

utility of these large-scale datasets to undertake decisions

for regions with small landholdings and heterogeneous

land cover. Thus, the study aims to assess and compare

the ET estimates that emerge from the comparison

FIG. 1. Trend in groundwater depletion from 2005 to 2017 based onGRACEdata (available at http://grace.jpl.nasa.gov).
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among gridded products, satellite-based methods, and

in situ measurements for the study region. The second

objective is to highlight a simple hybrid methodology

that emerged from the result based on comparisons with

observations to provide a locally representative and re-

liable ET that can ultimately help better irrigation map-

ping and control, or water management at the local scale.

The performance of such methodology for developing

reliable ET datasets was also evaluated. Accordingly,

Mapping Evapotranspiration at High Resolution with

Internalized Calibration (METRIC) and Surface Energy

Balance System (SEBS) models were used in estimating

seasonal crop water use in farmlands (mainly winter

wheat and forage corn), and the results were compared

with in situ measurements. Considering the impor-

tance of a reliable shortwave incoming solar radiation

(SISR) source in ET calculations, an ancillary objec-

tive of this study includes the evaluation of different

SISR datasets for using in surface energy balance

methods (i.e., METRIC and SEBS) in southern Iran

as an example of a data-sparse region.

2. Data and methods

a. Study site

The GBP is an area of 18 000ha located south of the

Zagros Mountains in southern Iran between 288350N

and 538530E. The altitude of the GBP ranges between

1120 and 1160m MSL (Fig. 2). The mean annual pre-

cipitation of the GBP region is 219mm, typically oc-

curring from December to March, with the exception of

few events in summer (June–July). The air temperature

peaks to 408–468C between July and August and then

drops to from 218 to 268C between January and

February. Weather data for this region are typically

available from the Gareh Bygone and the Fasa weather

stations, and are located about 45 km from the GBP.

Sparse shrublands, rangelands, and bare soil are the

main land covers over GBP. The landscape and climate

of this area is broadly representative of the southern/

southeast Iran regions.

In the study area, wheat is the dominant crop type.

The region typically has an annual crop–fallow rotation

system, but sometimes fallow is replaced by barley or

cotton in winter. For summer, watermelon and canta-

loupe are the main crops, and wheat, barley, or forage

corn are grown in rotation (Table 1).

b. Evapotranspiration datasets and methods

Performance of ET models is intimately linked with

the geographical scale at which the model is being ap-

plied and the datasets available (Fisher et al. 2011). The

model use is also linked to available input data. The

validation of ET products is dependent upon the spatial

resolution (Liang et al. 2004), causing uncertainties in

the results from studies, showing good or poor results

depending on the season and location. In this study, the

choice of the datasets was governed by the data avail-

ability and accessibility. Figure 3 shows the spatial res-

olution and the conceptual view of the ease of access

to this information from the user’s perspective. In this

regard, a reanalysis dataset as a continuous, gridded

FIG. 2. Location of the study site in Iran and simplified map of main land use.
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product is relatively easy to access but is at the largest

scale (i.e., coarse spatial resolution). Following the re-

analysis, Moderate Resolution Imaging Spectroradi-

ometer (MODIS) ET datasets provide moderately easy

access as well as spatial resolution. Landsat-based pro-

cessing with METRIC and SEBS involves compu-

tational processing and some level of sophistication;

nevertheless, it provides high-resolution datasets. There

are also different types of datasets possible from in situ

observations that can be used in simple parametric

equations and models or tools such as REF-ET (Allen

2000). On the other end, in situ observations have high

local usability but have difficulty providing continuous

measurements. Each of these datasets and the method-

ology used in terms of data processing is described in

this section.

1) REANALYSIS

NCEP, ERA-Interim, and ERA-5 are used in this

study (Bengtsson et al. 2004; Schmidt et al. 2006;

Weedon et al. 2014). The NCEP reanalysis covers 4

times daily, daily, andmonthly values with T62Gaussian

grid (192 3 94 points). The First Global Atmospheric

Research Program (GARP)Global Experiment (FGGE)

was the first reanalysis produced in the 1980s, followed

by ERA-15, ERA-40, and most recently ERA-Interim

and ERA-5. NCEP reanalysis uses a twice-a-day, four-

dimensional variational analysis (4D-Var) approach.

ERA-Interim data are generated at a spatial resolution

of 80 km, and ERA-5 provides data at a considerably

higher spatial and temporal resolution, with hourly

analysis fields at a spatial resolution of 31 km.

Data were retrieved from www.ecmwf.int in netCDF

format. In reanalysis datasets we calculate the evapo-

ration fields using latent heat flux LH and latent heat

of vaporization (2.45 J kg21) according to Lorenz and

Kunstmann (2012).

2) MODIS

The second data source for this data-sparse region

is MODIS, on board the Terra and Aqua satellites.

In particular, MODIS evapotranspiration data based

on the MOD16 algorithm (Mu et al. 2011) were used.

The surface energy portioning process and atmo-

spheric drivers on ET are considered in the MOD16

algorithm.

TABLE 1. Vegetation characteristics (Pakparvar et al. 2014). Winter crops: wheat (Triticum aestivum) or barley (Hordeum vulgare);

midsummer crops: watermelon (Citrullus lanatus), melon (Cucumis melon), cantaloupe (Cucumis melo var. cantalupensis); late summer

crop: forage corn (Zea mays).

Agronomic dates Irrigation

Land use Main crops Sowing Harvesting Max green Methods Depth (mm) Average yield (t ha21)

Farmland Winter December Early June Mid-March Surface 400–570 4–5

Midsummer 20–30 Feb Mid-August Early August Furrow 1100–1300 Different

Late summer Mid-August 5–10 Nov 20–25 Sep Furrow 900–1100 35–45

FIG. 3. Spatial resolution and ease of access to data sources from the user’s perspective.
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Land cover data, fraction of photosynthetic active

radiation (FPAR), and leaf area index (LAI) as well as

global surface meteorology are the inputs used in the

algorithm to generate global ET data products (Mu et al.

2007, 2011).

TheMODIS ET products include 8-day, monthly, and

annual actual ET (AET), latent heat flux (LE), potential

ET (PET), and potential LE (PLE) datasets. Spatial

resolution of version 5 products is at 1 km, which in-

creased to a nominal 500m in version 6.

MODIS AET datasets were obtained from

earthdata.nasa.gov inHDF format and first needed to be

georeferenced and reprojected. The ET values from

MODIS and reanalysis for a 5-yr period from 2009 to

2014 were extracted from the grid and pixels over GBP.

3) LANDSAT-BASED ET

To obtain ET at a finer spatial resolution, Landsat

data were used. Landsat is a joint program of the USGS

and NASA that produces multispectral and thermal

data with 30-m resolution. We processed Landsat data

as input for two surface energy balancemodels:METRIC

(Allen et al. 2007) and SEBS (Su 2002). These models

were run using in-house code using ERDAS IMAG-

INE model maker tools. Due to a data gap issue in

Landsat 7, the Landsat 5 Thematic Mapper (TM5)

was used.

The SEBS and METRIC models are based on the

surface energy balance equation:

LE1H5R
n
2G , (1)

where LE is the latent energy consumed byET (Wm22),

Rn is the net radiation (Wm22), G is the soil heat flux

(Wm22), and H is the sensible heat flux (Wm22). The

net radiation can be calculated as the difference be-

tween incoming and outgoing shortwave and longwave

radiation:

R
n
5 (12a)R

s,in
1 «R

l,in
2s«T4 , (2)

where Rs,in is the incoming shortwave (solar) radiation

(Wm22), a is the shortwave albedo Rl,in is the incoming

longwave (or thermal) radiation (Wm22), s is the Stefan–

Boltzmann constant, 5.67 3 1028 (Wm22K24), « is the

surface emissivity, and T is the air temperature (K).

(i) METRIC

The model was developed based on the principles and

techniques used in the Surface Energy Balance of Land

(SEBAL) model and relies upon albedo and land sur-

face temperature data to model energy fluxes. The model

computes G as a ratio G/Rn using an empirical equation

(Allen et al. 2007) as follows:

G

R
n

5 (T
s
2 273:15)3 (0:00381 0:0074a)

3 (12NDVI4) , (3)

where Ts is surface temperature (K) and NDVI is the

normalized differential vegetation index.

Sensible heat flux is a function of air density

rair (kgm
23), the specific heat constant of air at constant

pressure (Cp 5 1004 Jkg21K21), the aerodynamic

resistance rah (sm21), and the temperature difference

dT (K), typically between 0.1 and 2m above the canopy

(Bastiaanssen et al. 1998):

H5 r
air

3C
p
3
dT

r
ah

. (4)

An iterative solution is required to compute H be-

cause dT is initially unknown. The first iteration is

completed assuming neutral atmospheric stability. To

determine dT at all the pixels, a linear relationship is

assumed to exist between dT and the radiometric sur-

face temperature Ts:

dT5 a1 bT
s
, (5)

where a and b are empirical coefficients estimated based

on two anchor pixels that define the upper (hot) and

lower (cold) bounds of the sensible heat flux. The

METRIC model equations are internally calibrated at

these two limiting conditions using an iterative process.

Hot pixels are located in bare, dry agricultural fields with

either no residual soil moisture such that ET is assumed

to be zero, or as a result of a wetting event, there might

be residual evaporation from soil so a nonzero value of

ET can be assumed. Thus in METRIC,

dT
hot

5
H

hot
3 r

ah

r
air

3C
p

/

if LEhot 5 0
dT

hot
5

(R
n
2G)3 r

ah

r
air
3C

p

. (6)

‘‘Cold’’ pixels are located in well irrigated, fully vege-

tated agricultural fields where there is no water stress

and maximum ET occurs. The resulting equation is

dT
cold

5
H

cold
3 r

ah

r
air

3C
p

/

SubstitutingH
dT

cold

5
(R

n
2G2 1:05ET

ref
)3 r

ah

r
air

3C
p

. (7)

The calculated values for dT and Ts for each end pixel

are then substituted back into Eq. (4) to determine pa-

rameters a and b. Using this relationship, dT and H can

be estimated for each pixel in the scene. Choosing these
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pixels requires experience and expertise on the part of

the user and can introduce uncertainty (Long and Singh

2013). In this study, hot and cold reference pixels were

selected in a predetermined way to fulfill the required

criteria.Moreover, they were verified to be for agricultural

fields, avoiding villages, roads, or any other land cover.

The instantaneous ET (ETinst) is then determined as

ET
inst

5 3600
LE

l
. (8)

To extrapolate daily ET (ET24) from ETinst, it is as-

sumed that the reference ET fraction (ETrF) at the

Landsat overpass moment equals the average ETrF

throughout that day, as calculated by

ET
rF
5

ET
inst

ET
ref

. (9)

The ET24ref is estimated using the Penman–Monteith

equation (Allen et al. 1998). Actual ET24 is then calcu-

lated by

ET
24
5ET

rF
3ET

24ref
. (10)

A simple interpolation function is used to interpolate

between scenes to retrieve monthly and seasonal ET.

(ii) SEBS

SEBS has been used over different landscapes and

spatial scales using Landsat, ASTER, andMODIS satellite-

acquired data (Su et al. 2005; Van der Kwast et al. 2009).

In SEBS, similar to METRIC, G was estimated as a

fraction of net radiation as

G5R
n
[G

c
1 (12 f

c
)(G

s
2G

c
)] . (11)

For full vegetation canopy Gc 5 0.05, and for bare soil

GS 5 0.315 (Kustas and Daughtry 1990). Computing the

surface energy balance with the SEBS algorithm was

based on the determination of the relative evaporation

fraction (EFr), which is the partition of the available

energy between sensible and latent. To determine the

EFr fraction, two limits were considered. In the dry-limit

condition, the soil moisture is limited, and latent heat lE

becomes zero and sensible heat flux is at its maximum

value Hdry:

H
dry

5R
n
2G . (12)

At the wet-limit, sensible heat flux is minimal Hwet

yielding

H
wet

5R
n
2G2 lE

wet
. (13)

The EFr can be then evaluated as

EF
r
5

lE

lE
wet

5 12
H2H

wet

H
dry

2H
wet

. (14)

TheHdry was obtained by Eq. (12) whileHwet was given

by substitution of Eq. (13) to a combination equation

similar to the Penman–Monteith equation proposed by

Menenti (1984). The evaporative fraction was eventu-

ally obtained as

EF
r
5

lE

R
n
2G

5
EF

r
3 lE

wet

R
n
2G

. (15)

If the net radiation for 24 h Rn was estimated from

daily meteorological parameters, then the average daily

evapotranspiration could be calculated as

ET
24
5 8:643 107 3L3

R
n
2G

lrw
, (16)

where l is latent heat of vaporization (2.45 J kg21) and

rw is density of water (1000kgm23). The average soil

heat flux over a 24-h period (G) was assumed to be

negligible (Su 2002).

As suggested by Allen et al. (2007), we used the cal-

culated the reference ET fraction for METRIC model

and evaporative fraction for the SEBS model from each

Landsat image and multiplied the fraction values by the

reference ET to calculate daily ET for gap days between

satellite overpass dates.

c. In situ measurements

To evaluate the METRIC and SEBS models for lo-

cal applications, measurements were obtained from

Pakparvar et al. (2014). The data included the volume of

irrigation water used in farmlands as measured for two

cropping seasons from December 2009 to December

2010. Guided by the recommendations from Pakparvar

et al. (2014), the amount of effective rainfall (recorded

rainfall 3 0.7) in the volume base was added to the

calculated applied water. The study reported that 24%

of total input water (irrigation 1 precipitation) returns

to the hydrological cycle as return flow.

Over GBP two Landsat path images were available

every 7–9 days with path/row designations 161/40 and

162/40. To estimate the value of ET for winter and

summer cropping seasons, a time series of 22 scenes

between 13 January and 21 December 2010, were

available and used as input to the METRIC and SEBS

models. The digital elevation model (DEM) was an-

other required input to the models and was taken from

ASTER. Initial work with the models highlighted the

need to update the SISR source in using METRIC and

SEBS, and is described next.
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d. Shortwave incoming solar radiation

Accurate SISR prescription directly affects the results

of energy balance models since they are the main source

of energy partitioning for evapotranspiration. In data-

sparse regions, SISR measurements are not usually

available, causing local agencies to abandon the use of

surface energy balance based methods. In addition,

models and equations may require adjustments consid-

ering atmospheric and climatic characteristics of the

study regions (Sepaskhah and Razzaghi 2009; Noshadi

and Jamshidi 2014). A reliable source providing SISR

parameter eradicates such issues and enhances the ac-

curacy of ET calculations. The SISR calculated from

the formulation available in METRIC and SEBS was

compared to three sources of SISR data: (i) measure-

ments at the weather station, (ii) values obtained by

CMSAF products (https://wui.cmsaf.eu), and (iii) values

generated by the ‘‘r.sun’’ algorithm from Geographic

Resources Analysis Support System (GRASS). The

CMSAF website provides the Surface Solar Radiation

Dataset–Heliosat (SARAH) product available from

1983 as monthly, daily, and hourly averages and covers

the region6658 longitude and6658 latitude on a 0.058 3

0.058 resolution.

e. Reference ET from REF-ET tool

Reference ET in the study area was calculated using

pan evaporation measurements at the weather stations.

It should be noted that reference crop is assumed to be

grass with the height of 0.12m. The pan evaporation was

related to the reference evapotranspiration by an em-

pirically derived pan coefficient (0.7 for the study area)

using Eq. (17):

ET
r
5E

pan
3 0:7, (17)

where ETr is reference evapotranspiration (mmday21)

and Epan is measured pan evaporation (mmday21).

Daily weather data, taken from weather stations in the

study area, were used in the REF-ET tool to calculate

ETr. REF-ET provides standardized calculations of ETr

using 15 of the more common methods on monthly,

daily, or hourly (or shorter) time steps (Allen et al.

1998). Based on data availability and the region, ET data

from 12 methods (Table 2) were plotted and the results

were compared with the ETr obtained from pan evap-

oration at the weather stations.

3. Results

A broad summary of the results and the presentation

of the findings is outlined. We first present a comparison

of the evapotranspiration values from different sources.

For this, initial comparisons were done using graphical

and statistical analysis to screen and assess the qualita-

tive similarity. The ‘‘best models’’ following the initial

screening and the lowest RMSE values were undertaken

for more analysis by estimating water use (actual ET)

over the study region. The selected models were com-

pared with ground measurements and results are dis-

cussed in section 3b. Crop coefficients Kc were also

estimated for the cultivated areas using the best models,

and the values were compared with the literature. The

objective then is to use an averageKc value and reference

ET value to get a general assessment of water usage for

the landscape which is described in sections 3c and 3d.

a. Comparison of evapotranspiration datasets

A time series of derived ET from different sources

was compared to ETr calculated from measured pan

evaporation at the weather stations of the region for six

years from 2009 to 2014. It should be noted that because

of a lack of measured ETa datasets for the study period,

we used reference ET as the basis of model compari-

sons. As a result, in this subsection we compared actual

modeled ET against reference measured ET merely

TABLE 2. List of methods used in this study to calculate ETr using the REF-ET software.

Method’s name Source Abbreviation RSME (mm)

Standardized form of the ASCE Penman–Monteith Allen (2000) PMst 0.79

Kimberly–Penman Wright (1996) KPen 0.89

Penman (1963) Penman (1963) Pen 0.89

FAO-56 Penman–Monteith Allen et al. (1998) 56 p.m. 1.00

FAO-PPP-17 Penman Frere and Popov (1979) FP17 1.53

FAO-24 Corrected Penman Doorenbos and Pruitt (1977) 24Pn 1.48

FAO-24 Radiation Method Doorenbos and Pruitt (1977) 24Rd 1.85

FAO-24 Blaney–Criddle Doorenbos and Pruitt (1977) 24BC 1.27

Hargreaves temperature method Hargreaves and Samani (1985) Harg 1.24

Priestley–Taylor radiation and temperature method Priestley and Taylor (1972) Tylr 2.07

Makkink radiation and temperature method Makkink (1957) Makk 2.40

Turc radiation and temperature method Turc (1961) Turc 1.34
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to highlight the qualitative similarity. This helped

identify the overall accuracy of the ET data sources and

aided the selection of the data source(s) with lower

uncertainties for further analysis (described in the next

step). The models with higher accuracy then were

evaluated with in situ ETa measurements for a grow-

ing season from 2009 to 2010. To illustrate the com-

parisons graphically, ET values from estimations and

observations were averaged during the study period

from 2009 to 2014, and plotted against day of year

(Fig. 4). In addition, datasets (including all data) statis-

tics were compared with a 1:1 line (Fig. 5), and boxplots

and RMSE were computed for each dataset (Fig. 6).

ERA-Interim showed higher ET values compared to

ERA-5 data, and neither showed high correlation with

measured ETr considering the RMSE value of 4.3 and

5.2mm, respectively. The ERA data were also unable to

capture the seasonal variability in ET changes (Figs. 4

and 5a,b). The grid from ERA-5 and ERA-Interim that

covers the study domain (GBP) primarily contains

sparse vegetation and some agricultural regions. As a

result, the vegetation fraction was small and caused the

actual ET values to be notably small as compared to the

observations and also did not exhibit any temporal

changes due to the lack of phenology. The grid from

ERA-Interim, on the other hand, is able to represent a

larger fraction of agricultural landscapes, and yielded

higher values of ET compared to those obtained from

ERA-5. Therefore, not surprisingly, different grids from

different data sources resulted in different ET values

FIG. 4. Graphical comparison of ETr resulting from pan data with ET values obtained from different datasets.
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because of the predominant land covers represented in

the datasets. The NCEP reanalysis-based ET value also

underestimated ET, but it could capture the relative

spatiotemporal pattern as compared to ERA data with a

better RMSE value of 3.01mm (Figs. 4, 5c). Due to the

coarse spatial resolution of NCEP datasets, the grid

covering GBP also included some dense vegetated area

with cooler climate. Therefore, the difference between

two estimates was expected; however, in cold months

including January, February, November, and Decem-

ber, the ET derived from NCEP was near zero. Gener-

ally, for small domains, the ET rate estimation is

relatively simple and can be calculated with meteoro-

logical data rather than using gridded products. In this

regard, our results indicated that if reanalysis data were

desired, NCEP reanalysis ET data fields could indeed be

more suitable for studies, especially over large domains.

Derived ET values from MODIS products are classi-

fied as those from vegetated and nonvegetated pixels.

Nonvegetated pixels did not yield any ET. Sparse

vegetation and a mixture of bare soil and farmlands

increased the bias, causing the ET from vegetated pixels

to be significantly lower with an RMSE of 5.23mm

(Figs. 4, 5d). Some studies have addressed the issue of

uncertainty in theMODIS ET and found it to be around

25% (Mu et al. 2011; Ghilain et al. 2011). Kiptala et al.

(2013) applied MOD16 algorithm to a heterogeneous

landscape in eastern Africa and reported relatively

modest accuracy with R2 of 32% and MAE of 28%.

Hu et al. (2015) evaluated MOD16 from MODIS over

Europe, and stated that ET data were consistent with

eddy covariance measurements over most of Europe

except for the semiarid regions where the ET values

were notably underestimated. Trambauer et al. (2014)

FIG. 5. Statistical comparison of ETr resulting from pan data and ET values obtained from different datasets

with 1:1 line.
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also reported MOD16 values underestimated ETa

in the semiarid and arid Mediterranean, Sahel, and

southern Africa regions and were not correlated with

other products. This issue of poor accuracy in estimating

ET over arid and semiarid regions and not reflecting

the characteristics of the variation in a typical double-

cropping system have been addressed in other studies

as well (Kim et al. 2012; Liu et al. 2013).

Figures 4, 5e, and 5f illustrate that METRIC and

SEBS-based ET could accurately capture the variability

of actual ETwith RMSE of 1.6 and 1.8mm, respectively.

The trend and variability were particularly well captured

and showed good correlation with ETr. The difference

between observed and modeled values can be consid-

ered reasonable since the observed values were refer-

enceETwhileMETRIC and SEBS estimates were actual

ET. Actual ET could be lower or higher than ETr due to

different crop coefficients Kc for different growth stages.

Thus, it can be concluded that high-resolution Landsat

data have the potential for calculating ET as part of the

tools used for ET management of farmlands that are

relatively small and where sparse vegetation is domi-

nant. Different types of land cover were discerned in the

Landsat imagery that helped reduce the bias and improve

accuracy of ET products through METRIC and SEBS.

The comparisons, summarized in Fig. 6 by illustrat-

ing a boxplot for all studied models, highlight the po-

tential of the surface energy balance–based approaches

including METRIC and SEBS to provide reliable local-

scale information of ET. As can be noted in Fig. 6,

ERA-5 and MODIS ET values were consistently only a

fraction of the measurements and in the lower quartile

of measured ETr. ERA-Interim yielded higher ET

compared to ERA-5 andMODIS, but still had a smaller

range covering only the second quartile ofmeasuredETr

values. While NCEP reanalysis values had more vari-

ance with extreme values, nearly 75% of ET rates

were within lower quartile of measured ETr. The

SEBS and METRIC fields had the average values (4.20

and 4.17mmday21, respectively) that were closest to the

measurements (5.7mmday21). The ET rates, while

slightly lower than the measurements, presented a sim-

ilar range as seen for the measured ETr rates. The lower

mean values and the ranges calculated using the SEBS

and METRIC were due to the difference expected be-

tween reference ET and actual ET. The ET obtained by

using SEBS and METRIC models required moderate

preprocessing, and it is postulated that it can provide

output that is suitable for decision support systems in

the region.

Considering better performance of the METRIC and

SEBS model compared to MODIS and reanalysis data,

these models were selected for further evaluation

through estimating actual crop water use in local ir-

rigated farmlands at watershed level. To make the

models more applicable and representative for data-

sparse regions, a source of solar radiation (CMSAF

SISR data) was analyzed prior to using the models

(comparison details in section 3e). Embedding this

modification, the seasonal crop water use resulting from

METRIC and SEBS was compared with in situ mea-

surements in Pakparvar et al. (2014).

b. Comparison of METRIC and SEBS estimates with

measured applied water

Seasonal estimated actual crop evapotranspiration

using METRICS and SEBS methods in the study area

are presented in Table 3. For the cropping season of

FIG. 6. Boxplot representation of ET values for each dataset in comparison with measured ETr data.
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2009–10, out of the 2000ha of farm fields in the study

area, 1234ha were used for winter crops and 716ha as

summer crops. For winter crops, the net input water was

determined as 5.434Mm3, which accounted for the ETa.

Examples of actual ET maps generated for the region

through the growing season are presented in Fig. 7.

METRIC and SEBS modeled cumulative ET for this

period equals 5.66 and 4.81Mm3, respectively. Hence,

the modeled ETa from the two models yield 4.6% of

overestimation and 11.4% of underestimation, which

seemed adequate for development of regional estimates.

For the summer season, the total amount of net applied

water was measured as 5.33Mm3, which accounts for the

ETa (Pakparvar et al. 2014). The water consumption for

summer and winter was approximately the same be-

cause of less cultivated area in summer. The METRIC

model estimated the ETa for this period as 5.02Mm3

with 9.4% of underestimation, whereas the SEBSmodel

estimated the amount to be 6.16Mm3, yielding 15.6%

overestimation. Lower accuracy for the summer crop-

ping season by the METRIC model was mostly due to

the lack of ground information regarding land cover

TABLE 3. Crop water consumption for the cropping season of 2009–10.

Crops

Area

(ha)

Irrigation

(m3 ha21)

Effective rainfall

(m3 ha21)

Net water

(m3 ha21)

METRIC estimation

(m3 ha21)

SEBS estimation

(m3 ha21)

Winter crops 1234 4800 1000 5.44 5.66 4.81

Summer crops 716 9800 0 5.33 5.02 6.16

FIG. 7. Daily actual ET map generated with the METRIC model for (a) 22 Jan, (b) 23 Feb, (c) 18 Mar, (d) 11 Jun,

(e) 28 Oct, and (f) 6 Nov 2010.
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type and occurred when using Landsat imageries; nev-

ertheless, both model estimates were relatively good.

c. Estimates of regional crop coefficient Kc,

NDVI, and LAI

While ETa has spatiotemporal variability and is typi-

cally a difficult parameter to compare across different

locations, average crop coefficientsKc can be considered

more transferable (Allen et al. 1998). We estimate ETrF,

based on the crop coefficient Kc that reflects the crop

state and the stress condition related to water or soil

stress (Kc 3Ks). To calculate the average value of Kc,

each agricultural field pixel was identified andKc values

were calculated and extracted. For each day during

growing seasons the values were averaged (simple av-

erage over all pixels), and the mean values obtained for

each day were then averaged over the entire growing

seasons.

For winter cropping season with wheat as the main

crop, the calculated Kc ranged from 0.52 in its initial

growing stage and peaked to around 1.15 during March,

when the maximum canopy greenness occurred. The Kc

value again reduced to around 0.35 prior to harvest.

SEBS estimated the average Kc-mid value of 1.21, which

was greater than the METRIC estimation (1.15). Com-

paring the Kc values from the two models (Fig. 8a),

lower uncertainty (15% on average) was obtained from

the METRIC model. Better parameterization and in

particular, the self-calibration process in the METRIC

model, resulted in the lower uncertainties in the final

estimates (i.e., ETrF or Kc) compared to the SEBS

model. The mean Kc-mid values of 1.21 and 1.15, for

SEBS and METRIC respectively, are consistent with

the typical values reported in a variety of bioclimates,

which range from 1.08 to 1.19 (e.g., Bandyopadhyay and

Mallick 2003; Gao et al. 2009; Ko et al. 2009; Zhao et al.

2013). In particular, Niazi et al. (2005) reported Kc-mid

values of 1.09–1.13 for Fars Province, which encom-

passes the study area. The area is relatively dry, with

high temperatures and winds during the midseason, and

higher values of Kc are typically expected. The differ-

ence in Kc could also be due to crop varieties and crop

management practices.

For the summer season with corn as the main crop,

METRIC estimated the average midseasonKc values as

1.16, whereas the SEBS-based estimate was at 1.08

(Fig. 9a). These values were well compared with those

reported in the literature. A ranging value of 1.08–1.20

was reported by Allen et al. (1998), Liu and Pereira

(2000), Gao et al. (2009), Martínez-Cob (2008), and

Zhao et al. (2013). Similar to the study region, Gheysary

et al. (2006) reported Kc-mid of 1.13 for a study im-

plemented at Varamin, south of Tehran with the same

mean temperature and annual rainfall. As a result, the

Kc values obtained appear to be appropriate for farms

in this region with forage corn crops.

Considering the different crops and vegetation cover

over the study area, a temporally averaged Kc value

FIG. 8. Seasonal variation of (a) crop coefficient, (b) actual evapotranspiration, (c) NDVI, and (d) LAI for wheat resulting from the

METRIC and SEBS models, corresponding to the day of year for which Landsat images were available.
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of 0.77 was obtained for the region. The summer-

time average was 0.84 (ranged from 0.66 to 0.96),

while in wintertime the Kc values estimated as 0.68

(ranged from 0.52 to 0.82). This landscape coefficient

value can be effectively used with ETr estimates from

simpler equations such as the Penman–Monteith ap-

proach to generate the actual ET for the entire land-

scape during a cropping season. This approach is

expected to help assess the crop water usage and the

broader agricultural water consumption and help the

growers and water managers have a better outlook

regarding water requirements through the growing

season.

The NDVI and LAI values obtained from the METRIC

and the SEBS models were similar (Figs. 8, 9), since

we use the same formulation in both the models. Based

on the available Landsat images, the average NDVI for

wheat was 0.33 (13 January 2010), which peaked to 0.73

(18 March 2010) before falling to 0.35 (28 April 2010)

close to harvest. The average LAI for the corresponding

dates ranged from 0.4, 5.4, and 0.8, respectively. The

average NDVI for forage was 0.42 (29 August 2010),

0.55 (30 September 2010) at the peak of the season and

then dropped to 0.39 (13 November 2010) close to har-

vest. The corresponding average LAI was 1.6, 3.5, and

1.3, respectively. The seasonal variability for NDVI and

LAI are presented in Figs. 8c, 8d, 9c, and 9d. The max-

imum ET for wheat occurred during March with aver-

age rate of 4.2mmday21, and for forage corn occurred

during September with average rate of 6.7mmday21

(Figs. 8b, 9b).

d. Comparison of reference ET methods from the

REF-ET tool

The differences between measured values and calcu-

lated ones were plotted for the standard form of the

American Society of Civil Engineers (ASCE) Penman–

Monteith (Allen 2000) since it showed the lowest

RMSE; also plotted are values from twomethods, FAO-

24 radiation (Doorenbos and Pruitt (1977)) and

Makkink (1957), to illustrate the range of values from

the different methods (Fig. 10). According to calculated

values for RMSE, Standard Penman Monteith (Allen

et al. 1998), FAO-56 (Allen et al. 1998), Kimberly–

Penman (Wright 1982), and Penman (Penman 1963)

showed better accuracy for calculating ETr. To cover the

dates with missing pan data, we chose Standard Penman

Monteith (PMst) to calculate ETr as the basis for com-

parisons and other computations.

The REF-ET tool presents a computationally easy

approach in regard to running the model. The challenge

here is that REF-ET generates reference ET and not the

actual ET. This would pose an impediment for local

agencies and communities that need actual ET for dif-

ferent crop landscapes. To address this, we used the

outcome fromMETRIC and SEBS to estimate a general

Kc term (as described above). The landscape Kc values

that resulted from the models were incorporated with

FIG. 9. Seasonal variation of (a) crop coefficient, (b) actual evapotranspiration, (c) NDVI, and (d) LAI for corn as obtained from the

METRIC and SEBS models, corresponding to the day of year for which Landsat images were available.
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the reference ET values that resulted from the REF-ET

tool to generate actual ET for the study region as the

hybrid method. This method estimated seasonal crop

water use as of 5.05Mm3 for the winter season and

4.82Mm3 for the summer season (Fig. 11a). The hybrid

method underestimated the measured values; however,

with 7.1% and 9.5% of error (Fig. 11b) for winter and

summer seasons, respectively, it generated satisfactory

results as both METRIC and SEBS.

e. Short incoming solar radiation

As can be seen in Fig. 12, the equations used in

METRIC and SEBS approaches overestimated the

solar radiation, while CMSAF and r.sun values re-

mained closer to the measured data. In previous studies

(Nguyen and Pearce 2010; Pakparvar et al. 2014), the

r.sun approach was used and the results were satis-

factory. The daily averaged RMSE value of 70Wm22

between the observations and the CMSAF product

nominated it as the preferred radiation input for our

models. Figure 13 shows the comparison for hourly

data for select dates. The evaluation of CMSAF data

from this study highlights its suitability to be used as

SISR input when measurements are not available.

4. Conclusions

The motivation for this study was to assess the

multiscale ET estimation approaches with a broader

objective to aid local decision-makers and border

communities, for example, over GBP, southern Iran,

and providing a guideline for developing tools that

can be used for design, water management, and water

sustainability for the study region and the broader

regions with similar characteristics (e.g., MENA

region).

FIG. 10. The difference between time series of ETr calculatedwith theREF-ET tool andmeasured pan evaporation.

FIG. 11. (a) Comparison between in situmeasurements and themodels estimation of crop water use for the growing

seasons. (b) Error percentage that resulted from the models.

960 JOURNAL OF HYDROMETEOROLOGY VOLUME 20

Unauthenticated | Downloaded 08/04/22 04:11 PM UTC



Results indicated that for generating locally and re-

gionally usable ET estimates, higher spatial resolution

increases the ability of ET estimates to bemore relevant.

Reanalysis products, while providing a relatively easily

accessible source, were inadequate and underestimated

the ET values. This underestimation was likely due to

the coarse resolution and because the reanalysis prod-

ucts did not capture representative surface features.

As a result, reanalysis products, while popular, were

deemed uncertain in the study region. While the NCEP

reanalysis had a relatively better performance of the

different products evaluated, the overall inability of

reanalysis products to be adequate for the region led to

the conclusion that high-resolution, local-scale ET esti-

mates need to be developed to enable useful and usable

decision tools for the community. The postprocessed

Landsat-based fields used with METRIC and SEBS

models were found to provide relatively good and rep-

resentative ET estimates. The SEBS algorithm needed

simpler parameterizations, but less validated when

compared to METRIC/SEBAL, particularly for data-

sparse regions with semiarid to arid climate. The SEBS

model showed higher uncertainty (15% on average)

compared to the METRIC model in which better pa-

rameterization and in particular, the self-calibration

process, resulted in the lower uncertainties in land

data, and it has shown promising results with the caveat

that some local calibrations were required to make the

approach more objective and repeatable. The study re-

sults were used for estimating regional Kc values which

can be combined with easily usable methods to calculate

reference ET. Solar radiation is a key input to ET esti-

mates, yet difficult to obtain in regions with paucity of

in situ observations. The CMSAF data, which provide

remotely sensed solar radiation products, were evalu-

ated and found to be a reliable source of SISR param-

eter that enhances the accuracy of ET calculations.

The study conclusion provides a guideline for de-

veloping a framework in which actual ET can be esti-

mated using a simple hybrid approach for the study

region with limited availability of in situ data. To that

end, satellite datasets can be used for generating average

regionally representative landscape coefficient values.

The landscape coefficient (averaged Kc values) can

then be used efficiently with simple equations such as

Penman–Monteith or climatology ET models to gener-

ate regionally representative, easily accessible, and re-

liable long-term ET estimates for the region. Such

estimates can provide the basis for a reliable and usable

decision tool in the long run. Local growers and water

managers can use the outcome of this study to assess

water usage by crops and improve their decision-making

tools. Accordingly, the suggested framework can be

adopted for a similar domain that is data sparse with

limited access to in situ observations. The framework

considers three parts. (i) For the region of interest,

multiscale ET products can be tested ranging from re-

analysis to satellite. More accurate products or models

can be customized (e.g., using CMSAF data), and a

simplified outcome can be introduced based on the

analysis of the models or products to be more usable for

the local community of region. (ii) Parametric values

FIG. 12. Comparison of SISR obtained from METRIC, CMSAF, r.sun, and measured data.
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can be identified that are required by relatively simple

models (which in this case was the REF-ET tool).

(iii) The tool and simplified outcome then can be used

together to provide estimates that could be relevant,

reliable, and locally representative in a longer context.

It should be highlighted that in the study region reli-

able measured in situ data were difficult to obtain and

therefore, the spatial scale of this study is limited to the

GBP. Further studies and in situ observations consid-

ering other regions and growing seasons need to be

conducted to bolster the results.
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